Electricity & Magnetism Lecture 12

Today's Concept:

Magnetic Force on Moving Charges

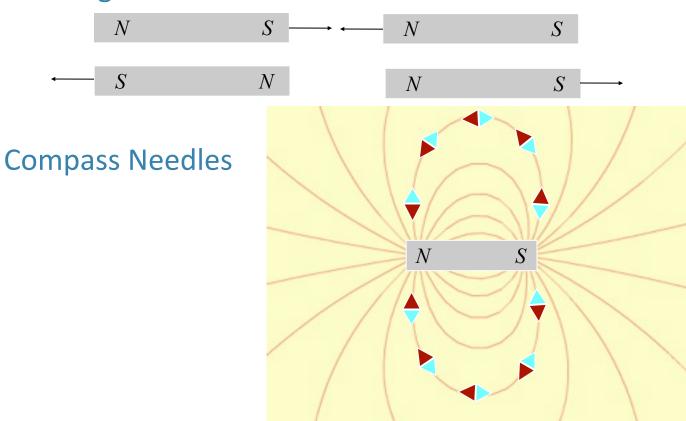
$$\vec{F} = q\vec{v} \times \vec{B}$$

Midterm Friday

Room 5140 (D100 only) Covers Units 19-23

- includes SmartPhysics 7: Capacitance
- Kirchhoff's laws

Comments

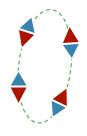

this stuff gets fun now:)

Y is there stuff due on reading break without lectures in class on it?

Please go over cross product.

Magnetic Observations

Bar Magnets



Magnetic Charge?

N cut in half N S N S

Magnetic Observations

Compass needle deflected by electric current

1

Magnetic fields created by electric currents

Magnetic fields exert forces on electric currents (charges in motion)

Magnetism & Moving Charges

All observations are explained by two equations:

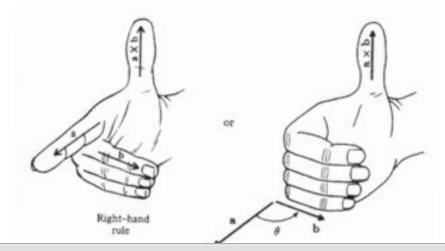
$$\vec{F} = q\vec{v} \times \vec{B}$$

Today

$$d\vec{B} = \frac{\mu_0 I}{4\pi} \frac{d\vec{s} \times \hat{r}}{r^2}$$
 Next Week

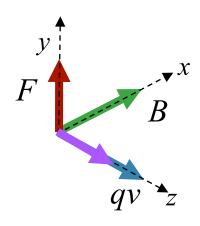
Cross Product Review

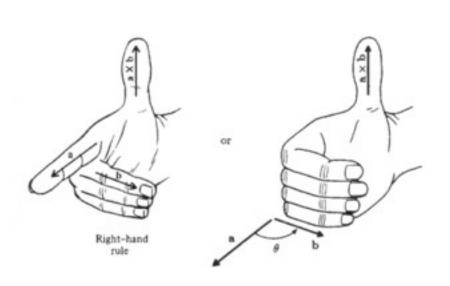
Cross Product different from Dot Product


- $\mathbf{A} \cdot \mathbf{B}$ is a scalar; $\mathbf{A} \times \mathbf{B}$ is a vector
- A B proportional to the component of B parallel to A
- $\mathbf{A} \times \mathbf{B}$ proportional to the component of \mathbf{B} perpendicular to \mathbf{A}

Definition of A × B

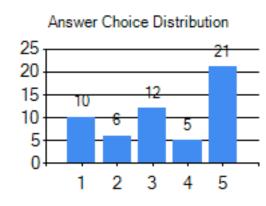
Magnitude: $|\mathbf{A}||\mathbf{B}|\sin\theta$


Direction: perpendicular to plane defined by A and B with sense given by


right-hand-rule

Remembering Directions: The Right Hand Rule

$$\vec{F} = q\vec{v} \times \vec{B}$$

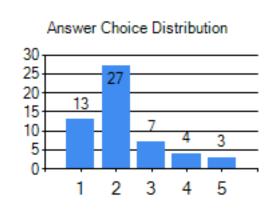


CheckPoint 2

Three points are arranged in a uniform magnetic field. The B field points into the screen.

A positively charged particle is at point A and is stationary. The direction of the magnetic force on the particle is

- A. right
- B. left
- C. into screen
- D. out of screen
- E. zero

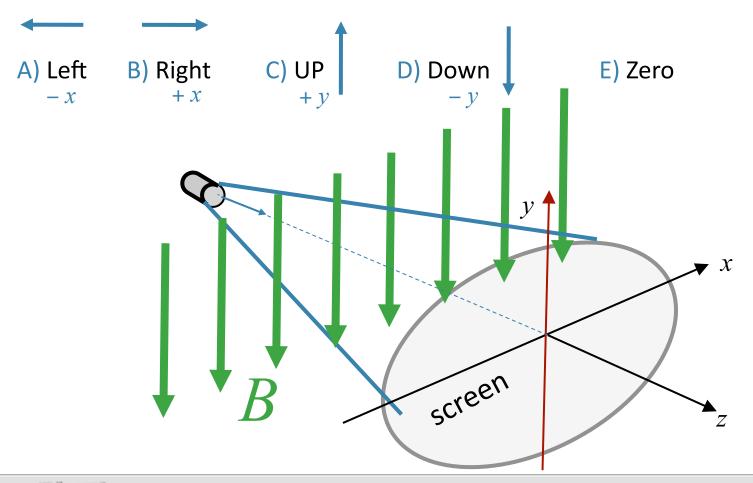


CheckPoint 4

Three points are arranged in a uniform magnetic field. The B field points into the screen.

The positive charge moves from A to B. The direction of the magnetic force on it is

- A. right
- B. left
- C. into screen
- D. out of screen
- E. zero


Cross Product Practice

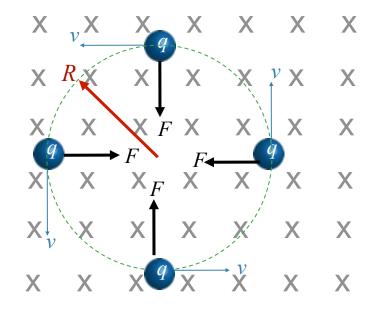
Protons (positive charge) coming out of screen

 $\vec{F} = q\vec{v} \times \vec{B}$

Magnetic field pointing down

What is direction of force on POSITIVE charge?

Motion of Charge q in Uniform B Field


Force is perpendicular to v

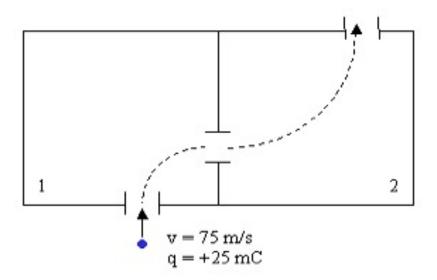
Speed does not change Uniform Circular Motion

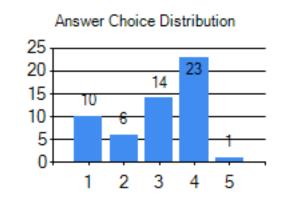
Solve for *R*:

$$\vec{F} = q\vec{v} \times \vec{B} \Rightarrow F = qvB$$

$$a = \frac{v^2}{R}$$

Uniform **B** into page


$$qvB = m\frac{v^2}{R} \qquad \longrightarrow \qquad R = \frac{mv}{qB}$$

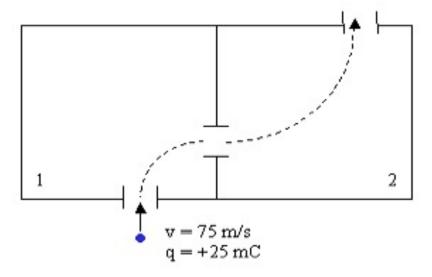

CheckPoint 6

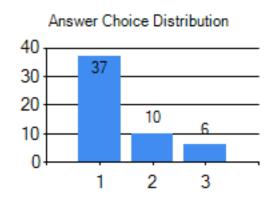
The drawing shows the top view of two interconnected chambers. Each chamber has a unique magnetic field. A positively charged particle is fired into chamber 1, and observed to follow the dashed path shown in the figure.

What is the direction of the magnetic field in chamber 1?

- A. up
- B. down
- C. into page
- D. out of page

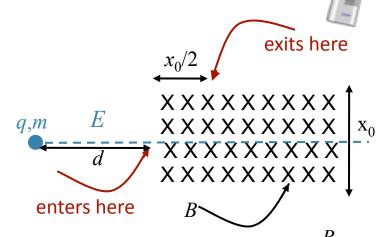
CheckPoint 8


The drawing shows the top view of two interconnected chambers. Each chamber has a unique magnetic field. A positively charged particle is fired into chamber 1, and observed to follow the dashed path shown in the figure.


Compare the magnitude of the magnetic field in chamber 1 to the magnitude of the magnetic field in chamber 2.

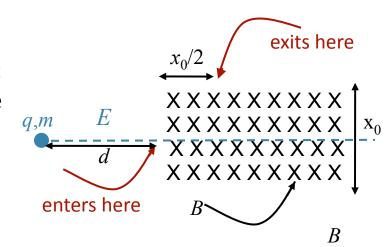
A.
$$|B_1| > |B_2|$$

B.
$$|B_1| = |B_2|$$


C.
$$|B_1| < |B_2|$$

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

What is B?


Conceptual Analysis

What do we need to know to solve this problem?

- A) Lorentz Force Law
- B) *E* field definition
- C) V definition
- D) Conservation of Energy/Newton's Laws E) All of the above

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

What is B?

Strategic Analysis

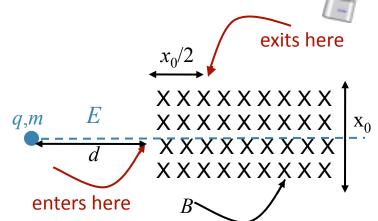
Calculate v, the velocity of the particle as it enters the magnetic field Use Lorentz Force equation to determine the path in the field as a function of B Apply the entrance-exit information to determine B

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

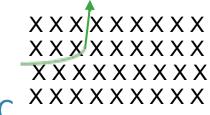
What is B?

What is v_0 , the speed of the particle as it enters the magnetic field?

$$v_o = \sqrt{\frac{2E}{m}}$$
 $v_o = \sqrt{\frac{2qEd}{m}}$ $v_o = \sqrt{\frac{2ad}{m}}$ $v_o = \sqrt{\frac{2qE}{md}}$ $v_o = \sqrt{\frac{qEd}{m}}$

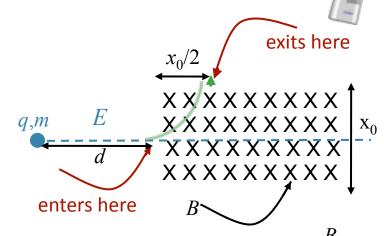

A

B


C

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

What is
$$B$$
? $v_o = \sqrt{\frac{2qEd}{m}}$



What is the path of the particle as it moves through the magnetic field?

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

What is B? $v_o = \sqrt{\frac{2qEd}{m}}$

What is the radius of path of particle?

$$R = x_o$$
 $R = 2x_o$ $R = \frac{1}{2}x_o$
A B

$$R = \frac{mv_o}{qB} \qquad \qquad R = \frac{v_o^2}{a}$$

q,m

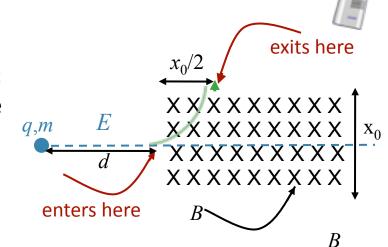
A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

What is B?

$$v_o = \sqrt{\frac{2qEd}{m}} \qquad R = \frac{1}{2}x_0$$

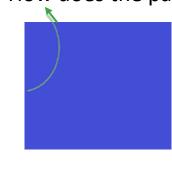
enters here
$$B = \frac{2}{x_o} \sqrt{\frac{2mEd}{q}} \qquad B = \frac{E}{v} \qquad B = E\sqrt{\frac{m}{2qEd}} \qquad B = \frac{1}{x_o} \sqrt{\frac{2mEd}{q}} \qquad B = \frac{mv_o}{qx_o}$$
A
B
C
D
E

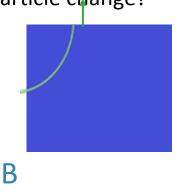
exits here

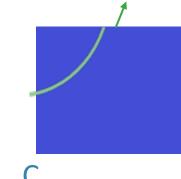

B

xxxxxxxxx

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

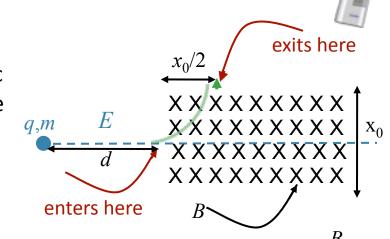

What is *B*?


$$B = \frac{2}{x_o} \sqrt{\frac{2mEd}{q}}$$



Suppose the charge of the particle is doubled (Q = 2q), while keeping the mass

constant. How does the path of the particle change?



A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

What is B?

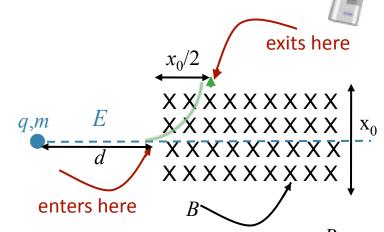
$$B = \frac{2}{x_o} \sqrt{\frac{2mEd}{q}}$$

Suppose the charge of the particle is doubled (Q = 2q), while keeping the mass constant. How does the path of the particle change?

> How does v, the new velocity at the entrance, compare to the original velocity v_0 ?

$$A \quad v = \frac{v_o}{2}$$

A
$$v = \frac{v_o}{2}$$
 B $v = \frac{v_o}{\sqrt{2}}$ C $v = v_o$ D $v = \sqrt{2}v_o$ E $v = 2v_o$


$$\mathbf{c}$$
 $v = v_o$

$$v = 2v_c$$

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

What is B?

$$B = \frac{2}{x_o} \sqrt{\frac{2mEd}{q}}$$

Suppose the charge of the particle is doubled (Q = 2q), while keeping the mass constant. How does the path of the particle change?

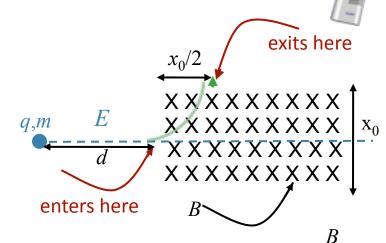
$$v = \sqrt{2}v_o$$

How does F, the magnitude of the new force at the entrance, compare to F_0 , the magnitude of the original force?

A
$$F = \frac{F_o}{\sqrt{2}}$$
 B $F = F_o$ C $F = \sqrt{2}F_o$ D $F = 2F_o$ $EF = 2\sqrt{2}F_o$

$$\mathbf{B} \ F = F_o$$

$$F = \sqrt{2}F_a$$


$$\mathbf{p}F = 2F_o$$

$$\mathbf{E}F = 2\sqrt{2}F_o$$

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.

What is B?

$$B = \frac{2}{x_o} \sqrt{\frac{2mEd}{q}}$$

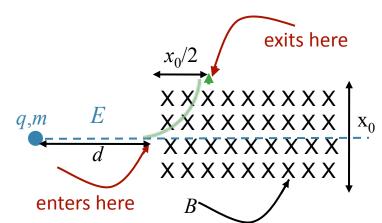
Suppose the charge of the particle is doubled (Q = 2q), while keeping the mass constant. How does the path of the particle change? $v = \sqrt{2}v_o \quad F = 2\sqrt{2}F_o$

$$v = \sqrt{2}v_o \qquad F = 2\sqrt{2}F_o$$

How does R, the radius of curvature of the path, compare to R_0 , the radius of curvature of the original path?

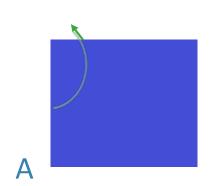
$$A R = \frac{R_o}{2}$$

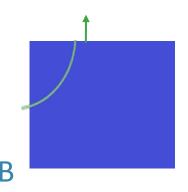
$$\mathbf{B}R = \frac{R_o}{\sqrt{2}}$$

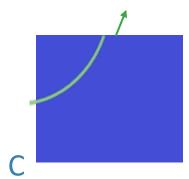

$$R = R_o$$

$$\mathbf{F}R = 2R_o$$

A particle of charge q and mass m is accelerated from rest by an electric field E through a distance d and enters and exits a region containing a constant magnetic field B at the points shown. Assume q,m,E,d, and x_0 are known.


What is **B**?


$$B = \frac{2}{x_o} \sqrt{\frac{2mEd}{q}}$$



B

Suppose the charge of the particle is doubled (Q = 2q), while keeping the mass constant. How does the path of the particle change?

