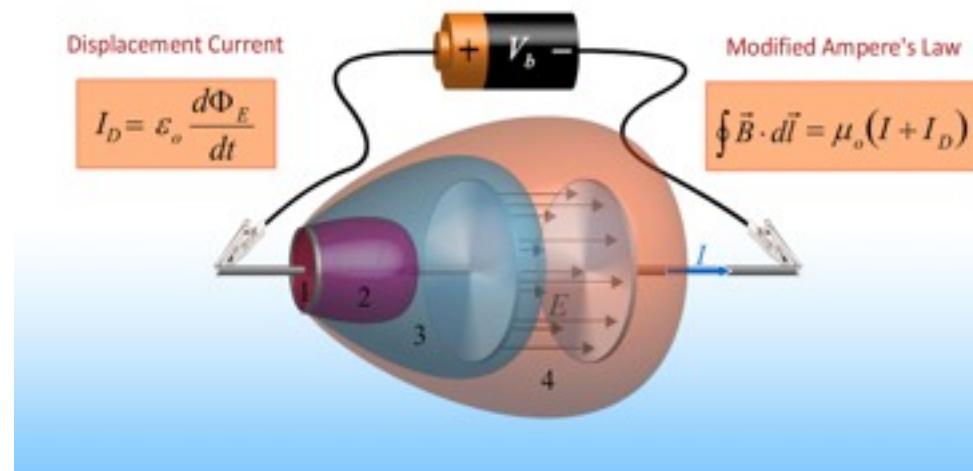


Electricity & Magnetism

Lecture 22

DISPLACEMENT CURRENT and EM WAVES



What We Knew Before Prelecture 22

MAXWELL'S EQUATIONS

Gauss' Law for E Fields

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{enclosed}}}{\epsilon_0}$$

Gauss' Law for B Fields

$$\oint \vec{B} \cdot d\vec{A} = 0$$

Faraday's Law

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$$

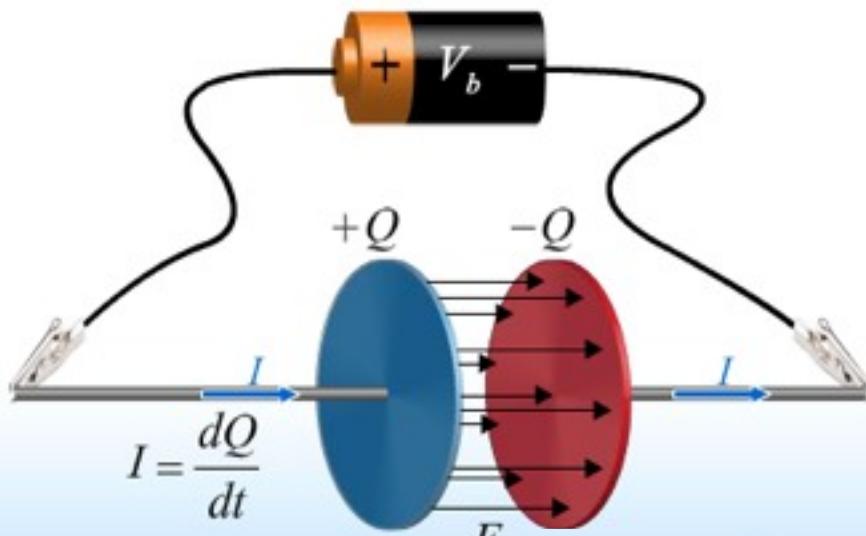
Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enclosed}}$$

After Prelecture 21: Modify Ampere's Law

Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_o I_{\text{enclosed}} = \mu_o (I + I_D)$$



$$I_D = \epsilon_o \frac{d\Phi_E}{dt}$$

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{\epsilon_0 A}$$

$$\Phi = EA = \frac{Q}{\epsilon_0}$$

$$Q = \epsilon_0 \Phi$$

$$\frac{dQ}{dt} = \epsilon_0 \frac{d\Phi}{dt} \equiv I_D$$

Displacement Current

Real Current:

Charge Q passes through area A in time t :

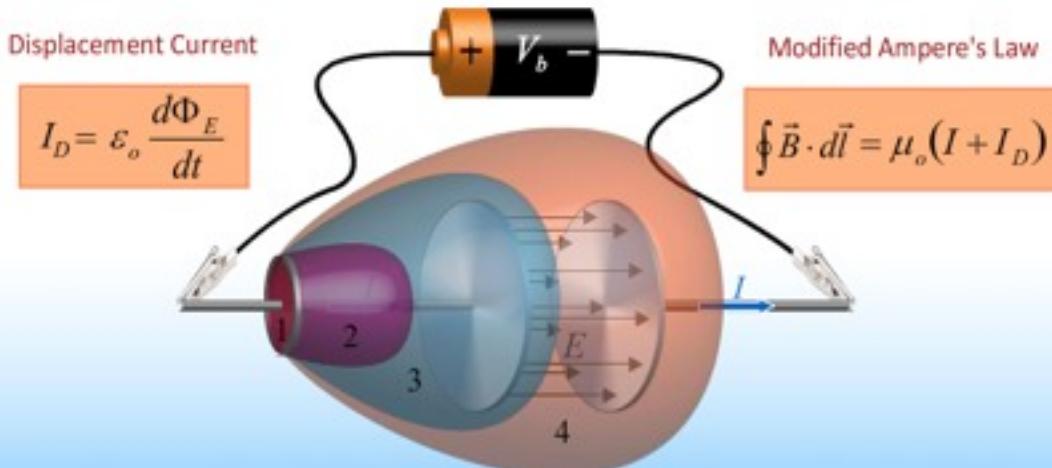
$$I = \frac{dQ}{dt}$$

Displacement Current:

Electric flux through area A changes in time

$$I_D = \epsilon_0 \frac{d\Phi_E}{dt}$$

DISPLACEMENT CURRENT and EM WAVES



Faraday's Law

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$$

Modified Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \epsilon_0 \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$$

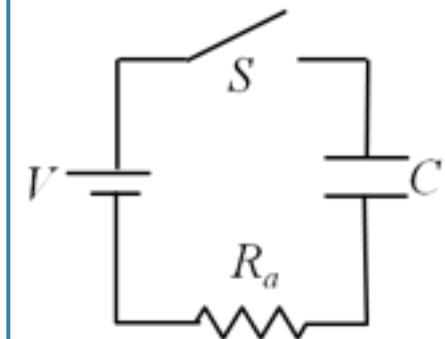
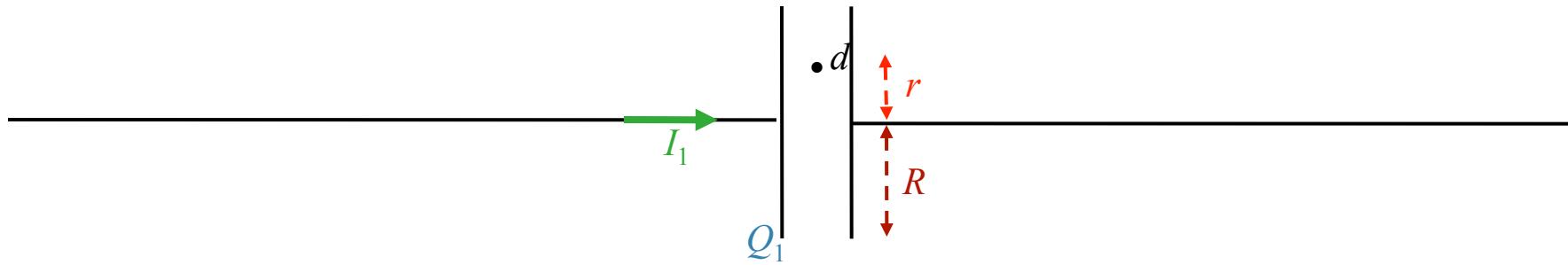
Free space

Calculation

Switch S has been open a long time when at $t = 0$, it is closed.

Capacitor C has circular plates of radius R . At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .

At time t_1 , what is the magnetic field B_1 at a radius r (point d) in between the plates of the capacitor?



Conceptual and Strategic Analysis

Charge Q_1 creates electric field between the plates of C

Charge Q_1 changing in time gives rise to a changing electric flux between the plates

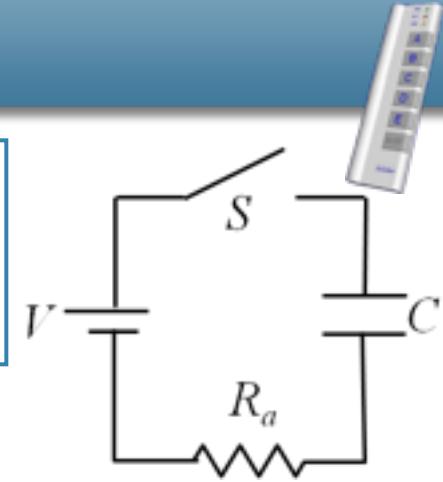
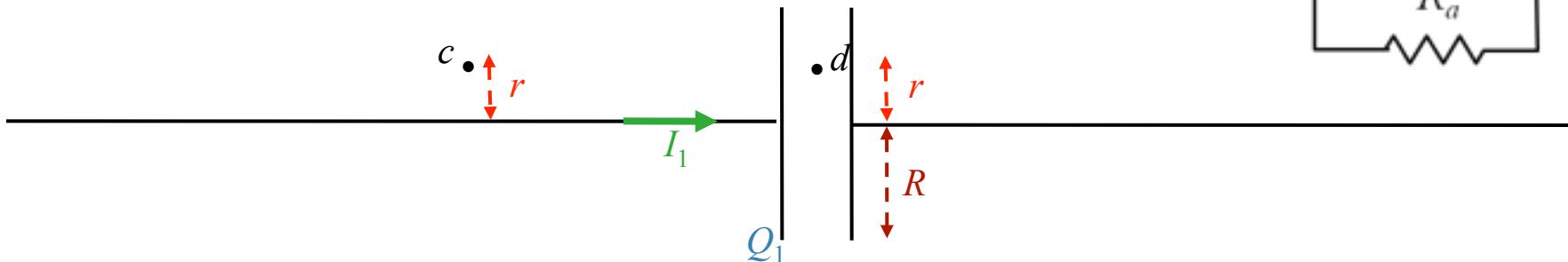
Changing electric flux gives rise to a displacement current I_D in between the plates

Apply (modified) Ampere's law using I_D to determine B

Calculation

Switch S has been open a long time when at $t = 0$, it is closed.

Capacitor C has circular plates of radius R . At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .



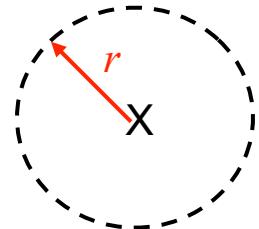
Compare the magnitudes of the B fields at points c and d .

A) $B_c < B_d$

B) $B_c = B_d$

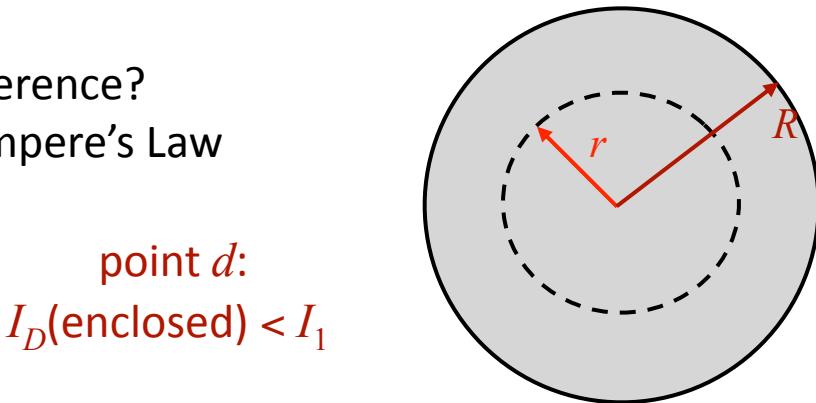
C) $B_c > B_d$

point c :
 $I(\text{enclosed}) = I_1$



What is the difference?
Apply (modified) Ampere's Law

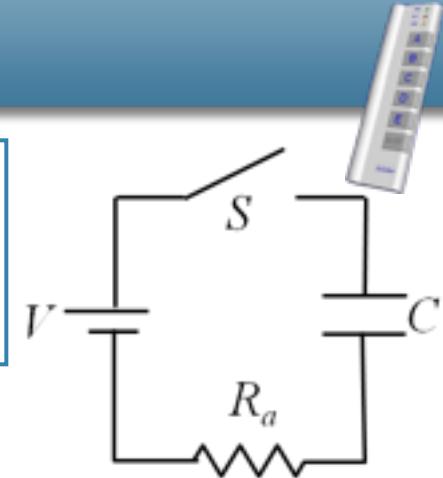
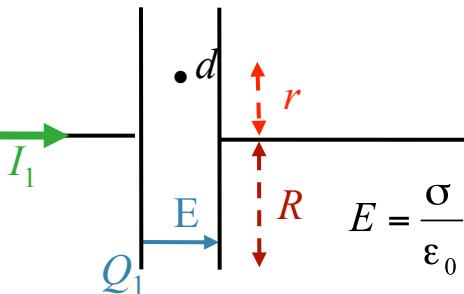
point d :
 $I_D(\text{enclosed}) < I_1$



Calculation

Switch S has been open a long time when at $t = 0$, it is closed.

Capacitor C has circular plates of radius R . At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .



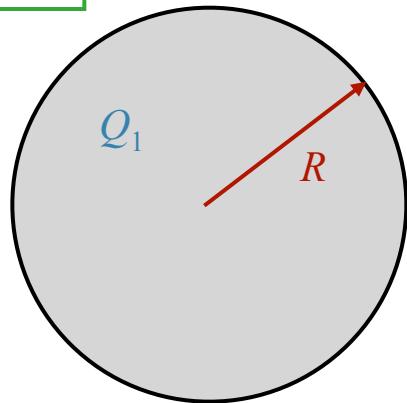
What is the magnitude of the electric field between the plates?

A) $E = \frac{Q_1}{\pi R^2 \epsilon_0}$

B) $E = \frac{Q_1 \pi R^2}{\epsilon_0}$

C) $E = \frac{Q_1}{\epsilon_0}$

D) $E = \frac{Q_1}{r}$

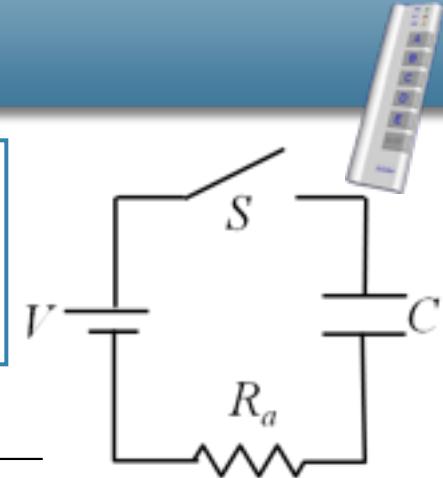
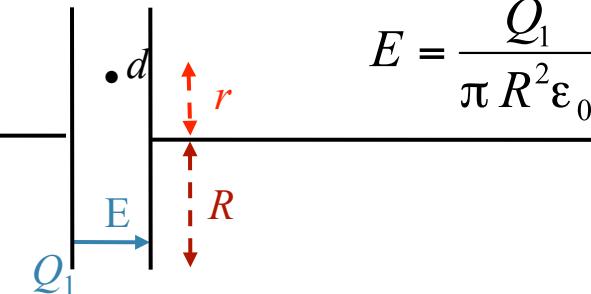


$$E = \frac{\sigma}{\epsilon_0} \rightarrow \sigma = \frac{Q_1}{A} = \frac{Q_1}{\pi R^2} \rightarrow E = \frac{Q_1}{\epsilon_0 \pi R^2}$$

Calculation

Switch S has been open a long time when at $t = 0$, it is closed.

Capacitor C has circular plates of radius R . At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .



$$E = \frac{Q_1}{\pi R^2 \epsilon_0}$$

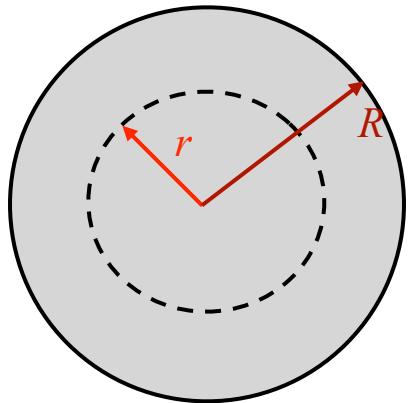
What is the electric flux through a circle of radius r in between the plates?

A) $\Phi_E = \frac{Q_1}{\epsilon_0} \pi r^2$

B) $\Phi_E = \frac{Q_1}{\epsilon_0} \pi R^2$

C) $\Phi_E = \frac{Q_1 r^2}{\epsilon_0 R^2}$

D) $\Phi_E = \frac{Q_1 \pi r^2}{\epsilon_0 R^2}$

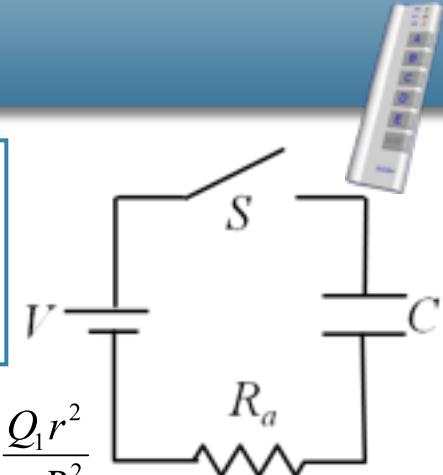
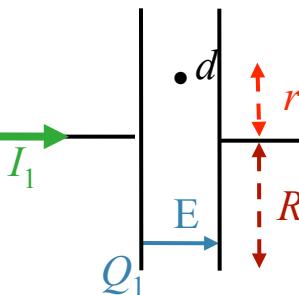


$$\Phi_E = \vec{E} \cdot \vec{A} \rightarrow \Phi_E = \frac{Q_1}{\epsilon_0 \pi R^2} \pi r^2 \rightarrow \Phi_E = \frac{Q_1 r^2}{\epsilon_0 R^2}$$

Calculation

Switch S has been open a long time when at $t = 0$, it is closed.

Capacitor C has circular plates of radius R . At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .



$$\Phi_E = \frac{Q_1 r^2}{\epsilon_0 R^2}$$

$$I_D = \epsilon_0 \frac{d\Phi_E}{dt}$$

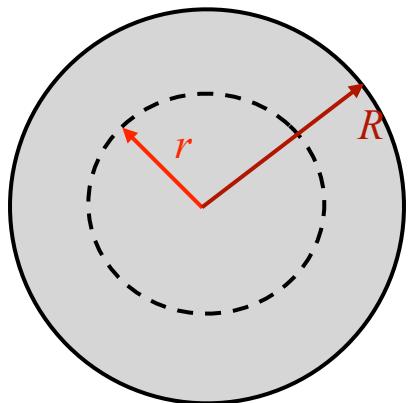
What is the displacement current enclosed by circle of radius r ?

A) $I_D = I_1 \frac{R^2}{r^2}$

B) $I_D = I_1 \frac{r}{R}$

C) $I_D = I_1 \frac{r^2}{R^2}$

D) $I_D = I_1 \frac{R}{r}$



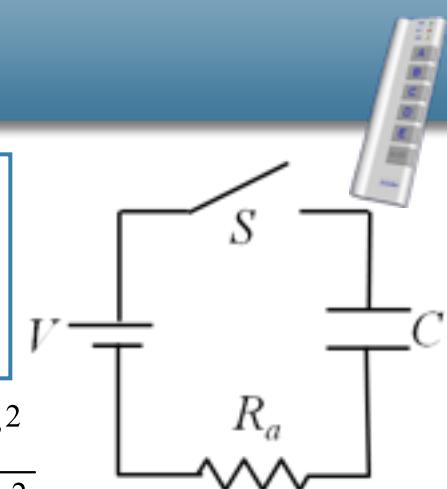
$$I_D = \epsilon_0 \frac{d\Phi_E}{dt} = \frac{dQ_1}{dt} \frac{r^2}{R^2} = I_1 \frac{r^2}{R^2}$$

→ $I_D = I_1 \frac{r^2}{R^2}$

Calculation

Switch S has been open a long time when at $t = 0$, it is closed.

Capacitor C has circular plates of radius R . At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .



$$I_D = I_1 \frac{r^2}{R^2}$$

$$\oint \vec{B} \cdot d\vec{\ell} = \mu_0(I + I_D)$$

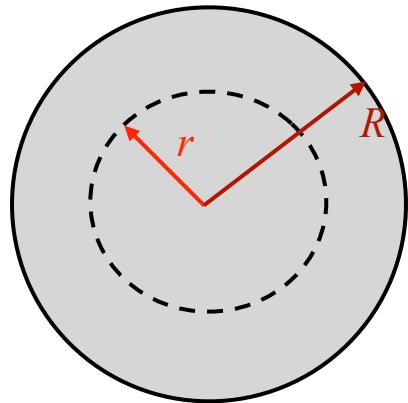
What is the magnitude of the B field at radius r ?

A) $B = \frac{\mu_0 I_1}{2\pi R}$

B) $B = \frac{\mu_0 I_1}{2\pi r}$

C) $B = \frac{\mu_0 I_1}{2\pi} \frac{R}{r^2}$

D) $B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$



Ampere's Law: $\oint \vec{B} \cdot d\vec{\ell} = \mu_0(I + I_D)$

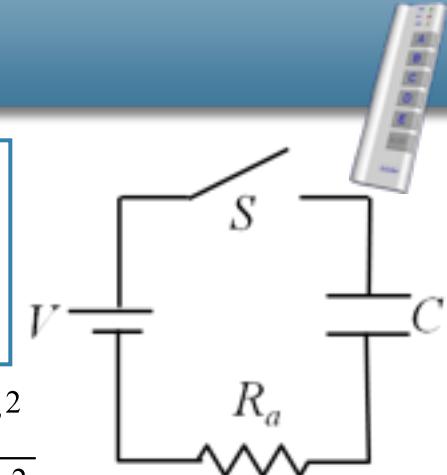
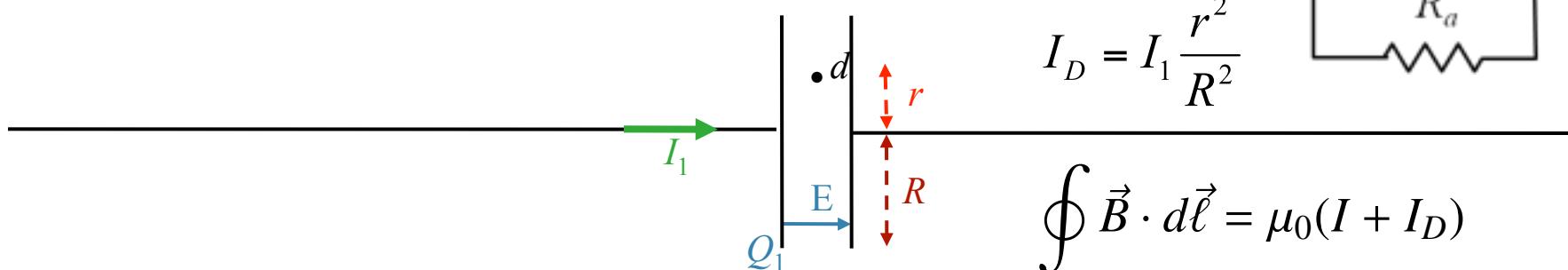
$$\rightarrow B(2\pi r) = \mu_0 \left(0 + I_1 \frac{r^2}{R^2} \right)$$

$$\rightarrow B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$

Calculate

Switch S has been open a long time when at $t = 0$, it is closed.

Capacitor C has circular plates of radius R . At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .

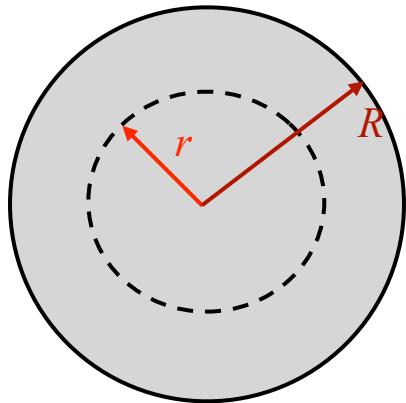


$$I_D = I_1 \frac{r^2}{R^2}$$

$$\oint \vec{B} \cdot d\vec{\ell} = \mu_0(I + I_D)$$

What is the magnitude of the B field at radius r ?

$$B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$



Let:

$$I_1 = 1 \text{ A}$$

$$R = 1 \text{ m}$$

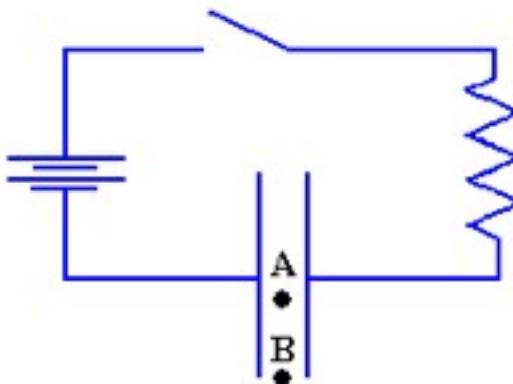
What is B at $r = 0.5 \text{ m}$?
(answer on next page)

answer

$$B = 1 \times 10^{-7} \text{ T}$$

CheckPoint 4

At time $t = 0$ the switch in the circuit shown below is closed. Points A and B lie inside the capacitor; A is at the center and B is toward the outer edge.

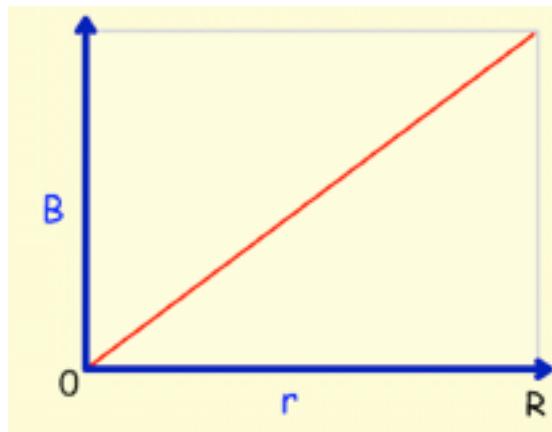
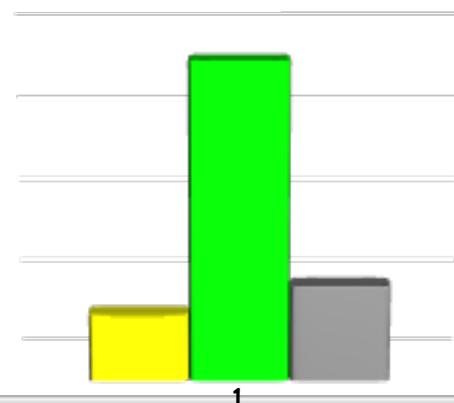


Compare the magnitudes of the magnetic fields at points A and B just after the switch is closed:

- A $B_A < B_B$
- B $B_A = B_B$
- C $B_A > B_B$

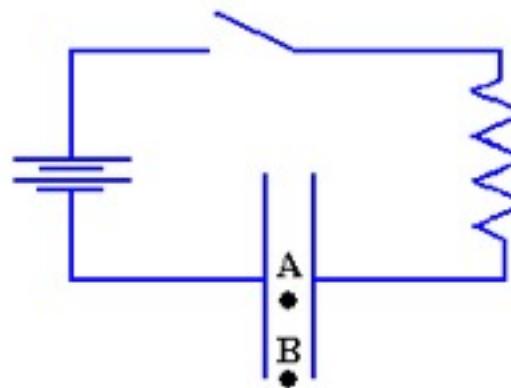
From the calculation we just did:

$$B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$



CheckPoint 2

At time $t = 0$ the switch in the circuit shown below is closed. Points A and B lie inside the capacitor; A is at the center and B is toward the outer edge.



After the switch is closed, there will be a magnetic field at point A which is proportional to the current in the circuit.

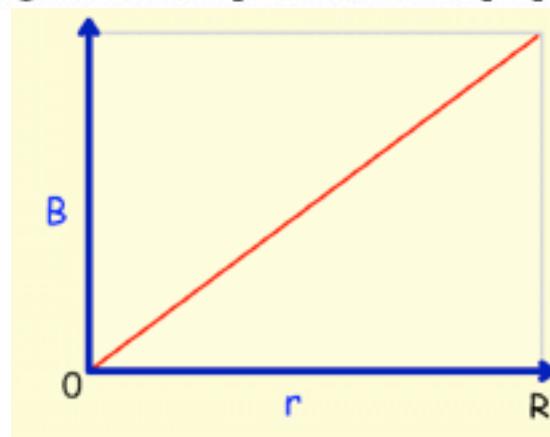
True False

$$B = \frac{\mu_0 I_1}{2\pi} \frac{r}{R^2}$$

B is proportional to *I*

but

At *A*, *B* = 0 !!



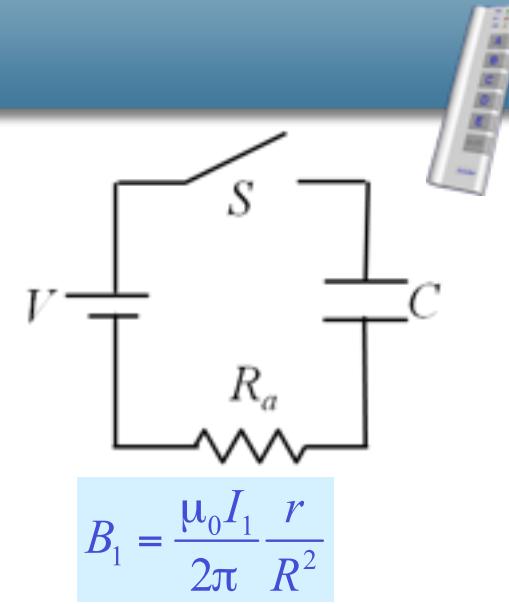
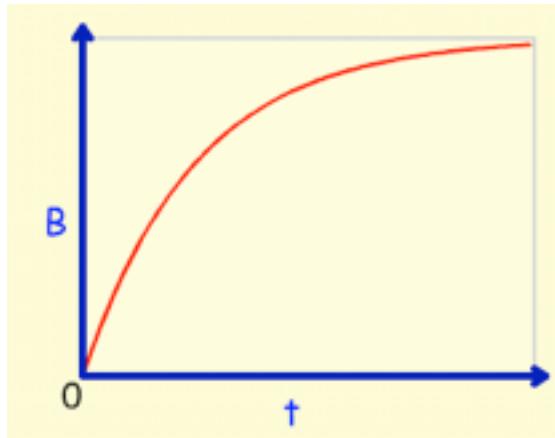
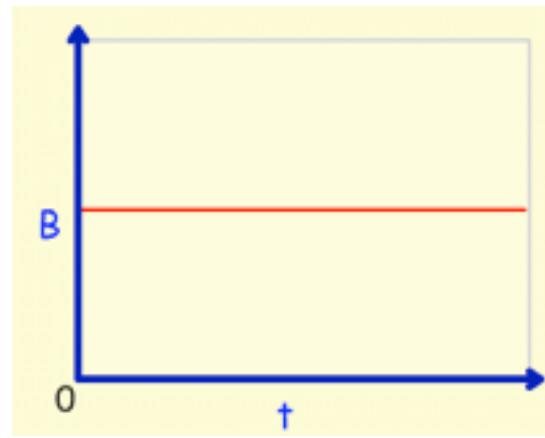
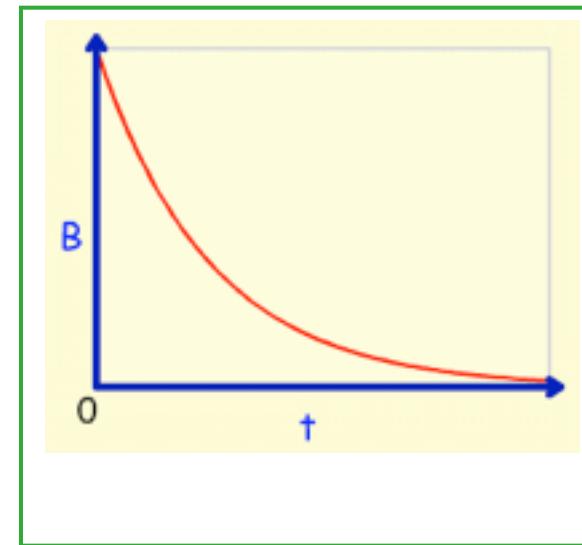
1

Follow-Up

Switch S has been open a long time when at $t = 0$, it is closed.

Capacitor C has circular plates of radius R . At time $t = t_1$, a current I_1 flows in the circuit and the capacitor carries charge Q_1 .

What is the time dependence of the magnetic field B at a radius r between the plates of the capacitor?



B at fixed r is proportional to the current I

Close switch: $V_C = 0 \Rightarrow I = V/R_a$ (maximum)

I exponentially decays with time constant $\tau = R_a C$

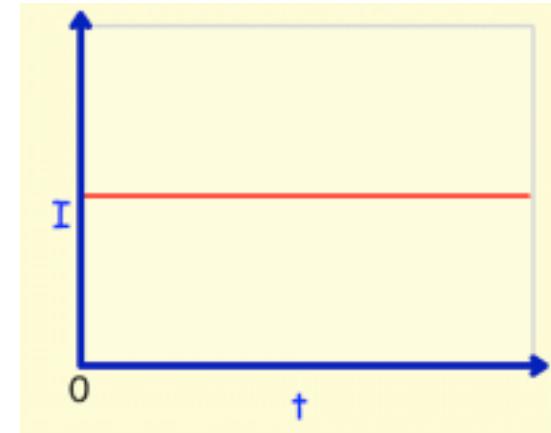
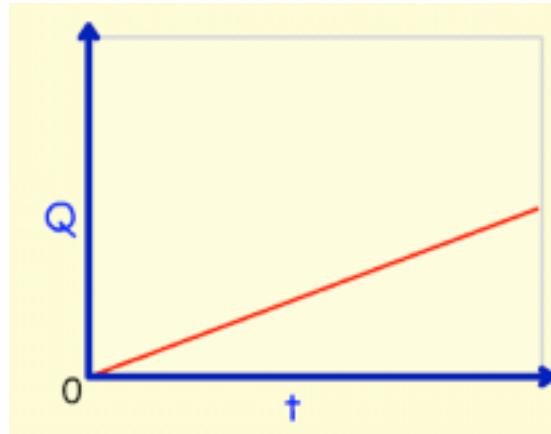
Follow-Up 2

Suppose you were able to charge a capacitor with constant current (does not change in time).

Does a B field exist in between the plates of the capacitor?

A) YES

B) NO



Constant current $\Rightarrow Q$ increases linearly with time

Therefore E increases linearly with time, $E = Q/(A\epsilon_0)$

dE/dt is not zero \Rightarrow Displacement current is not zero
 $\Rightarrow B$ is not zero !

We learned about waves in Physics 140

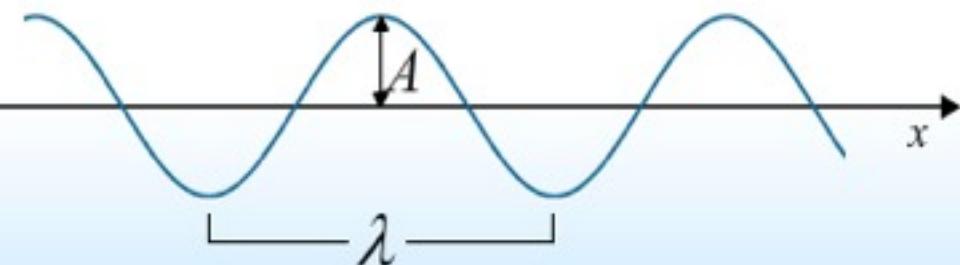
1-D Wave Equation

$$\frac{d^2h}{dx^2} = \frac{1}{v^2} \frac{d^2h}{dt^2} \quad \longrightarrow \quad h(x,t) = h_1(x-vt) + h_2(x+vt)$$

Solution

Common Example: Harmonic Plane Wave

$$h(x,t) = A \cos(kx - \omega t)$$

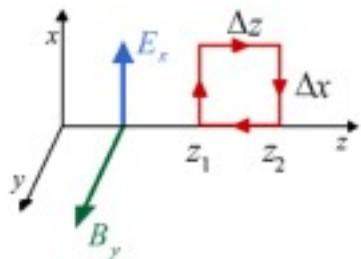


Variable Definitions

Amplitude: A
Wave Number: $k = \frac{2\pi}{\lambda}$
Wavelength: λ
Angular Frequency: $\omega = \frac{2\pi}{T}$
Period: T
Frequency: $f = \frac{1}{T}$
Velocity: $v = \lambda f = \frac{\omega}{k}$

Faraday's Law

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d}{dt} \int \vec{B} \cdot d\vec{A}$$



$$\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t}$$

$$\frac{\partial^2 E_x}{\partial z^2} = -\frac{\partial}{\partial z} \frac{\partial B_y}{\partial t}$$

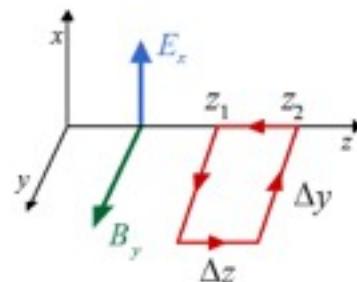
Plane Wave Solution

$$\vec{E} \rightarrow \vec{E}(z, t)$$

$$\vec{B} \rightarrow \vec{B}(z, t)$$

Modified Ampere's Law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 \epsilon_0 \frac{d}{dt} \int \vec{E} \cdot d\vec{A}$$



$$\frac{\partial B_y}{\partial z} = -\mu_0 \epsilon_0 \frac{\partial E_x}{\partial t}$$

$$\frac{\partial}{\partial t} \frac{\partial B_y}{\partial z} = -\mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

Wave Equation

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_0 \epsilon_0 \frac{\partial^2 E_x}{\partial t^2}$$

Speed of Electromagnetic Wave

$$v = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = c = 3.00 \times 10^8 \text{ m/s}$$

Speed of Light !

Special Relativity (1905)

Speed of Light is Constant

Albert Einstein

“How can light move at the same velocity in any inertial frame of reference? That's really trippy.”
see PHYS 285

$$\frac{\partial^2 E_x}{\partial z^2} = \mu_o \epsilon_o \frac{\partial^2 E_x}{\partial t^2}$$

$$\frac{\partial^2 B_y}{\partial z^2} = \mu_o \epsilon_o \frac{\partial^2 B_y}{\partial t^2}$$

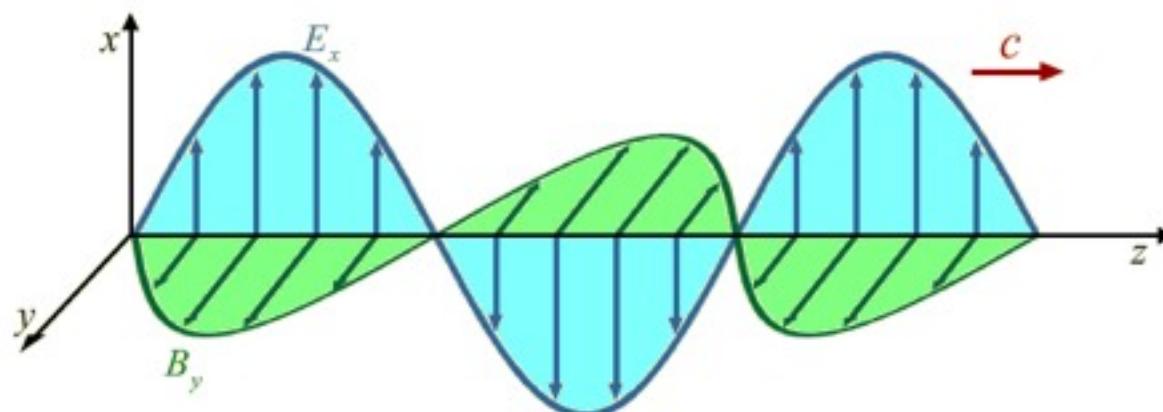
Example: A Harmonic Solution

$$E_x = E_o \cos(kz - \omega t) \quad \xrightarrow{\frac{\partial E_x}{\partial z} = -\frac{\partial B_y}{\partial t}} \quad B_y = \frac{k}{\omega} E_o \cos(kz - \omega t)$$

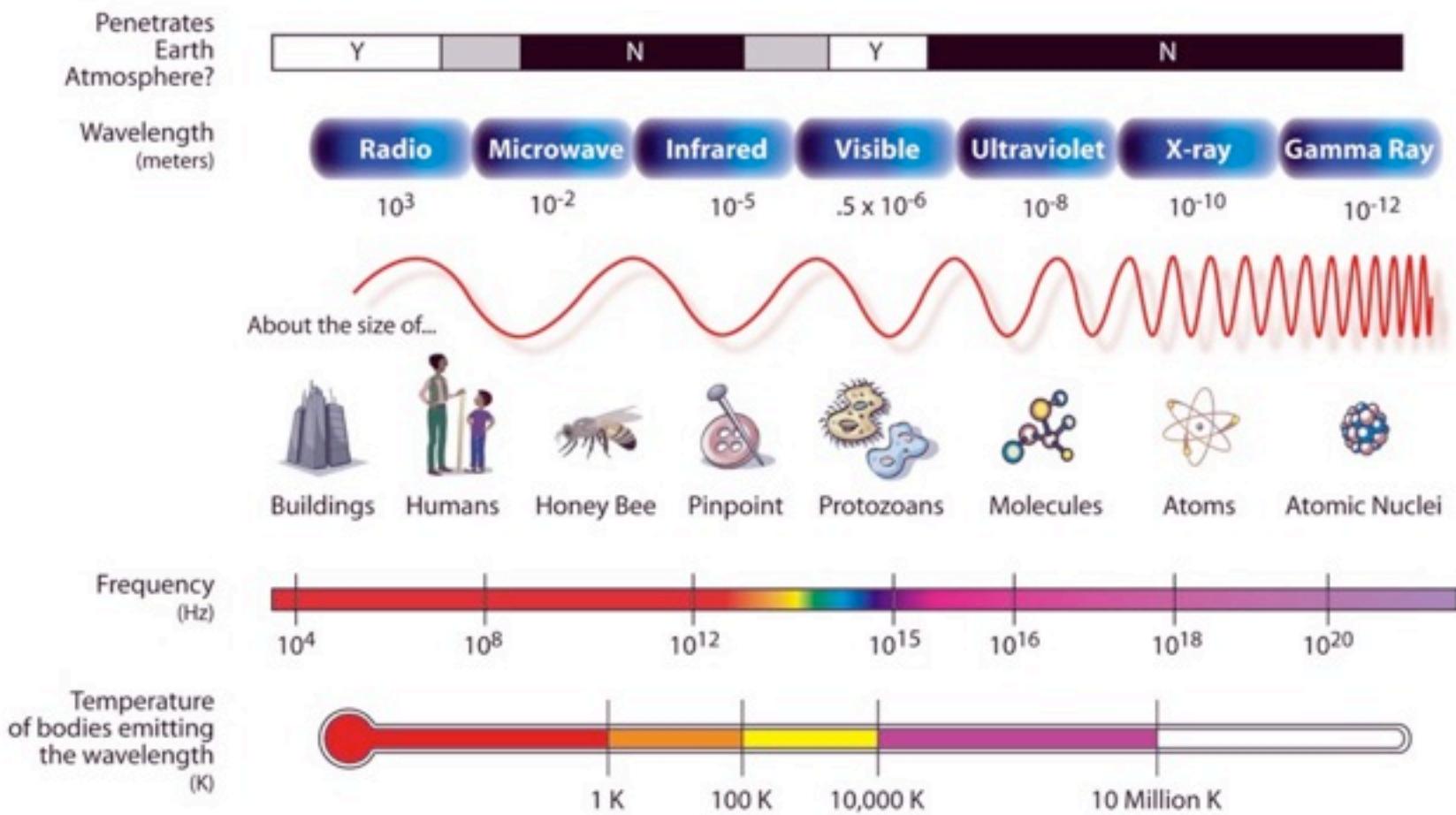
Two Important Features

1. B_y is in phase with E_x

$$2. B_o = \frac{E_o}{c}$$

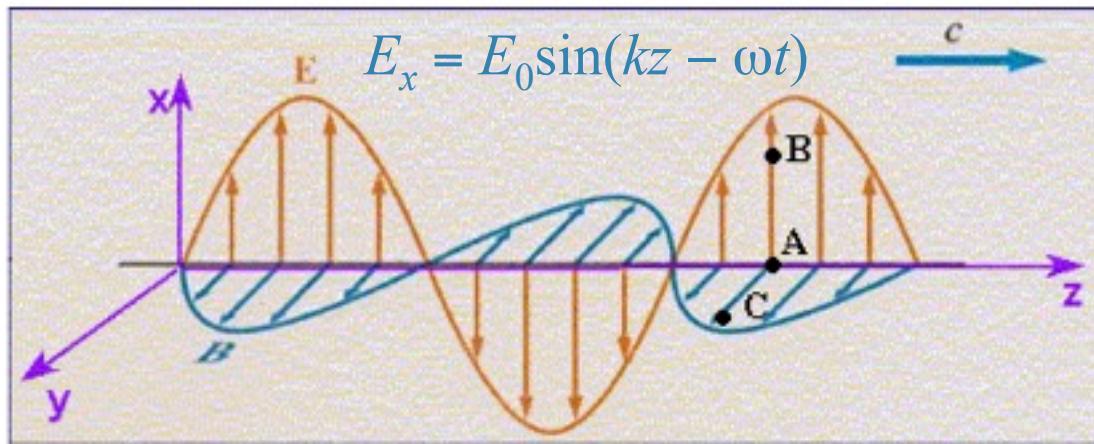


THE ELECTROMAGNETIC SPECTRUM



CheckPoint 6

6) An electromagnetic plane-wave is traveling in the $+z$ direction. The illustration below shows this wave at some instant in time. Points A, B, and C have the same z coordinate.



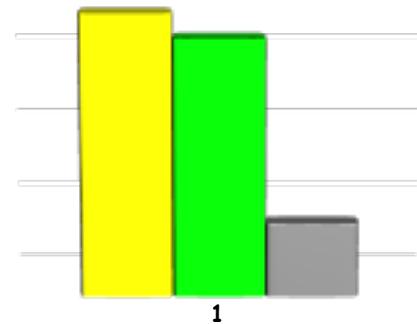
Compare the magnitudes of the electric field at points A and B.

- $E_a < E_b$
- $E_a = E_b$
- $E_a > E_b$

$$E = E_0 \sin (kz - \omega t):$$

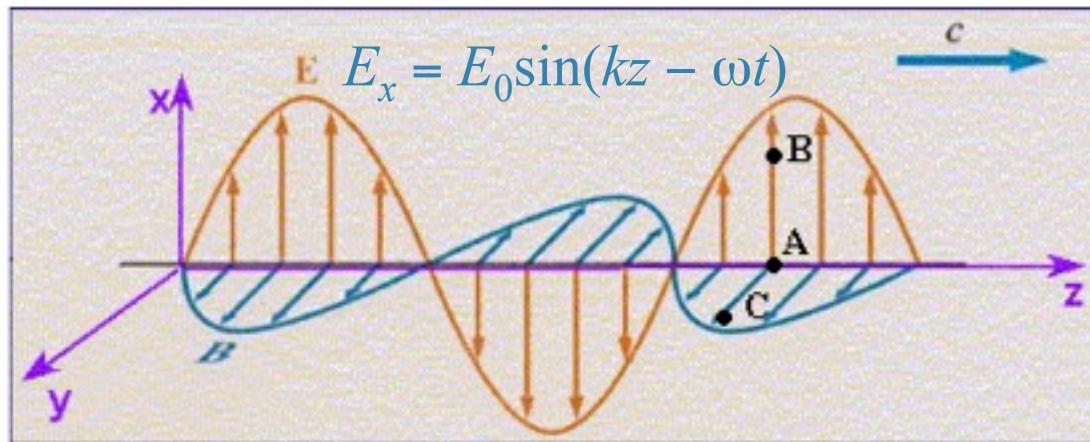
E depends only on z coordinate for constant t .

z coordinate is same for A, B, C.



CheckPoint 7

An electromagnetic plane-wave is traveling in the $+z$ direction. The illustration below shows this wave at some instant in time. Points A, B, and C have the same z coordinate.



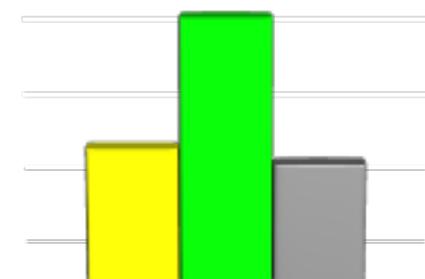
Compare the magnitudes of the electric field at points A and C.

- $E_a < E_c$
- $E_a = E_c$
- $E_a > E_c$

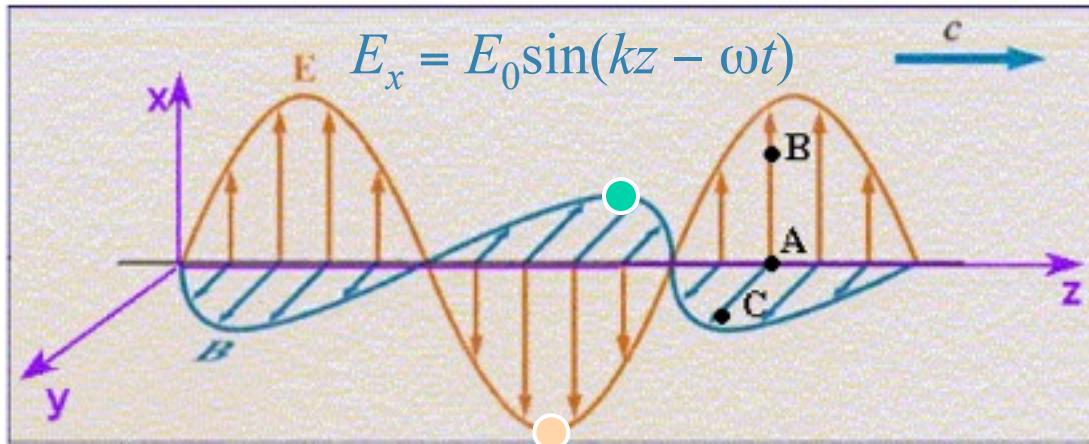
$$E = E_0 \sin (kz - \omega t):$$

E depends only on z coordinate for constant t .

z coordinate is same for A, B, C.



Clicker Question



Consider a point (x, y, z) at time t when E_x is negative and has its maximum value.

At (x, y, z) at time t , what is B_y ?

- A) B_y is positive and has its maximum value
- B) B_y is negative and has its maximum value
- C) B_y is zero
- D) We do not have enough information