Workshop Physics Based on an assignment authored by R. Morse at St. Albans School
Name \qquad Sec \qquad Date \qquad

CONSTANT ACCELERATION SAMPLE PROBLEM

A car is travelling $100 \mathrm{~km} / \mathrm{h}$ when it starts to brake. The car slows at a constant rate until its speed is $70 \mathrm{~km} / \mathrm{h}$. When it reaches $70 \mathrm{~km} / \mathrm{h}$ it is 24 m from the point where it started slowing. How long does it take the car to slow from $100 \mathrm{~km} / \mathrm{h}$ to $70 \mathrm{~km} / \mathrm{h}$ and what is the car's braking acceleration? Mass of the $\mathrm{Car}=1.6 \times 10^{3} \mathrm{Kg}$

Part 1: Motion Diagram		Part 1: Sketched Graph for Velocity vs. Time
Part 2: Tables and Unit Conversions known: $v_{\mathrm{i}}, v_{\mathrm{f}}, d$ to find: t, a $\begin{gathered} (100 \mathrm{~km} / \mathrm{h})\left(\frac{\mathrm{h}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=\frac{100}{3.6} \mathrm{~m} / \mathrm{s}=27.78 \mathrm{~m} / \mathrm{s} \\ (70 \mathrm{~km} / \mathrm{h})=\frac{70}{3.6} \mathrm{~m} / \mathrm{s}=19.44 \mathrm{~m} / \mathrm{s} \end{gathered}$	Part 2: Equations $d=v_{\mathrm{avg}} t=\frac{v_{\mathrm{i}}+v}{2}$ Part 3: Algebra and Subs $\left\{\begin{array}{l} v_{\text {avg }}=23.61 \mathrm{~m} / \mathrm{s}, \\ t=d / v_{\text {avg }}=24 \mathrm{~m} / 23.61 \mathrm{~m} / \\ \quad a=\frac{d-v_{i} t}{t^{2}}=\frac{24 \mathrm{~m}-(2}{} \end{array}\right.$ ANSWER $a=-4.19 \mathrm{~m} / \mathrm{s}^{2}$ (with proper sig. fig.)	$v_{f} t$ $v_{\mathrm{i}} t+\frac{1}{2} a t^{2}=d$ titution \quad Solve for t and then a : $\begin{aligned} & / \mathrm{s}=1.017 \mathrm{~s} \\ & \frac{27.79 \mathrm{~m} / \mathrm{s})(1.017 \mathrm{~s})}{(1.017 \mathrm{~s})^{2}}=-4.19 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ ${ }^{2}=-4.2 \mathrm{~m} / \mathrm{s}^{2}$
Part 4: Units Check, $\mathrm{m} / \mathrm{s}^{2} ;(\mathrm{m} / \mathrm{s})(\mathrm{s}) / \mathrm{s}^{2}=\mathrm{m} / \mathrm{s}^{2}$	reasonable?: $4.2 \mathrm{~m} / \mathrm{s}^{2} \text { is }$	bout $1 / 2$ the acceleration of free fall. seems ok.
Part 5: Description of the Net Force on a knowledge of the Acceleration The braking force may be due to lock track or to a friction pad dragging on $F=m a=\left(1.6 \times 10^{3} \mathrm{Kg}\right)\left(-4.2 \mathrm{~m} / \mathrm{s}^{2}\right)=$ The force is negative since a is negat	Causing the Acceleration ing the wheels and having the center of the track. $-6.8 \times 10^{3} \mathrm{~N}$ ve.	and its Calculation based ng them rub against the

