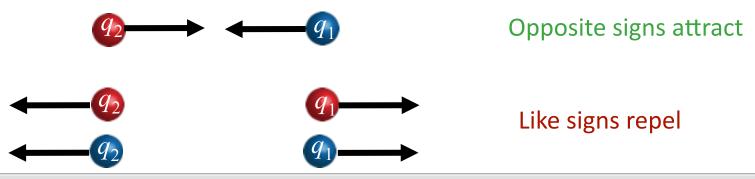

Electricity & Magnetism Lecture 1

Today's Concepts:

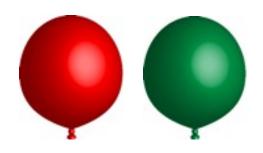

- A) Coulomb's Law
- B) Superposition

Coulomb's Law:

The force on a charge due to another charge is proportional to the product of the charges and inversely proportional to the separation squared.

The force is always parallel to a line connecting the charges, but the direction depends on the signs of the charges:

smartPhysics


Electricity & Magnetism Lecture 1, Slide 2

Monday, January 9, 2012

Balloons

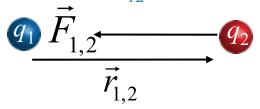
Take two balloons and rub them both with a piece of cloth.
After you rub them they will:

- A) Attract each-other
- B) Repel each-other
- C) Either it depends on the material of the cloth

Coulomb's Law

Our notation:

 $\vec{F}_{1,2}$ is the force by 1 on 2 (think "by-on") \hat{r}_{12} is the unit vector that points from 1 to 2.


$$\vec{F}_{1,2} = \frac{kq_1q_2}{r_{1,2}^2}\hat{r}_{1,2}$$

Examples:

If the charges have the same sign, the force **by** charge 1 on charge 2 would be in the direction of r_{12} (to the right).

If the charges have opposite sign, the force by charge 1 on charge 2 would be opposite the direction of r_{12} (left).

smartPhysics

Electricity & Magnetism Lecture 1, Slide 4

Example: Coulomb Force

Two paperclips are separated by 10 meters. Then you remove 1 electron from each atom on the first paperclip and place it on the second one.

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

$$k$$
 = 9 x 10 9 N m 2 / C^2 electron charge = 1.6 x 10 $^{-19}$ Coulombs
$$N_A = 6.02 \ x \ 10^{23}$$

What will the direction of the force be?

A) Attractive B) Repulsive

smartPhysics

Electricity & Magnetism Lecture 1, Slide 5

5

```
Monday, January 9, 2012
```

```
F = 9e9 \times (1.6e-19 * 3e22)^2 / 100 = 2 e 15 \text{ Newtons}
```

Equivalent to weight of 2e14 kg object near surface of the earth

paperclip 1e-3 kg

textbook 1 kg

person 200 kg

car 2000 kg

Aircraft carrier 97000 tons = 1e5 x 1e3 = 1e 8 kg

Mt Everest 9000 m height,. Estimate volume as $1/3 \text{ h}^3 = 1/3 * (9e3)^3 = 243 \text{ e } 9 \text{ m}^3$. (if density = 1000 kg/m^3) = 2.43e14 kg.

Example: Coulomb Force

Two paperclips are separated by 10 meters. Then you remove 1 electron from each atom on the first paperclip and place it on the second one.

$$\vec{F} = k \frac{q_1 q_2}{r_{12}^2} \hat{r}_{12}$$

$$k = 9 \ x \ 10^9 \ N \ m^2 \ / \ C^2$$
 electron charge = 1.6 x 10⁻¹⁹ Coulombs
$$N_A = 6.02 \ x \ 10^{23}$$

Which weight is closest to the approximate force between those paperclips (recall that weight = mg, $g = 9.8 \text{ m/s}^2$)?

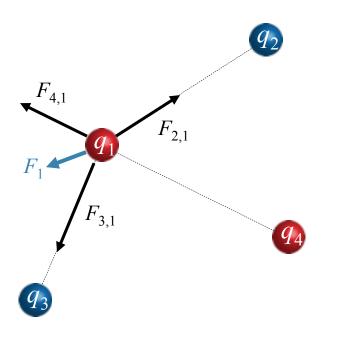
- A) Paperclip (1 g x g)
- B) Text book (1 kg x g)
- C) Truck (10^4 kg x g)
- D) Aircraft carrier (108 kg x g)
- E) Mt. Everest (10^{14} kg x g)

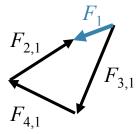
smartPhysics

Monday, January 9, 2012

Electricity & Magnetism Lecture 1, Slide 6

6


```
F = 9e9 \times (1.6e-19 * 3e22)^2 / 100 = 2 e 15 \text{ Newtons}


Equivalent to weight of 2e14 kg object near surface of the earth paperclip 1e-3 kg textbook 1 kg person 200 kg car 2000 kg Aircraft carrier 97000 tons = 1e5 x 1e3 = 1e 8 kg
```

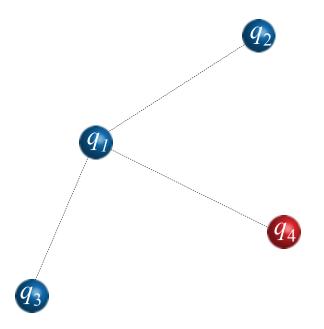
Mt Everest 9000 m height,. Estimate volume as $1/3 \text{ h}^3 = 1/3 * (9e3)^3 = 243 \text{ e } 9 \text{ m}^3$. (if density = 1000 kg/m^3) = 2.43 e 14 kg.

Superposition:

If there are more than two charges present, the total force on any given charge is just the vector sum of the forces due to each of the other charges:

$$\vec{F}_1 = \vec{F}_{2,1} + \vec{F}_{3,1} + \vec{F}_{4,1} + \dots$$

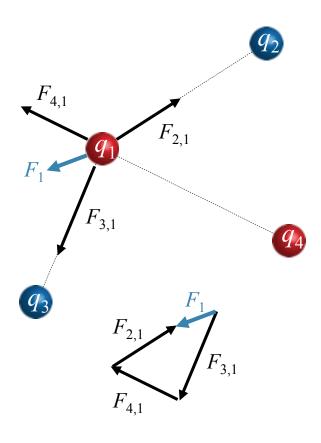
smartPhysics


Electricity & Magnetism Lecture 1, Slide 7

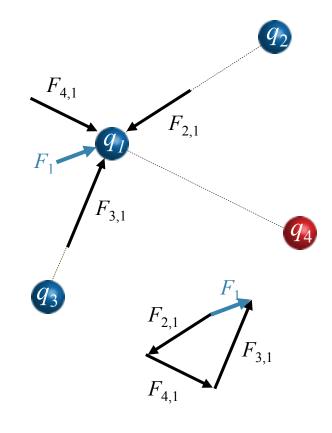
Superposition Clicker Question

What happens to Force on q_1 if its sign is changed?

- A) $|F_1|$ increases
- B) $|F_1|$ remains the same
- C) $|F_1|$ decreases
- D) Need more information to determine



smartPhysics


Electricity & Magnetism Lecture 1, Slide 8

Monday, January 9, 2012

The direction of all forces changes by 180° – the magnitudes stay the same:

$$\vec{F}_1 = \vec{F}_{2,1} + \vec{F}_{3,1} + \vec{F}_{4,1} + \dots$$

$$-\vec{F}_1 = -\vec{F}_{2,1} - \vec{F}_{3,1} - \vec{F}_{4,1} - \dots$$

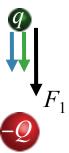
smartPhysics

Electricity & Magnetism Lecture 1, Slide 9

Monday, January 9, 2012

9

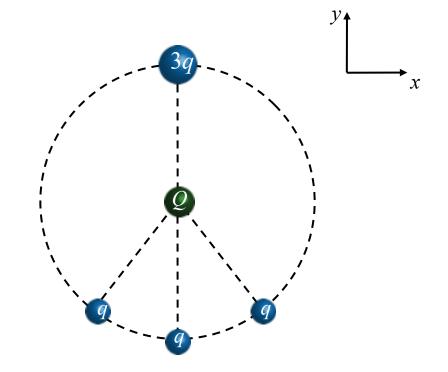
CheckPoint



Compare the magnitude of the net force on q in the two cases.

- A) $|F_1| > |F_2|$
- B) $|F_1| = |F_2|$
- C) $|F_1| < |F_2|$
- D) Depends on sign of q

CheckPoint


Four charged particles are placed on a circular ring with radius 3 m as shown below. A particle with charge Q is placed in the center of the ring

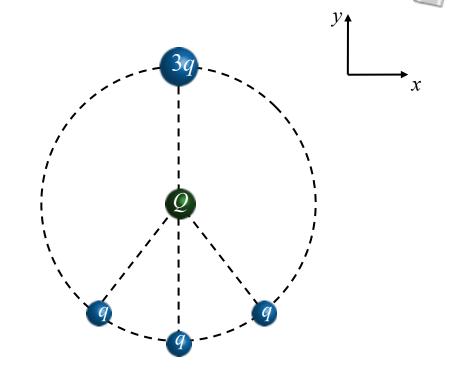
What is the direction of horizontal force on *Q*?

A)
$$F_{x} > 0$$

B)
$$F_{x} = 0$$

A)
$$F_x > 0$$
 B) $F_x = 0$ C) $F_x < 0$

CheckPoint


Four charged particles are placed on a circular ring with radius 3 m as shown below. A particle with charge Q is placed in the center of the ring

What is vertical force on Q?

A)
$$F_{y} > 0$$

B)
$$F_{v} = 0$$

A)
$$F_y > 0$$
 B) $F_y = 0$ C) $F_y < 0$

smartPhysics

Monday, January 9, 2012

Electricity & Magnetism Lecture 1, Slide 12

Next do calculation