

Unit 24 homework *before* session 1

- *Smartphysics*: Watch the “Capcitors” pre-lecture and do the check-point questions.

Unit 24 homework before session 2

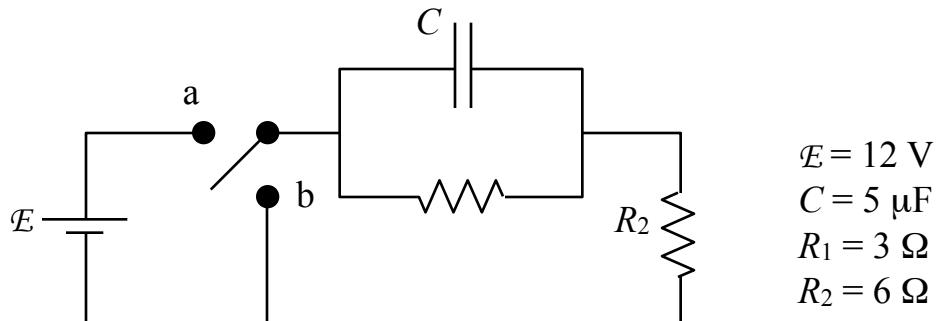
- *Smartphysics*: Watch “RC circuits” pre-lecture and answer the check-point questions.
- *Smartphysics*: Work homework problems for “Capacitors”.
- Write your solution to the attached Discussion Problem DQ7A.

Unit 25 homework before session 1

- You may start the “RC circuit” homework. It will be due after the Midterm.

The midterm covers all Activity Guides from 19 through 23 and the SmartPhysics lectures 1 through 7, 9 and 10. (SmartPhysics material in lecture 8 will be on Midterm 2.)

All Unit 24 homework problems and the unit 24 activity guide are due on the first day of ~~Unit 25~~.


after the reading break

Discussion Question 7A

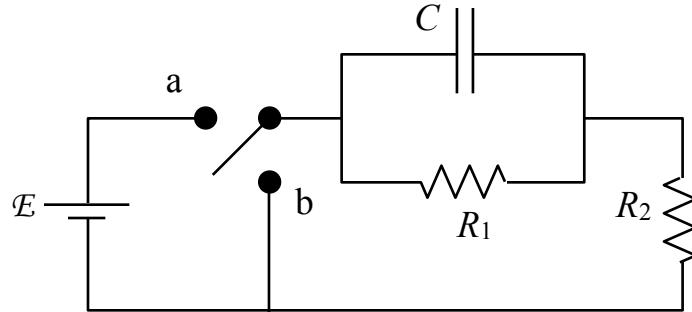
Phys141, Unit 24

RC Circuits

The circuit shown initially has the capacitor uncharged, and the switch connected to neither

terminal. At time $t = 0$, the switch is thrown to position a.

(a) At $t = 0+$, immediately after the switch is thrown to position a, what are the currents I_1 and I_2 across the two resistors?


What does the uncharged capacitor *look like* to the rest of the circuit at time 0? Does it offer *any* resistance to the flow of charge? (Why or why not?)

(b) After a very long time, what is the instantaneous power P dissipated in the circuit?

After a very long time, what will have happened to the capacitor? Now what will it look like to the rest of the circuit?

(c) After a very long time, what is the Q charge on the capacitor?

To determine Q , you need the voltage across the capacitor ...

Next, after a very long time T , the switch is thrown to position b.

(d) What is the time constant τ that describes the discharging of the capacitor?

We have a nice formula available for time constants: $\tau = RC$. But the R in the formula refers to the *total resistance through which the capacitor discharges*. Redrawing your circuit might help you to determine this R .

(e) Write down an equation for the time dependence of the charge on the capacitor, for times $t > T$. Your answer for $Q(t)$ should depend only on the known quantities E, R_1, R_2, C , and T .

You know the general form for the time dependence of a discharging capacitor. All you have to do is fix the constants in this expression to match the charge at $t = T$ and at $t = \infty$.

(f) What is the charge Q_{20} on the capacitor 20 μ sec after time T ?

(g) What is the current through R_2 20 μ sec after time T ?