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Unit 23: ERROR PROPAGATION, DIRECT CURRENT CIRCUITS'
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I have a strong resistance to understanding the relationship
between voltage and current.
Anonymous Introductory Physics Student

OBJECTIVES

1. To learn to the principles of error propagation when doing
calculations.

2. To understand and apply Ohm’s law to a resistor and understand
the I vs V characteristics of a non-Ohmic device.

3. To find a mathematical description of the flow of electric current
through different elements in direct current circuits (Kirchhoff's
laws).

4. To gain experience with basic electronic equipment and the
process of constructing useful circuits while reviewing the
application of Kirchhoff's laws.

1 Portions of this unit are based on research by Lillian C. McDermott & Peter S. Shaffer published in AJP 60, 994-1012
(1992).

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by N. Alberding & S. Johnson, 2013.
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OVERVIEW

Workshop Physics II Activity Guide SFU

We’ll start this unit by understanding how uncertainties of measured
quantities affect the uncertainties of values calculated from them.
We’ll be using these techniques when comparing experimental
results to expected or theoretical values.

Next we’ll continue studying DC circuits. In the last unit you saw

that in a series circuit with a battery,

1. the current is the same through all elements,

2. changing one part of a series circuit changes the current in all
parts of the circuit,

3. the voltage divides between the elements of the series and

4. the total of voltages sums to the voltage of the battery.

You also saw that in a parallel circuit with a battery,

1. the current divides among the branches,

2. making a change in one branch of a parallel circuit does not
affect the current flowing in the other branch (or branches),

3. the total current from the battery equals the sum of the currents
in each branch and

4. the voltage across each branch of a parallel circuit is the same.

In this unit, you will first examine the role of the battery as a voltage
source and understand how the voltage depends on whether batteries
are connected in parallel or series.

We’ll explore the current through electrical devices as a function of
the potential difference. Resistors follow Ohm’s law where current is
proportional to voltage, but light bulbs do not.

You will measure the effective resistance of resistors when they are
wired in series and in parallel. Finally you will formulate the rules
for the calculation of the electric current in different parts of complex
electric circuits consisting of many resistors and/or batteries wired in
series and parallel. These rules are known as Kirchhoff's laws. To
test your understanding of Kirchhoff's laws, you will learn to use a
breadboard to wire complex electric circuits and verify the voltages
and currents predicted by these laws.
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SESSION ONE: PROPAGATION OF ERRORS — USING A DIGITAL
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Propagation of Errors

At the beginning of Physics 140 (remember?) we did some activities
exploring how random and systematic errors affect measurements we
make in physics. This was important because progress in many
sciences depends on how accurately a theory can predict the outcome
of experiments. We can test the validity of a theory by comparing
measured quantities with what the theory predicts. But agreement
between theory and measurement is almost never exact so a theory is
not considered in disagreement with measurement if the
disagreement can be accounted for by the reasonable uncertainties in
measurement.

Often a theory predicts a quantity that is not directly measured but
depends on a calculation. The measured quantities that contribute to
the calculation all have different uncertainties due to random errors.
The calculated result has an uncertainty that is determined by the
uncertainties of the values used in getting the result. How do we go
about determining the uncertainty of the result? There are only a few
simple rules.

Adding and Subtracting

The first principle of adding two (or more) quantities with random
errors is that one never knows if the error in one of them adds to or
subtracts from the error of the other, the error of either one could be
positive or negative. For example, if we were to measure the length
of a table, measure its width and then add them the sum might have
an error that is larger than the errors of either measurement or the
total error might be smaller than the errors of either measurement. It
is also quite possible that the length error might cancel with the
width error.

length error width error length+width result

too big too big much too big
too big too small  about right

too small too big about right

too small too small  much too small

So over all the probability of “lucking out” and getting the right
answer is a lot more likely than one would imagine.

This effect of adding quantities with random errors is accounted for
quantitatively by combining the errors as follows: square each of
them, add the squares and then take the square root. This procedure
called “adding in quadrature”.

For example,
length = 1.21£0.04 m
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When you add two measurements

which have random errors

Sometimes the
— errors cancel

S=x+y

Sometimes two
errors add up

The error ranges of x and y are Ax and Ay

The error range of s is given by

AS =/AX? + Ay

As
4 Ay

Workshop Physics II Activity Guide SFU

width = 0.85+0.03 m

length+width = 2.06 + V0.042 + 0.03? =2.0620.05 m

Naively we might ascribe an error of £0.07 m to the sum the length
and the width. If the two measurement are independent of each other
and the errors are random then the result, 0.05 m which we got by
adding in quadrature, accounts for the fact that the error of one
quantity frequently cancels out with the error of the other.

If we need to subtract quantities, the errors still add in quadrature.
After all, we don’t know if the error would be positive or negative so
the results is still uncertain by the same amount as if we were adding.
Thus

length—width = 0.36+0.05 m

Subtracting two quantities with random errors often results in a small
result with a relatively large error.

We can summarize as follows. Let the two measurements and their
errors be

x+Ax and y=Ay.

AG+Y) = [(AX)2 + (Ay)?

Multiplying and Dividing

The rule for multiplying is similar to that of addition but instead of
using the absolute error, Ax, one adds the relative errors, Ax/x, in
quadrature. Often one refers to relative error as the percentage error.
The relative error of a product of two numbers is got by adding the
relative errors of the numbers:

Then

For example

length = 1.91+£0.04 m, relative error = 0.04/1.91 =0.02 2%
width = 0.45+0.03 m, relative error = 0.03/0.45 = 0.07 7%

length x width = 1.91 x 0.45 = 0.859 + 0.859V(2%)? + (71%)? =
0.86+0.06 m?

Notice that when one of the errors is more than double that of the
other (7% > 2x2%), the result of adding in quadrature is not much
different than just the largest error alone — there’s really no need to
calculate in this case.


Neil Alberding
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Similarly, when one divides two quantities, the relative error of the
result is the sum of the relative errors, added in quadrature:

V=1.50 +£0.05 V, relative error = 3%
1=0.021+0.004 A, relative error = 2%

R=V/[ =1.50V/0.021A, relative error = 4%
so the result would be written as
R=71+£3 Q.

(When doing error estimates it’s best to keep only one significant
digit unless the first digit is “1”. Just use common sense.)

In symbols this is expressed somewhat cryptically as follows:

Alxy) Ax\? N Ay 2
xy Y\ x y
The absolute error is given by

2 2
s =T

Exponents

If a number is taken to a power, for example #2, then the rule is to
multiply the relative error by the power:

t=1.25+0.01 s, relative error = 0.8%
2= 1.56 s, relative error = 1.6%

so the result would be written
2=1.56+0.03 s
(One could possibly write 1.56+0.025 s in this case.)

The relative error of the square root of a value is one-half that of the
value —it gets smaller.

In general for any power o

AG®)  Ax

x¥ X
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The error of other functions.

For example what is the possible error of
x=cos 0

when 0=21°%£2°7
x=cos 21°=0.9335

The easiest way to find Ax is to substitute for the minimum and
maximum values:

A(cos ) =1cos 23° — cos19° |
=10.9205-0.9455 | =
=0.0125

SO write
x=0.934+0.012

Using calculus to find x = A(cos 6):

dcosf

Ax = A(cos 6) :'7A9| = (sin 0) AO

SFU

Caution: If you use calculus, A6 must be in radians.

+2° = +0.035 radians
21° =0.367 radians

Ax = Acos 6 =I(sin 0.367) (0.035)|
=1(0.359)(0.035)!
=0.0125

write 0.012 or 0.013 as you wish.

The calculus method becomes more inexact as Af gets larger.

In the next experiment we’ll try a familiar experiment to measure g

and do the calculations using the rules we’ve just discussed.

* one ball
* 5 stop watches
* | tape measure
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* ladder or stool
» method of designating the height of fall

#9Activity23-1: Determining g by timing the fall of an object
(This can be done as a class activity.)

Drop a ball from from a known height. Measure the height 5 times
independently. (Different people who don’t know the results that the
other got.) Then drop the ball from that height 5 times and measure it
with 5 people armed with stopwatches. Tabulate the heights and
times for the 5 trials in the following tables. Calculate the averages
and standard deviations in each case. We can use a rule of thumb
that for 4 or 5 trials the standard deviation is usually about 1/2 the
range of the measurements.

(a) Height measurements

Trial height ( ) comments

1

2

3

4

5

average

largest

smallest

1/2 range You may wish to
compare the 1/2 range
to the actual SD.

SD of mean

For purposes of error calculations, use the estimated SD of the data
(or the 1/2 range) instead of the reading accuracy of the metre stick
or the stopwatch because the SD of the data includes many other
sources of possible error.


Neil Alberding
2.15

Neil Alberding
2.09

Neil Alberding
0.03

Neil Alberding


Neil Alberding
0.013= 1.5%

Neil Alberding
2.12

Neil Alberding
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(b) Time-of-fall measurements

Trial Time ( ) Comments
1
2
3
4
5
average time 0.526's
longest time 0.65
shortest time 0.37
1 /2 range () 1 4 Zg;g;?g \TI:]I:}‘; }g range
to the actual SD.
SD of mean 0.06= 10%
Calculations

Calculate the value of g from you data and apply the rules of error
propagation to estimate the uncertainty of your result.

g=15m/s"2

error in g is about 20%


Neil Alberding
0.526 s

Neil Alberding


Neil Alberding
0.65

Neil Alberding
0.37

Neil Alberding
0.14

Neil Alberding
0.06= 10%

Neil Alberding


Neil Alberding
error in g is about 20%

Neil Alberding
g = 15 m/s^2
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Now compare your result to the accepted value of g. You can make a
graphical representation of the result, its uncertainty and the accepted
value by showing your calculated value with error bars on a number
line. Then indicate the accepted value with an arrow. Use the
horizontal scale provided. (See the examples below.)

Do you conclude that your result agrees with the accepted value of g
or not?

approximate SD of the value from average

calculated average of measurements 8 ccepted™ 9.8m/s”
VY
; . I
8.5 9.0 9.5 10.0
g (m/s2)
gaccepled= 9'8m/82
: PN 72 :
8.5 9.0 9.5 10.0
gaccepted= 9.8mis?
b ® I
9.0 9.5 10.0 10.5
g (m/sz)

Three examples: Two agree with the accepted value, one
doesn’t.
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JIMMY'S GARAGE| 29

I need a new battery
but its terminal potential
needs to be at least 12
Joules per Coulomb with
an internal resistance no
greater than 0.1 Ohms
and a capacity of 100
Amp-hours. And would
you have something with
a transient suppression
of 10,000 Volts per
second?

When a battery is fresh, the voltage marked on it is actually a
measure of the electrical potential difference between its terminals.
Voltage is an informal term for potential difference. If you want to
talk to physicists you should refer to potential difference.
Communicating with a sales person at the local store is another story.
There you would probably refer to voltage. We will use the two
terms interchangeably.

Let's explore potential differences in series and parallel circuits, and
see if you can develop rules to describe its behaviour as we did
earlier for currents. How do the potential differences of batteries add
when the batteries are connected in series or parallel? Figure 23-1
shows a single battery, two batteries identical to it connected in
series, and then two batteries identical to it connected in parallel.

1 , l1 11
+ L : '
EI EI 2
(a) i) ic)

Figure 23-1: Identical batteries: (a) single, (b) two connected in series and
(c) two connected in parallel.

You can measure potential differences with a voltmeter connected as
shown in Figure 23-2.

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.
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() (b) ()

Figure 23-2: Voltmeters connected to measure the potential difference
across (a) a single battery, (b) a single battery and two batteries connected
in series, and (c) a single battery and two batteries connected in parallel.

#Activity 23-2: Combinations of Batteries
(a) Predict the voltage for each combination of batteries in Fig 23-2. Write
you prediction beside the meter symbols.
(b) Measure the voltages you predicted and write them below the predicted
values on the figure.

Using a Multimeter
A digital multimeter (DMM) is a device that can be used to measure
either current, voltage or resistance depending on how it is set up.
We have already used one to measure voltage. The following activity
will give you some practice in using it as an ohmmeter. You will
need:

* A digital multimeter

* A D-cell alkaline battery w/ holder

* A SPST switch

* 4 alligator clip wires

e 1 resistor, 10 Q

N
3.14
Dial for
\Y A selection of
N type of
reasurerent
and scale
Q MA
A MACOMVQ | Receptacles for
® ® ® ®—— InputLeads
S

Figure 23-6: Diagram of a typical digital multimeter that can be used to
measure resistances, currents, and voltages

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding 2013.



Page 23-12 Workshop Physics II Activity Guide SFU

By putting the input leads (red for positive, black for negative) into
the proper receptacles and setting the dial correctly, you can measure
resistances (€2) as well as direct-current voltages (DCV) and currents
(DCA).

Figure 23-7 shows two simple circuits to remind you how to take
voltage and current readings with the multimeter which here acts as a
voltmeter on the left and as an ammeter on the right.

— 10Q § pp— 10Q

Figure 23-7: Simple circuits for using a multimeter to measure voltage
and current.

Uncertainty of Multimeter Measurements

There are two sources of error to consider when measuring with a

multimeter:

1. The effect of the meter on the circuit being measured and the
consequent deviation of the value measured from what it was without
the meter connected and

2. The possible error in calibration and the sensitivity of the meter’s
digital reading.

Voltage Measurements

Digital multimeters are usually designed so that very little current flows
through them while they are being used. The technical jargon for this is
“high input impedance” which means in practice that it acts like a very large
resistor. Most digital multimeters can be assumed to have an input
impedance of 1 MQ or 10 MQ. Thus if you measure the potential difference
across a component with resistance comparable to the meter’s then the
effect of the parallel resistance of the meter should be considered. For
components whose resistances are much smaller, then one can ignore the
meter’s effective resistance.

The meter reading is subject to uncertainty caused by two influences:
(1) the calibration of the meter and
(2) the digitization error of the numerical reading.

Normally calibration error is expressed as a percentage of the value. The
digitization error is usually expressed as a + range on the last digit. For
example the technical specifications of our Meterman 33XR multimeters
state that for DC voltage measurements the error is

+(0.7% + 1 digit)

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.
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three basic measurements

—_EE % current
—E@ resistance

One calculates the uncertainty as 0.7% of the reading plus one digit in
rightmost digit of the reading. For example

2.47 V would have an error of

+0.7% x247V= +0.02V added to
+0.01V
resulting in a total error of +0.03 V.
(We do not add these two contributions in quadrature.)

Current Measurements

Current measurements need to have the meter inserted in series with the
circuit elements. Digital multimeters are apt to have a significant resistance
compared to the other circuit elements, and the amount of resistance
depends on the scale setting. For higher currents such as around 1 A the
resistance could be a few ohms, but for milliampere ranges internal
resistances could be as high as a k2. (Sometimes this is specified as
“voltage burden” because there’s an unwanted voltage across the meter
while it’s being used.) The result is that the meter causes the current being
measured to be smaller than it would be without the meter.

The error on current measurements depends on the scale. For most scales it
is listed as +(1%+1digit) for the 33XR Meterman DMM

Resistance Measurements

Resistance measurements combine both voltage and current measurement.
A meter has to provide a voltage and measure the current for that voltage
and then presents the ratio of voltage to current as the resistance value.
Because the meter has to provide an exact voltage across the component
being measured it’s important to ensure that no other sources of voltage are
connected which would interfere with the measurement. Similarly, the
current from the meter must flow only through the component being
measured. Therefore, the component must be disconnected from any other
circuit element while the resistance is being measured. If the component is
being tested in circuit, at least one end must be disconnected while
measuring its resistance. While you’re measuring the resistance of
something you must make sure that it is not connected to anything else.
Even having your fingers touching the leads can cause an erroneous
measurement due to the body’s resistance in parallel.

Because both voltage and current are involved in measuring resistance, it is
normal that the uncertainty is somewhat more than that for voltage or
current. Most scales have a listed error of +(1%+4 digits) for the 33XR
Meterman DMM.

AC/DC

Both current and voltage functions of a multimeter have alternating current
and direct current scales. Most of our measurements should use the direct
current setting. If you get reading of almost zero when you expect a larger

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding 2013.
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value, then check if the meter is set on AC instead of DC. The specified
error on AC measurements is typically larger than for DC measurements.

Other Measurements

Many DMMs have the ability to make various other measurements
depending on the model. Some can measure frequency, capacitance,
temperature, inductance or transistor current amplification. These may be
very useful in some situations, but the three basic measurements are
essential and should be mastered first.

#Activity 23-5: Using a Multimeter

(a) Set up the circuit shown in Figure 23-7 with the switch open. Figure out
what settings you need to use to measure the actual resistance of the "10Q"
resistor. Record your measured value with uncertainty below.

(b) Now close the switch and measure the actual resistance of the “10€Q2”
resistor again. Is your result different? (Do the two values agree within
errors?) If so, what do you think is the cause of this difference?

Ohm’s Law: Relating Current, Potential Difference and
Resistance

You have already seen on several occasions that there is only a
potential difference across a bulb when there is a current flowing
through the bulb. In this activity we are going to use a resistor and
compare its characteristics to a light bulb. Resistors are designed to
have the same resistance value no matter how much current is
passing through. How does the potential difference across a resistor
depend on the current through it? In order to explore this, you will
need the following:

» 2 digital multimeters

¢ 4 D-cell alkaline batteries with holders
e] resistor, 47 Q

*1 light bulb, 6 V or larger

*]1 SPST switch

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.
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resistor light bulb
Use 1 to 4 batteries to vary the voltage, V" applied to a resistor and to
a light bulb. After measuring / and ¥, plot the / vs V graph for each.
A graph of [ vs. V' is called the “characteristic curve” and the
resistance is the inverse of its slope.

#Activity 23-6 Experimental Relationship of 7 and V

a) Setup a circuit to test your prediction by placing the resistor in
series with one, two, three and then four batteries. Repeat with
the light bulb. Set up the multimeters as a voltmeter and ammeter
to measure the voltage across the resistor and the current through
it. Carefully describe your procedures and sketch your circuit
diagram. Use the circuit symbols for a resistor and bulb shown in
Figure 23-8.

b) Record your data for 7 vs V in the table below. Record values
and uncertainties.

Number Resistor Bulb
of
Batteries | V(Volts) | | (Amps) | V(Volts) | | (Amps)

1

2

3

4

¢) Using a spreadsheet create a graph of I vs V for both resistor and
bulb. Draw error bars for both quantities. If the slope is constant
within error bars, draw the line of best slope. Submit your graphs
to WebCT.

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding 2013.
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Ohm's Law and Resistance

The relationship between potential difference and current which you
have observed for a resistor is known as Ohm's law. To put this law
in its normal form, we must now define the quantity known as
resistance. Resistance is defined by:

R=V/I
If potential difference () is measured in volts and current (/) is

measured in amperes, then the unit of resistance (R) is the ohm,
which is usually represented by the Greek capital letter €2, "omega."

#Activity 23-7: Statement of Ohm's Law

a) State the mathematical relationship found in Activity 23-6 between
potential difference and current for a resistor in terms of V, I, and R.

b) Based on your graph, what can you say about the value of R for a resistor
— is it constant or does it change as the current through the resistor
changes? Explain.

¢) From the slope of your graph, what is the experimentally determined
value of the resistance of your resistor in ohms? How does this agree with
the rated value of the resistor?

d) Complete the famous pre-exam rhyme used by countless introductory
physics students throughout the English speaking world:

Twinkle, twinkle little star, V equals times

Note: Some circuit elements do not obey Ohm's law. The definition for
resistance is still the same, but, as with a light bulb, the resistance changes
because of temperature changes resulting from the flow of current. Circuit
elements which follow Ohm's law over a wide range of conditions--like
resistors--are said to be ohmic, while circuit elements which do not--like a
light bulb--are nonohmic.

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.
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SESSION TWO: KIRCHHOFF'S LAWS AND MULTI-LOOP CIRCUITS

Resistance and Its Measurement

In the series of observations you have been making with batteries
and bulbs it is clear that electrical energy is being transferred to light
and heat energy inside a bulb, so that even though all the current
returns to the battery after flowing through the bulb, the charges have
lost potential energy. We say that when electrical potential energy is
lost in part of a circuit, such as it is in the bulb, it is because that part
of the circuit offers resistance to the flow of electric current.

A battery causes charge to flow in a circuit. The electrical resistance
to the flow of charge can be compared to the mechanical resistance
offered by the pegs and the barrier in a mechanical model depicted
by a ramp with balls travelling down it as described in Unit 22.

A light bulb is one kind of electrical resistance. Another common
kind is provided by a resistor manufactured to provide a constant
resistance in electrical circuits.

Resistors are the most standard sources of resistance used in
electrical circuits for several reasons. A light bulb has a resistance
which increases with temperature and current and thus doesn't make
a good circuit element when quantitative attributes are important.
The resistance of resistors doesn't vary with the amount of current
passing through them. Resistors are inexpensive to manufacture and
can be produced with low or high resistances.

A typical resistor contains a form of carbon, known as graphite,
suspended in a hard glue binder. It usually is surrounded by a plastic
case with a colour code painted on it. It is instructive to look at
samples of resistors that have been cut down the middle as shown in
the diagram below.

Cutaveay wiewofa
carbon resizstor showing
the cross zectional

area ofthe graphite
material

Figure 23-8: A cutaway view of a carbon resistor

As you found in the previous activity on Ohm’s Law, a simple
equation can be used to define electrical resistance in terms of of
potential difference, AV, across it and the current, /, through it. It is

R=AV/I

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding 2013.
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A resistor is usually marked with coloured bands to

signify its resistance value in ohms.

(Re3|stor Colour Cod@
\ j
N
i orange or yellow
1Std& %nd band indicates MIL
191 T spec reliability
multiplier tolerance: rating
red = 2%
gold = 5%
silver = 10%
none = 20%
digit colour multiplier  # zeros
silver 0.01 -2
gold 0.1 -1
0 black 1 0
1 brown 10 1
2 red 100 2
3 orange 1k 3
4 yellow 10k 4
5 green 100k 5
6 blue 1M 6
7 violet 10M 7
8 grey
9 white

For example, a resistor with bands of yellow-violet-red-silver has a value of:

47%10% = 10% Q or 4.7 kQ.
Suppose you have finally graduated and taken a job as a quality
control inspector for a company that makes resistors. Your task
is to determine the rated resistance in ohms of a batch of five
resistors and then check your decoding skills by measuring the
resistance with a digital multimeter. For this activity you’ll
need:

* A digital multimeter
¢ 5 assorted colour-coded resistors

#Activity 23-8: Decoding and Measuring Resistors

a) Decode the five resistors and write their colour codes and “Coded R”
values in the first two columns of the following table.

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.
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Colour Coded R Measured R Calculated Percent Within rated
Sequence Percent Tolerance tolerance?
(9] Q .
Difference Yes No
]

DO

DO

DO

O

b) Measure the resistance of each of your resistors with the multimeter. Fill
in the values in the third column of the table above. (Include uncertainties.)

¢) Calculate the percent difference between the coded R and the measured R
for each resistor using the following formula:

|coded R — measured R|

1
coded R x 100%

percent difference =

Record this result for each resistor in the fourth column.
d) Record the percent tolerance of each resistor in the fifth column.

e) Are your resistor values correct within the rated tolerance values? Record
your results in the last column and comment on whether this resistor
manufacturer did a good job below.

Resistors in Parallel and Series

The resistance of a wire is directly proportional to length. The
resistance also depends on the cross-sectional area of the wire. It is
possible to control the R-value of a wire fairly precisely by varying
these quantities.

Several identical resistors can be wired in series to increase their
effective length and in parallel to increase their effective cross-
sectional area as shown in the next diagram.
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Series Resistors Parallel Resistors
e | [0 m
R

E | E 5

Figure 23-9: resistors wired in series and in parallel

In order to test your predictions and do some further
exploration of equivalent resistances of different combinations
of resistors you will need the following

e 2 resistors, ~100

e 2 resistors, ~220 Q

e 2 resistors, ~470 Q

¢ | digital multimeter

* 6 connecting wires with alligator clips

Using the items listed above, you will devise a way to measure
the equivalent resistance when three or more resistors are
wired in series.

£ Activity 23-9: Resistances for Series Wiring

(a) If you have three different resistors, what do you think the equivalent
resistance to the flow of electrical current will be if the resistors are wired in
series? Explain the reasons for your prediction based on your previous
observations with batteries and bulbs.

(b) Compare the calculated and measured values of equivalent resistance of
the series network as follows:

Write down the measured values of each of the three resistors:

R = Q
Ry = Q
R3 = Q

Describe the method you are using to predict the equivalent resistance and
calculate the predicted R value:
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Predicted Req = Q

(c) Draw a diagram for the resistance network for the three different
resistors wired in series. Mark the measured values of the three resistances
on your diagram.

(d) Measure the actual resistance of the series resistor network and record
the value:

Measured Req = Q

(e) How does this value compare with the one you calculated?

(f) On the basis of your experimental results, devise a general mathematical
equation that describes the equivalent resistance when n resistors are wired
in series. Use the notation Req to represent the equivalent resistance and

R1,Ry,R3, .. .Ry to represent the values of the individual resistors.
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Now you’re going to devise a way to measure the equivalent
resistance when two or more resistors are wired in parallel, Draw a
symbolic diagram for each of the wiring configurations you use.

#Activity 23-10: Resistances for Parallel Wiring

(a) If you have two identical resistors what to you think the resistance to the
flow of electrical current will be if the resistors are wired in parallel?
Explain the reasons for your prediction.

(b) Pick out two resistors with an identical colour code and draw a diagram
for these two resistors wired in parallel. Label the diagram with the
measured values Ry(measured) and Ry (measured). Predict the equivalent
resistance of the parallel circuit and record your prediction below. Measure
the value of the equivalent resistance of the network. Explain your
reasoning and show your calculations in the space below.
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Predicted value: Req = Q

Measured value: Req = Q

(c) Pick out three different resistors and draw a diagram for these three
resistors wired in parallel. Label the diagram with the measured values R

(measured) , Ry (measured) and R3 (measured). Measure the value of the

equivalent resistance of the network and record it below.

Measured Value of the equivalent resistance of the network:

Req = Q
(d) Use the notation Req to represent the equivalent resistance and R, Ry,
R3, ..., etc. to represent the values of the individual resistors. Show that,

within the limits of experimental uncertainty, the results of the
measurements you made with parallel resistors are the same as those
calculated using the equation:

1. For the two identical resistors wired in parallel:

Calculated Value: R Q

eq =

Measured Value: R Q

eq =

2. For the three resistors wired in parallel:
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Calculated Value: Req = Q
Measured Value: Req = Q
(e) Show mathematically that if
1 1 1 R{R
—:—+—thenReq:—1 2
Req R1 Rz Rl + RZ

Equivalent Resistances for Networks

Now that you know the basic equations to calculate equivalent
resistance for series and parallel resistances, you can tackle the
question of how to find the equivalent resistances for complex
networks of resistors. The trick is to be able to calculate the
equivalent resistance of each segment of the complex network
and use that in the calculation of the next segment. For
example, in the network shown below there are two resistance
values R and Rp. A series of simplifications is shown in the

diagram below.

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.



Workshop Physics II: Unit 23 — Error Propagation and Direct Current Circuits Page 23-25
Authors: P. Laws, J. Luetzelschwab, D. Sokoloff, & R. Thornton, N. Alberding

Fll R
E
1 _
. RE 5 Let RS_ R1+F{2
Ry
Ry Let B
5o R, e g O TyT RgBglRa+ Ryl

where Bog =K, + E
T
Y E = 4 1

Figure 23-11: A sample resistor network

In order to complete the equivalent resistance activities you will need
the following apparatus:

« 3 resistors, ~100
* 3 resistors, ~220 Q
* 1 digital multimeter

#Activity 23-11: The Equivalent Resistance for a Network
(a) In the following activity, use the 100 € resistor for Ry and the 220 Q

resistor for Ry. Calculate the equivalent resistance between points A and B

for the network shown below. You must show your calculations on a step-
by-step basis.

Fil E
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(b) Set up the network of resistors and check your calculation by measuring
the equivalent resistance directly. (Hint: Build the circuit in stages and
check the equivalent resistance for each stage.)

Calculated Value: R Q

eq~

Measured Value: R Q

eq =

Theoretical Application of Kirchhoff's Laws

Suppose we wish to calculate the currents in various branches of a
circuit that has many components wired together in a complex array.
In such circuits, simplification using series and parallel combinations
is often impossible. Instead we can apply a formal set of rules
known as Kirchhoff's laws to use in the analysis of current flow in
circuits. These rules can be summarized as follows:

Kirchhoff’s Laws

1. Junction (or node ) Rule (based on charge conservation): The
sum of all the currents entering any node or branch point of a circuit
(i.e. where two or more wires merge) must equal the sum of all
currents leaving the node.

2. Loop Rule (based on energy conservation): Around any closed
loop in a circuit, the sum of all emfs (voltage gains provided by
batteries or other power sources) and all the potential drops across
resistors and other circuit elements must equal zero.

Steps for Applying Rules

1. Assign a current symbol to each branch of the circuit and label the current
in each branch I1, I, I3, etc.; then arbitrarily assign a direction to each
current. (The direction chosen for the circuit for each branch doesn't
matter. If you chose the "wrong" direction the value of the current will
simply turn out to be negative.) Remember that the current flowing out of a
battery is always the same as the current flowing into a battery.

2. Apply the loop rule to each of the loops by: (a) letting the potential drop
across each resistor be the negative of the product of the resistance and the
net current through that resistor (reverse the sign to “plus” if you are
traversing a resistor in a direction opposite that of the current); (b) assigning
a positive potential difference when the loop traverses from the — to the +
terminal of a battery. (If you are going through a battery in the opposite
direction assign a negative potential difference to the trip across the battery
terminals.)
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3. Find each of the junctions and apply the junction rule to it. You can place
currents leaving the junction on one side of the equation and currents
coming into the junction on the other side of the equation.

In order to illustrate the application of the rules, let's consider the
circuit in Figure 23-12 below.

Arbitrarily azzizgned loop
direction for keepingtrack
of currents and pot, diffs,

Current direction
through battersy
aften chosen as
in direction +
of —to + E1 —

Figure 23-12: A complex circuit in which loops 1 and 2 share the resistor
R». The currents /7 and I3 flow through R» in opposite directions and the net

current through R» is denoted by /.

In Figure 23-12 the directions for the currents through the branches
and for /7 are assigned arbitrarily. If we assume that the internal
resistances of the batteries are negligible, then by applying the loop
and junction rules we find that

Loop 1 Eq.: Ei1-LRy,-I1 R; =0 [Eq. 23-1]
Loop 2 Eq.: -&+bLRy-13R;=0 [Eq. 23-2]
Node 1 Eq.: L =hL + 1 [Eq. 23-3]

It is not obvious that the loops and their directions can be chosen
arbitrarily. Let's explore this assertion theoretically for a simple
situation and then more concretely with some specific calculations.
In order to do the following activity you'll need a couple of resistors
and a multimeter as follows:

* two resistors (rated values of ~22 Q and ~47 Q)
* A digital multimeter

* 3 D-cell batteries in holder

¢ 1 D-cell battery in holder
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#Activity 23-14: Applying the Loop Rule Several Times

(a) Use the loop and node rule along with the new arbitrary direction for I,
to rewrite the three equations relating values of battery emfs, resistance, and
current in the circuit shown in Figure 23-13 below.

Figure 23-13: A similar complex circuit

(b) Show that if I2'= —I7 then the three equations you just constructed can
be rearranged algebraically so they are exactly the same as Equations 23-1,
23-2 and 23-3.

(c) Suppose the values of each component for the circuit shown in Figure
23-13 shown above are rated as

€1=45v
€2=15vV

Rated Fixed Resistances: R =47 Q
R3=22Q

Variable Resistance: Ry =100 Q
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1. Since you are going to test your theoretical results for Kirchhoff's law
calculations for this circuit experimentally, you should measure the actual
values of the two fixed resistors (rated at 47 Q and 22 Q) and the two battery
voltages with a multimeter. List the results below.

Measured value of the battery emf rated at 4.5 V €=
Measured value of the battery emf rated at 1.5 V Er=
Measured value of the resistor rated at 47 Q: R =

Measured value of the resistor rated at 22 Q: R3=

2. Carefully rewrite Equations 23-1, 23-2 and 23-3 with the appropriate
measured (not rated) values for emf and resistances substituted into them.
Use 100 Q for the value of R in your calculation. You will be setting a
variable resistor to that value soon.

(d) Solve these three equations for the three unknowns /1, I and /3 in amps

using one of the following methods: (1) substitution or (2) determinants.
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(e) Show by substitution that your solutions actually satisfy the equations.
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Verifying Kirchhoff's Laws Experimentally

Since circuit elements have become smaller in the past 30 years or
s0, it is common to design and wire simple circuits on a device called
a breadboard. A breadboard has hundreds of little plastic holes in it
that can have small diameter (22AWG) wire poked into them. In the
breadboard model shown in Figure 23-14 below, these holes are
electrically connected in vertical columns of 5 near the middle. The
top of the breadboard has two horizontal rows of connected holes.
There is a similar arrangement at the bottom.

Terminals for voltage inputs

IS
0000 <"

Horizontal rows of holes
are all connected left-to-
right. (left and right
halves may be separate
on some versons.)

Each vertical column of
5 holes is connected
up-and-down.

R

Figure 23-14: A “Proto-Board” breadboard. Top View and Bottom View. The bottom view reveals the
connections among the holes.

Usually, one connects the voltage inputs to the long rows of
connected dots toward the outside of the circuit; these rows can then
serve as power supplies. As part of the next project with the
breadboard you will be using some simple circuit elements to design
a tricky circuit with more than one battery and several branches in it!
To design this circuit you will be using the following items:
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* 1 pot (200 Q DIP style set at 100 €2)

e 2 resistors (rated at 22 Q and 47 Q)

¢ 4 D-cell alkaline batteries in two holders (1,3)
* A “Proto-Board” breadboard

* A digital multimeter

¢ A small screw driver

¢ Assortment of small lengths of #22 wire

The word "pot" stands for potentiometer. It is a variable resistor.
There is a 200 Q pot already installed on your breadboard. The pot
has three leads. The two outside leads are across the 200 Q resistor
while the centre lead taps off part of the 200 €2 . The resistance
between an outside lead and the centre tap can be adjusted from O to
200 © with a screwdriver; the resistance between the two outside
leads is always 200€2. The circuit symbol for the pot is shown

=R

Figure 23-15: A breadboard pot

To wire up the circuit shown in Figure 23-12 on the breadboard, you
will need to examine the details of how the breadboard is arranged,
as shown in Figure 23-14.

& Activity 23-15: Testing the Loop Rule with a Real
Circuit

(a) Use the ohmmeter feature of the digital multimeter to measure the total
resistance across a pot that is labelled 200 Q. Then measure the resistance
between the centre tap on the pot and one of the other taps. What happens
to the ohmmeter reading as you use a small screwdriver to change the
setting on the pot?

(b) Set the pot so that there is 100 €2 between the centre tap and one of the
other taps.

(b) Wire up the circuit pictured in Figure 23-12 above; use a breadboard
and the pot (set at 100 €2) as Rp. Measure the current in each branch of the
circuit and compare the measured and calculated values of the current by
computing the % difference in each case.

© 1990-93 Dept. of Physics and Astronomy, Dickinson College Supported by FIPSE (U.S. Dept. of Ed.)
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.



Workshop Physics II: Unit 23 — Error Propagation and Direct Current Circuits Page 23-33
Authors: P. Laws, J. Luetzelschwab, D. Sokoloff, & R. Thornton, N. Alberding

Note: The most accurate way to measure current with a digital multimeter is

to measure the potential difference across each of the resistors and use
Ohm's law to calculate 7 from AV and R.

Measured R | Measured Measured /=AV/R | Theoretical i %Diff
AV
1
2
3

(c) What do you predict will happen to each of the currents as the resistance
on the pot is decreased? That is, will the currents Iy, I5, and /3 increase or

decrease? Explain your predictions.

(d) What actually happens to each of the currents as you decrease R2? How

good were your predictions?
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Appendix: Propagation of Uncertainties, General Rules
The uncertainty of calculated quantities depends directly on the uncertainties of the variables used in the
calculation. For brevity we simply state the rules for commonly encountered situations here. Later some of
these rules will be justified but a complete understanding needs statistical methods which are too advanced
for this course.

In the following let A, B, C, ... stand for independent quantities going into a calculation with
uncertainties AA, AB, AC, ....Let Y =f(A,B,C, ...) be the calculated quantity of interest.

1. Rule 1: A constant multiple

If
Y=kA
where k is a constant, then
AY =k AA

2. Rule 2: Addition and Subtraction
If

Y=AxBxC
then

AY =.4/(AA)” + (AB)* + (AC)?

The generalization to four or more addends should be obvious. The reason for taking the root-squared sum
instead of just adding the uncertainties is that we are not certain whether the errors will cancel or add. If
there are many terms in the sum, there will typically be some cancellation and the combined error will not
likely be as large as the error given by the sum IAA [+ IABl + IACI + ... .

3. Rule 3: Multiplication and Division

If
Y=ABC,Y=ABCl,Y=AB 1 Cl,ory=a"1p"1C"1

()

For multiplication and division we add the fractional (or percentage) errors.

then

4. Rule 4: Powers

If
Y = A%, where a is arbitrary: integer, fraction, positive or negative
then
AY AA
—=lal —
Y A
5. Examples

(1) Y = AB?
Let C = B2 so that Y = AC.

2 2
Then according to rule 3 AY (ﬂ) + (ﬁ)

Y A C
According to rule 4 AC_ 2£
Cc B

Theref AY [(AA 2+4(AB)2
T T - = - e .
eretore A B
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1 1
Example Q) Y= —+—
ple (2) oy

LetC=A1land D=B1

Acconding torule 4 M _AC | AB_AD
ccording to rule A C an B D

However C = A~ and D = B! s0 these latter two expressions can be written as

AC=%and AD=%.

2 2
AA AB
AY = (_z) + 4(—2)
A B .
6. The General Case

The four rules and the rule for the general case can be derived with the help of calculus. In this discussion
we will assume a function of the form
Y=f(A,B) ey

Generalization to functions of more variables is easy.

Hence

Calculus tells us that if we change A by a small amount dA and B by dB then the change in Y is give

dY=(i) dA+(i) dB )
9A ), aB),

by

(That is the definition of partial derivative.) For convenience these subscripts are omitted from now on.

This equation tells us how fast the function Y changes when we change inputs A and B by some small
amounts dA and dB. The subscript A or B on the partial derivatives has the conventional meaning that the
quantity A or B is to be held fixed while taking the derivative. We can identify these small changes with
small errors in our measurements, +AA and +AB. These errors can have either algebraic sign and so can the
derivatives (9f/0A) and (df/0B). In the worst case both terms in (2) are positive or both negative in which
case you have

AY,

worstcase ~

[
A

EEI
B

On the other hand it could turn out that you are lucky and the two terms in equation (2) tend to cancel. Then
you would have

“

AYbestcase =

(a4

2L e
B

In practice there is no way of knowing if the errors are going to cancel or add in the final answer.
Probability theory says that in this case, if the errors are independent and have a normal distribution then
we should add the individual errors “in quadrature,” i.e., form the root-squared sum as follows



Workshop Physics II: Unit 23 — Appendix ~ Page 23-36

Author: N. Alberding
2 2
or-5h] (o ®
0A B

Note that AY has the property

AYworst case = AY = AYpest case-

You can visualize this way of adding errors by means of a right triangle.

AY
of
(55) a4

of
— | AB
< 0B >
The generalization of equation (5) to an arbitrary number of variables Y = f(A,B,C...) is

o T R A RS PR

With a little effort you should be able to convince yourself that rules 1 through 4 are but special cases of
equation (5). Equation (5) can also be used where the rules do not work.




