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Unit 23:  ERROR PROPAGATION, DIRECT CURRENT CIRCUITS1

Estimated classroom time: Two 100 minute sessions

I have a strong resistance to understanding the relationship 
between voltage and current.

! ! Anonymous Introductory Physics Student

OBJECTIVES

1. To learn to the principles of error propagation when doing 
calculations.

2. To understand and apply Ohm’s law to a resistor and understand 
the I vs V characteristics of a non-Ohmic device.

3. To find a mathematical description of the flow of electric current 
through different elements in direct current circuits (Kirchhoff's 
laws).

4. To gain experience with basic electronic equipment and the 
process of constructing useful circuits while reviewing the 
application of Kirchhoff's laws.
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1 Portions of this unit are based on research by Lillian C. McDermott & Peter S. Shaffer published in AJP 60, 994-1012 
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OVERVIEW
5 min

We’ll start this unit by understanding how uncertainties of measured 
quantities affect the uncertainties of values calculated from them. 
We’ll be using these techniques when comparing experimental 
results to expected or theoretical values.

Next we’ll continue studying DC circuits. In the last unit you saw 
that in a series circuit with a battery,
1. the current is the same through all elements, 
2. changing one part of a series circuit changes the current in all 

parts of the circuit,
3. the voltage divides between the elements of the series and
4. the total of voltages sums to the voltage of the battery.  

You also saw that in a parallel circuit with a battery, 
1. the current divides among the branches,
2. making a change in one branch of a parallel circuit does not 

affect the current flowing in the other branch (or branches),
3. the total current from the battery equals the sum of the currents 

in each branch and 
4. the voltage across each branch of a parallel circuit is the same.
 
In this unit, you will first examine the role of the battery as a voltage 
source and understand how the voltage depends on whether batteries 
are connected in parallel or series.

We’ll explore the current through electrical devices as a function of 
the potential difference. Resistors follow Ohm’s law where current is 
proportional to voltage, but light bulbs do not.         

You will measure the effective resistance of resistors when they are 
wired in series and in parallel. Finally you will formulate the rules 
for the calculation of the electric current in different parts of complex 
electric circuits consisting of many resistors and/or batteries wired in 
series and parallel. These rules are known as Kirchhoff's laws.  To 
test your understanding of Kirchhoff's laws, you will learn to use a 
breadboard to wire complex electric circuits and verify the voltages 
and currents predicted by these laws.
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SESSION ONE:  PROPAGATION OF ERRORS — USING A DIGITAL 
MULTIMETER

Propagation of Errors
At the beginning of Physics 140 (remember?) we did some activities 
exploring how random and systematic errors affect measurements we 
make in physics. This was important because progress in many 
sciences depends on how accurately a theory can predict the outcome 
of experiments. We can test the validity of a theory by comparing 
measured quantities with what the theory predicts. But agreement 
between theory and measurement is almost never exact so a theory is 
not considered in disagreement with measurement if the 
disagreement can be accounted for by the reasonable uncertainties in 
measurement. 

Often a theory predicts a quantity that is not directly measured but 
depends on a calculation. The measured quantities that contribute to 
the calculation all have different uncertainties due to random errors. 
The calculated result has an uncertainty that is determined by the 
uncertainties of the values used in getting the result. How do we go 
about determining the uncertainty of the result? There are only a few 
simple rules.

Adding and Subtracting
The first principle of adding two (or more) quantities with random 
errors is that one never knows if the error in one of them adds to or 
subtracts from the error of the other, the error of either one could be 
positive or negative. For example, if we were to measure the length 
of a table, measure its width and then add them the sum might have 
an error that is larger than the errors of either measurement or the 
total error might be smaller than the errors of either measurement. It 
is also quite possible that the length error might cancel with the 
width error. 
!
! length error! width error! length+width result
! too big! too big! much too big !
! too big! too small! about right
! too small ! too big! about right
! too small! too small! much too small

So over all the probability of “lucking out” and getting the right 
answer is a lot more likely than one would imagine.

This effect of adding quantities with random errors is accounted for 
quantitatively by combining the errors as follows:  square each of 
them, add the squares and then take the square root. This procedure 
called “adding in quadrature”.

For example, 
length = 1.21±0.04 m
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width = 0.85±0.03 m

length+width = 2.06 ± 
�

0.042 + 0.032  = 2.06±0.05 m
\sqrt{0.04^2 + 0.03^2}

Naively we might ascribe an error of ±0.07 m to the sum the length 
and the width. If the two measurement are independent of each other 
and the errors are random then the result, 0.05 m which we got by 
adding in quadrature, accounts for the fact that the error of one 
quantity frequently cancels out with the error of the other.

If we need to subtract quantities, the errors still add in quadrature. 
After all, we don’t know if the error would be positive or negative so 
the results is still uncertain by the same amount as if we were adding. 
Thus

length–width = 0.36±0.05 m

Subtracting two quantities with random errors often results in a small 
result with a relatively large error.

We can summarize as follows. Let the two measurements and their 
errors be

 x±Δx  and y±Δy. 
Then 

Δ(x+y) =
�

(�x)2 + (�y)2  

Multiplying and Dividing
The rule for multiplying is similar to that of addition but instead of 
using the absolute error, Δx, one adds the relative errors, Δx/x, in 
quadrature. Often one refers to relative error as the percentage error. 
The relative error of a product of two numbers is got by adding the 
relative errors of the numbers:

For example

length = 1.91±0.04 m, relative error = 0.04/1.91 ≈ 0.02  2%
width = 0.45±0.03 m, relative error = 0.03/0.45 ≈ 0.07 7%

length x width = 1.91 x 0.45 = 0.859 ± 0.859
�

(2%)2 + (7%)2 = 
0.86±0.06 m2

Notice that when one of the errors is more than double that of the 
other (7%  > 2×2%), the result of adding in quadrature is not much 
different than just the largest error alone — there’s really no need to 
calculate in this case.
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Similarly, when one divides two quantities, the relative error of the 
result is the sum of the relative errors, added in quadrature:

V = 1.50 ±0.05 V, relative error ≈ 3%
I = 0.021±0.004 A, relative error ≈ 2%

R = V/I  = 1.50V/0.021A, relative error = 4%

so the result would be written as

R = 71±3 Ω.

(When doing error estimates it’s best to keep only one significant 
digit unless the first digit is “1”. Just use common sense.)

In symbols this is expressed somewhat cryptically as follows:

�(xy)
xy

=

s 
�x

x

!2

+

 
�y

y

!2

.

The absolute error is given by

�(xy) = xy

s 
�x

x

!2

+

 
�y

y

!2

{ \Delta (xy) \over xy } = \sqrt{\left({\Delta x \over x }\right)^2 + \left({\Delta y \over  y }\right)^2}

Exponents

If a number is taken to a power, for example t2, then the rule is to 
multiply the relative error by the power:

t = 1.25 ±0.01 s, relative error ≈ 0.8%
t2= 1.56 s, relative error ≈ 1.6%

so the result would be written

t2= 1.56±0.03 s 

(One could possibly write 1.56±0.025 s in this case.)

The relative error of the square root of a value is one-half that of the 
value —it gets smaller. 

In general for any power α

�(x�)
x�
= �
�x
x
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The error of other functions.

For example what is the possible error of

! x = cos θ

when ! θ = 21° ± 2° ?

! x = cos 21° = 0.9335

The easiest way to find Δx is to substitute for the minimum and 
maximum values:

! Δ(cos θ) = | cos 23° – cos19° |

! ! = | 0.9205 – 0.9455 | = 

! ! = 0.0125

so write

! x = 0.934 ± 0.012

Using calculus to find x = Δ(cos θ):

Δx = Δ(cos θ) =
�����
d cos �

d�
��

�����  = (sin θ) Δθ

Caution:  If you use calculus, Δθ must be in radians.

±2°  = ±0.035 radians
21° = 0.367 radians

Δx = Δcos θ = |(sin 0.367) (0.035)|
! = |(0.359)(0.035)|
! = 0.0125

write 0.012 or 0.013 as you wish.

The calculus method becomes more inexact as Δθ gets larger.

In the next experiment we’ll try a familiar experiment to measure g 
and do the calculations using the rules we’ve just discussed.

! ! • one ball
! ! • 5 stop watches
! ! • 1 tape measure
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! ! • ladder or stool
! ! • method of designating the height of fall

✍Activity23-1: Determining g by timing the fall of an object 
(This can be done as a class activity.)

Drop a ball from from a known height. Measure the height 5 times 
independently. (Different people who don’t know the results that the 
other got.) Then drop the ball from that height 5 times and measure it 
with 5 people armed with stopwatches.   Tabulate the heights and 
times for the 5 trials in the following tables. Calculate the averages 
and standard deviations in each case.  We can use a rule of thumb 
that for 4 or 5 trials the standard deviation is usually about 1/2 the 
range of the measurements.

(a) Height measurements

Trial height (  ) comments

1

2

3

4

5

average

largest

smallest

1/2 range You may wish to 
compare the 1/2 range 
to the actual SD.

SD of mean
For purposes of error calculations, use the estimated SD of the data 
(or the 1/2 range) instead of the reading accuracy of the metre stick 
or the stopwatch because the SD of the data includes many other 
sources of possible error.
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(b) Time-of-fall measurements

Trial Time (   ) Comments

1

2

3

4

5

average time

longest time

shortest time

1/2 range You may wish to 
compare the 1/2 range 
to the actual SD.

SD of mean

Calculations
Calculate the value of g from you data and apply the rules of error 
propagation to estimate the uncertainty of your result.
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Now compare your result to the accepted value of g.  You can make a 
graphical representation of the result, its uncertainty and the accepted 
value by showing your calculated value with error bars on a number 
line. Then indicate the accepted value with an arrow. Use the 
horizontal scale provided. (See the examples below.)

Do you conclude that your result agrees with the accepted value of g 
or not?

8.5 9.0 9.5 10.0

g
accepted

= 9.8m/s2
value from average!
of measurements

approximate SD of the 
calculated average

g (m/s2)

8.5 9.0 9.5 10.0

g
accepted

= 9.8m/s2

10.5
g (m/s2)

g
accepted

= 9.8m/s2

9.0 10.09.5

Three examples: Two agree with the accepted value, one 
doesn’t.
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!

Jimmy's Garage

I need a new battery 
but its terminal potential 
needs to be at least 12 
Joules per Coulomb with 
an internal resistance no 
greater than 0.1 Ohms 
and a capacity of 100 
Amp-hours. And would 
you have something with 
a transient suppression 
of 10,000 Volts per 
second?

When a battery is fresh, the voltage marked on it is actually a 
measure of the electrical potential difference between its terminals.  
Voltage is an informal term for potential difference.  If you want to 
talk to physicists you should refer to potential difference.  
Communicating with a sales person at the local store is another story.  
There you would probably refer to voltage.  We will use the two 
terms interchangeably.

Let's explore potential differences in series and parallel circuits, and 
see if you can develop rules to describe its behaviour as we did 
earlier for currents. How do the potential differences of batteries add 
when the batteries are connected in series or parallel?  Figure 23-1 
shows a single battery, two batteries identical to it connected in 
series, and then two batteries identical to it connected in parallel.

       

Figure 23-1: Identical batteries: (a) single, (b) two connected in series and 
(c) two connected in parallel.

You can measure potential differences with a voltmeter connected as 
shown in Figure 23-2.
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V

V

V
V

V

Figure 23-2:  Voltmeters connected to measure the potential difference 
across (a) a single battery, (b) a single battery and two batteries connected 
in series, and (c) a single battery and two batteries connected in parallel.

✍Activity 23-2: Combinations of Batteries
(a) Predict the voltage for each combination of batteries in Fig 23-2. Write 

you prediction beside the meter symbols.
(b) Measure the voltages you predicted and write them below the predicted 

values on the figure.

Using a Multimeter
A digital multimeter (DMM) is a device that can be used to measure 
either current, voltage or resistance depending on how it is set up. 
We have already used one to measure voltage. The following activity 
will give you some practice in using it as an ohmmeter. You will 
need:
! ! • A digital multimeter
! ! • A D-cell alkaline battery w/ holder 
! ! • A SPST switch
! ! • 4 alligator clip wires
! ! • 1 resistor, 10 Ω

                    

VΩCOMMAA

Ω

V A

MA

Figure 23-6:  Diagram of a typical digital multimeter that can be used to 
measure resistances, currents, and voltages
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By putting the input leads (red for positive, black for negative) into 
the proper receptacles and setting the dial correctly, you can measure 
resistances (Ω) as well as direct-current voltages (DCV) and currents 
(DCA).

Figure 23-7 shows two simple circuits to remind you how to take 
voltage and current readings with the multimeter which here acts as a 
voltmeter on the left and as an ammeter on the right.
"

A

10 Ω 10 ΩV

Figure 23-7: Simple circuits for using a multimeter to measure voltage 
and current. 

Uncertainty of Multimeter Measurements

There are two sources of error to consider when measuring with a 
multimeter:
1. The effect of the meter on the circuit being measured and the 

consequent deviation of the value measured from what it was without 
the meter connected and

2. The possible error in calibration and the sensitivity of the meter’s 
digital reading.

Voltage Measurements
Digital multimeters are usually designed so that very little current flows 
through them while they are being used. The technical jargon for this is 
“high input impedance” which means in practice that it acts like a very large 
resistor. Most digital multimeters can be assumed to have an input 
impedance of 1 MΩ or 10 MΩ. Thus if you measure the potential difference 
across a component with resistance comparable to the meter’s then the 
effect of the parallel resistance of the meter should be considered. For 
components whose resistances are much smaller, then one can ignore the 
meter’s effective resistance.

The meter reading is subject to uncertainty caused by two influences: 
(1) the calibration of the meter and 
(2) the digitization error of the numerical reading. 

Normally calibration error is expressed as a percentage of the value. The 
digitization error is usually expressed as a ± range on the last digit. For 
example the technical specifications of our Meterman 33XR multimeters 
state that for DC voltage measurements the error is

! ±(0.7% + 1 digit)
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One calculates the uncertainty as 0.7% of the reading plus one digit in 
rightmost digit of the reading. For example

2.47 V would have an error of 

! ±0.7% ⨉ 2.47 V = ! ±0.02 V  added to 
! ±0.01 V
resulting in a total error of ! ±0.03 V. 
(We do not add these two contributions in quadrature.)

Current Measurements
Current measurements need to have the meter inserted in series with the 
circuit elements. Digital multimeters are apt to have a significant resistance 
compared to the other circuit elements, and the amount of resistance 
depends on the scale setting. For higher currents such as around 1 A the 
resistance could be a few ohms, but for milliampere ranges internal 
resistances could be as high as a kΩ. (Sometimes this is specified as 
“voltage burden” because there’s an unwanted voltage across the meter 
while it’s being used.) The result is that the meter causes the current being 
measured to be smaller than it would be without the meter.

The error on current measurements depends on the scale. For most scales it 
is listed as ±(1%+1digit) for the 33XR Meterman DMM

!

Resistance Measurements
Resistance measurements combine both voltage and current measurement. 
A meter has to provide a voltage and measure the current for that voltage 
and then presents the ratio of voltage to current as the resistance value. 
Because the meter has to provide an exact voltage across the component 
being measured it’s important to ensure that no other sources of voltage are 
connected which would interfere with the measurement. Similarly, the 
current from the meter must flow only through the component being 
measured. Therefore, the component must be disconnected from any other 
circuit element while the resistance is being measured. If the component is 
being tested in circuit, at least one end must be disconnected while 
measuring its resistance. While you’re measuring the resistance of 
something you must make sure that it is not connected to anything else. 
Even having your fingers touching the leads can cause an erroneous 
measurement due to the body’s resistance in parallel.  

Because both voltage and current are involved in measuring resistance, it is 
normal that the uncertainty is somewhat more than that for voltage or 
current. Most scales have a listed error  of ±(1%+4 digits) for the 33XR 
Meterman DMM.!

AC/DC
Both current and voltage functions of a multimeter have alternating current 
and direct current scales. Most of our measurements should use the direct 
current setting. If you get reading of almost zero when you expect a larger 
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value, then check if the meter is set on AC instead of DC. The specified 
error on AC measurements is typically larger than for DC measurements.

Other Measurements
Many DMMs have the ability to make various other measurements 
depending on the model. Some can measure frequency, capacitance, 
temperature, inductance or transistor current amplification. These may be 
very useful in some situations, but the three basic measurements are 
essential and should be mastered first.

✍Activity 23-5: Using a Multimeter
(a) Set up the circuit shown in Figure 23-7 with the switch open. Figure out 
what settings you need to use to measure the actual resistance of the "10Ω" 
resistor.  Record your measured value with uncertainty below.

(b) Now close the switch and measure the actual resistance of the “10Ω” 
resistor again. Is your result different? (Do the two values agree within 
errors?) If so, what do you think is the cause of this difference? 

Ohm’s Law: Relating Current, Potential Difference and 
Resistance
You have already seen on several occasions that there is only a 
potential difference across a bulb when there is a current flowing 
through the bulb.  In this activity we are going to use a resistor and 
compare its characteristics to a light bulb. Resistors are designed to 
have the same resistance value no matter how much current is 
passing through. How does the potential difference across a resistor 
depend on the current through it?  In order to explore this, you will 
need the following:

! • 2 digital multimeters
! • 4 D-cell alkaline batteries with holders
! •1 resistor, 47 Ω 
! •1 light bulb, 6 V or larger 
! •1 SPST switch
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1 to 4 
cells

! resistor! light bulb
Use 1 to 4 batteries to vary the voltage, V applied to a resistor and to 
a light bulb. After measuring I and V, plot the I vs V graph for each. 
A graph of I vs. V  is called the “characteristic curve” and the 
resistance is the inverse of its slope. 

✍Activity 23-6  Experimental Relationship of I and V
a) Set up a circuit to test your prediction by placing the resistor in 

series with one, two, three and then four batteries. Repeat with 
the light bulb. Set up the multimeters as a voltmeter and ammeter 
to measure the voltage across the resistor and the current through 
it. Carefully describe your procedures and sketch your circuit 
diagram. Use the circuit symbols for a resistor and bulb shown in 
Figure 23-8. 

b) Record your data for I vs V in the table below. Record values 
and uncertainties.

Number 
of 

Batteries

ResistorResistor BulbBulbNumber 
of 

Batteries V (Volts) I (Amps) V (Volts) I (Amps)

1

2

3

4
c) Using a spreadsheet create a graph of I vs V for both resistor and 

bulb. Draw error bars for both quantities. If the slope is constant 
within error bars, draw the line of best slope. Submit your graphs 
to WebCT.
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Ohm's Law and Resistance
The relationship between potential difference and current which you 
have observed for a resistor is known as Ohm's law.  To put this law 
in its normal form, we must now define the quantity known as 
resistance. Resistance is defined by:

! ! ! R ! V/I

If potential difference (V ) is measured in volts and current (I) is 
measured in amperes, then the unit of resistance (R) is the ohm, 
which is usually represented by the Greek capital letter Ω, "omega." 

✍Activity 23-7:  Statement of Ohm's Law
a) State the mathematical relationship found in Activity 23-6 between 
potential difference and current for a resistor in terms of V, I, and R.

b) Based on your graph, what can you say about the value of R for a resistor 
— is it constant or does it change as the current through the resistor 
changes?  Explain.

c) From the slope of your graph, what is the experimentally determined 
value of the resistance of your resistor in ohms?  How does this agree with 
the rated value of the resistor?

     
         d) Complete the famous pre-exam rhyme used by countless introductory 

physics students throughout the English speaking world:

Twinkle, twinkle little star, V equals  ______  times  ______  

Note: Some circuit elements do not obey Ohm's law.  The definition for 
resistance is still the same, but, as with a light bulb, the resistance changes 
because of temperature changes resulting from the flow of current.  Circuit 
elements which follow Ohm's law over a wide range of conditions--like  
resistors--are said to be ohmic, while circuit elements which do not--like a 
light bulb--are nonohmic.
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SESSION TWO:   KIRCHHOFF'S LAWS AND MULTI-LOOP CIRCUITS
20 min

Resistance and Its Measurement
In the series of observations you have been making with batteries 
and bulbs it is clear that electrical energy is being transferred to light 
and heat energy inside a bulb, so that even though all the current 
returns to the battery after flowing through the bulb, the charges have 
lost potential energy. We say that when electrical potential energy is 
lost in part of a circuit, such as it is in the bulb, it is because that part 
of the circuit offers resistance to the flow of electric current. 

A battery causes charge to flow in a circuit. The electrical resistance 
to the flow of charge can be compared to the mechanical resistance 
offered by the pegs and the barrier in a mechanical model depicted 
by a ramp with balls travelling down it as described in Unit 22. 

A light bulb is one kind of electrical resistance. Another common 
kind is provided by a  resistor manufactured to provide a constant 
resistance in electrical circuits.

Resistors are the most standard sources of resistance used in 
electrical circuits for several reasons.  A light bulb has a resistance 
which increases with temperature and current and thus doesn't make 
a good circuit element when quantitative attributes are important.  
The resistance of  resistors doesn't vary with the amount of current 
passing through them.  Resistors are inexpensive to manufacture and 
can be produced with low or high resistances. 

A typical resistor contains a form of carbon, known as graphite, 
suspended in a hard glue binder.  It usually is surrounded by a plastic 
case with a colour code painted on it.  It is instructive to look at 
samples of resistors that have been cut down the middle as shown in 
the diagram below.

             

Figure 23-8: A cutaway view of a carbon resistor

As you found in the previous activity on Ohm’s Law, a simple 
equation can be used to define electrical resistance in terms of of 
potential difference, ΔV, across it and the current, I, through it. It is

" " " R ! #V/I

Workshop Physics II:  Unit 23 – Error Propagation and Direct Current Circuits Page 23-17
Authors: P. Laws, J. Luetzelschwab, D. Sokoloff, & R. Thornton, N. Alberding 

© 1990-93 Dept. of Physics and Astronomy, Dickinson College   Supported by FIPSE (U.S. Dept. of Ed.) 
and NSF. Modified at SFU by S. Johnson, N. Alberding 2013.



   A resistor is usually marked with coloured bands to 

  signify its resistance value in ohms.
Experiment EM2: DC Circuits and Measurements

EM2.11

Resistor Colour Code

1st & 2nd 
digit

{

multiplier
tolerance:
red = 2%
gold = 5%
silver = 10%
none = 20%

orange or yellow 
band indicates MIL 
spec reliability 
rating

digit colour              multiplier      # zeros
silver 0.01 –2
gold 0.1 –1

0 black 1 0
1 brown 10 1
2 red 100 2
3 orange 1k 3
4 yellow 10k 4
5 green 100k 5
6 blue 1M 6
7 violet 10M 7
8 grey
9 white

  For example, a resistor with bands of yellow-violet-red-silver has a value of: 

47×102 ± 10% Ω or 4.7 kΩ. 
Suppose you have finally graduated and taken a job as a quality   
control inspector for a company that makes resistors. Your task 
is to determine the rated resistance in ohms of a batch of five 
resistors and then check your decoding skills by measuring the 
resistance with a digital multimeter. For this activity you’ll 
need:

! ! • A digital multimeter
! ! • 5 assorted colour-coded resistors

✍Activity 23-8: Decoding and Measuring Resistors
a) Decode the five resistors and write their colour codes and “Coded R” 
values in the first two columns of the following table.
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Colour 
Sequence

Coded R
Ω

Measured R
Ω

Calculated 
Percent 

Difference

Percent 
Tolerance

Within rated 
tolerance?

Yes No

▢ ▢

▢ ▢

▢ ▢

▢ ▢

▢ ▢

b) Measure the resistance of each of your resistors with the multimeter. Fill 
in the values in the third column of the table above. (Include uncertainties.)

c) Calculate the percent difference between the coded R and the measured R  
for each resistor using the following formula:

percent di�erence =
|coded R �measured R|

coded R
⇥ 100%

{\rm percent~difference} = { |{{\rm coded~} R - {\rm measured~}R}| \over { {\rm coded~}R} }\times 100\%
Record this result for each resistor in the fourth column.

d) Record the percent tolerance of each resistor in the fifth column.

e) Are your resistor values correct within the rated tolerance values? Record 
your results in the last column and comment on whether this resistor 
manufacturer did a good job below.

 
Resistors in Parallel and Series

The resistance of a wire is directly proportional to length. The 
resistance also depends on the cross-sectional area of the wire. It is 
possible to control the R-value of a wire fairly precisely by varying 
these quantities. 

Several identical resistors can be wired in series to increase their 
effective length and in parallel to increase their effective cross-
sectional area as shown in the next diagram. 
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Figure 23-9: resistors wired in series and in parallel

In order to test your predictions and do some further 
exploration of equivalent resistances of different combinations 
of resistors you will need the following

! ! • 2 resistors, ~100 Ω
! ! • 2 resistors, ~220 Ω
! ! • 2 resistors, ~470 Ω
! ! • 1 digital multimeter
! ! • 6 connecting wires with alligator clips 

Using the items listed above, you will devise a way to measure 
the equivalent resistance when three or more resistors are 
wired in series.  

✍Activity 23-9: Resistances for Series Wiring
(a) If you have three different resistors, what do you think the equivalent 
resistance to the flow of electrical current will be if the resistors are wired in 
series?  Explain the reasons for your prediction based on your previous 
observations with batteries and bulbs. 

(b) Compare the calculated and measured values of equivalent resistance of 
the series network as follows:

Write down the measured values of each of the three resistors:

R1   = _________  Ω  ! !
R2   = _________  Ω"
R3   = _________  Ω

Describe the method you are using to predict the equivalent resistance and 
calculate the predicted R value:
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Predicted Req  =_________  Ω     

(c) Draw a diagram for the resistance network for the three different 
resistors wired in series. Mark the measured values of the three resistances 
on your diagram.

(d) Measure the actual resistance of the series resistor network and record 
the value: 
 

Measured Req = _________ Ω    

(e) How does this value compare with the one you calculated?

(f) On the basis of your experimental results, devise a general mathematical 
equation that describes the equivalent resistance when n resistors are wired 
in series.  Use the notation Req to represent the equivalent resistance and 
R1, R2, R3, . .  .Rn to represent the values of the individual resistors.
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Now you’re going to devise a way to measure the equivalent 
resistance when two or more resistors are wired in parallel,    Draw a 
symbolic diagram for each of the wiring configurations you use. 

✍Activity 23-10: Resistances for Parallel Wiring
(a) If you have two identical resistors what to you think the resistance to the 
flow of electrical current will be if the resistors are wired in parallel?  
Explain the reasons for your prediction. 

(b)  Pick out two resistors with an identical colour code and draw a diagram 
for these  two resistors wired in parallel.  Label the diagram with the 
measured values R1(measured) and R2 (measured). Predict the equivalent 
resistance of the parallel circuit and record your prediction below.  Measure 
the value of the equivalent resistance of the network.  Explain your 
reasoning and show your calculations in the space below.

Page 23-22 Workshop Physics II Activity Guide  SFU

© 1990-93 Dept. of Physics and Astronomy, Dickinson College   Supported by FIPSE (U.S. Dept. of Ed.) 
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.



Predicted  value: Req =_________ Ω

Measured value: Req = _________ Ω

(c) Pick out three different resistors and draw a diagram for these three 
resistors wired in parallel.  Label the diagram with the measured values R1 
(measured) , R2 (measured) and R3 (measured).  Measure the value of the 
equivalent resistance of the network and record it below.

Measured Value of the equivalent resistance of the network: 

Req  =_________ Ω  

(d) Use the notation Req to represent the equivalent resistance and R1, R2, 
R3, …, etc. to represent the values of the individual resistors.  Show that, 
within the limits of experimental uncertainty, the results of the 
measurements you made with parallel resistors  are the same as those 
calculated using  the equation:

! !   

1
Req
=

1
R1
+

1
R2
+

1
R3
+ . . .

{1 \over R_{eq} } = { 1 \over R_1} + { 1 \over R_2}+{ 1 \over R_3} +\dots
1. For the two identical resistors wired in parallel: 

 Calculated Value: Req = _________ Ω                         

 Measured Value:  Req  = _________ Ω                            

2.   For the three resistors wired in parallel:
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 Calculated Value:  Req = _________ Ω                           

 Measured Value:  Req  = _________ Ω  
                           

(e) Show mathematically that if  

           

1
Req
=

1
R1
+

1
R2

then Req =
R1R2

R1 + R2
     {1 \over R_{eq} } = { 1 \over R_1} + { 1 \over R_2} {\rm ~then~} R_{eq} = {{R_1R_2}\over {R_1+R_2} }      

25 min
Equivalent Resistances for Networks
Now that you know the basic equations to calculate equivalent 
resistance for series and parallel resistances, you can tackle the 
question of how to find the equivalent resistances for complex 
networks of resistors.  The trick is to be able to calculate the 
equivalent resistance of each segment of the complex network 
and use that in the calculation of the next segment.  For 
example, in the network shown below there are two resistance 
values R1 and  R2.  A series of simplifications is shown in the 
diagram below.

Page 23-24 Workshop Physics II Activity Guide  SFU

© 1990-93 Dept. of Physics and Astronomy, Dickinson College   Supported by FIPSE (U.S. Dept. of Ed.) 
and NSF. Modified at SFU by S. Johnson, N. Alberding, 2013.



Figure 23-11: A sample resistor network

In order to complete the equivalent resistance activities you will need 
the following apparatus:

 • 3 resistors, ~100 Ω
 • 3 resistors, ~220 Ω
 • 1 digital multimeter

✍Activity 23-11: The Equivalent Resistance for a Network
(a)  In the following activity, use the 100 Ω resistor for R1 and the 220 Ω 
resistor for R2. Calculate the equivalent resistance between points A and B 
for the network shown below. You must show your calculations on a step-
by-step basis.
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(b) Set up the network of resistors and check your calculation by measuring 
the equivalent resistance directly.  (Hint: Build the circuit in stages and 
check the equivalent resistance for each stage.)

 Calculated Value:  Req = _________ Ω                        

 Measured Value:  Req  = _________ Ω 

50 min
Theoretical Application of Kirchhoff's Laws 
Suppose we wish to calculate the currents in various branches of a 
circuit that has many components wired together in a complex array.  
In such circuits, simplification using series and parallel combinations 
is often impossible.  Instead we can apply a formal set of rules 
known as Kirchhoff's laws to use in the analysis of current flow in 
circuits. These rules can be summarized as follows:

Kirchhoff’s Laws

1. Junction (or node ) Rule (based on charge conservation): The 
sum of all the currents entering any node or branch point of a circuit 
(i.e. where two or more wires merge) must equal the sum of all 
currents leaving the node.

2. Loop Rule (based on energy conservation): Around any closed 
loop in a circuit, the sum of all emfs (voltage gains provided by 
batteries or other power sources) and all the potential drops across 
resistors and other circuit elements must equal zero.

Steps for Applying Rules

1. Assign a current symbol to each branch of the circuit and label the current 
in each branch I1, I2, I3, etc.; then arbitrarily assign a direction to each 
current.  (The direction chosen for the circuit for each branch  doesn't 
matter.  If you chose the "wrong" direction the value of the current will 
simply turn out to be negative.)  Remember that the current flowing out of a 
battery is always the same as the current flowing into a battery. 

2. Apply the loop rule to each of the loops by: (a) letting the potential drop 
across each resistor be the negative of the product of the resistance and the 
net current through that resistor (reverse the sign to “plus” if you are 
traversing a resistor in a direction opposite that of the current); (b) assigning 
a positive potential difference when the loop traverses from the – to the + 
terminal of a  battery.  (If you are going through a battery in the opposite 
direction assign a negative potential difference to the trip across the battery 
terminals.)
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3. Find each of the junctions and apply the junction rule to it. You can place 
currents leaving the junction on one side of the equation and currents 
coming into the junction on the other side of the equation.

In order to illustrate the application of the rules, let's consider the 
circuit in Figure 23-12 below. 

Figure 23-12: A complex circuit in which loops 1 and 2 share the resistor 
R2. The currents I1 and I3 flow through R2 in opposite directions and the net 
current through R2 is denoted by I2.

In Figure 23-12 the directions for the currents through the branches 
and for I2 are assigned arbitrarily.  If we assume that the internal 
resistances of the batteries are negligible, then by applying the loop 
and junction rules we find that 

Loop 1 Eq.:! ε1 – I2 R2 – I1 R1  = 0!! [Eq. 23-1]

Loop 2 Eq.:! – ε2 + I2 R2 – I3 R3 = 0! [Eq. 23-2]

Node 1 Eq.:! I1  =  I2  +  I3 ! ! ! [Eq. 23-3]

It is not obvious that the loops and their directions can be chosen 
arbitrarily.  Let's explore this assertion theoretically for a simple 
situation and then more concretely with some specific calculations.  
In order to do the following activity you'll need  a couple of resistors 
and a multimeter as follows:

! • two resistors (rated values of ~22 Ω and ~47 Ω)
! • A digital multimeter
! • 3 D-cell batteries in holder
! • 1 D-cell battery in holder
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✍Activity  23-14: Applying the Loop Rule Several Times
(a) Use the loop and node rule along with the new arbitrary direction for I2 
to rewrite the three equations relating values of battery emfs, resistance, and 
current in the circuit shown in Figure 23-13 below.

Figure 23-13: A similar complex circuit

(b) Show that if  I2$= –I2 then the three equations you just  constructed can 
be rearranged algebraically so they are exactly the same as Equations 23-1, 
23-2 and 23-3.

(c) Suppose the values of each component for the circuit shown in Figure 
23-13 shown above are rated as

ε1 = 4.5 V
ε2 = 1.5 V

Rated Fixed Resistances:! R1 = 47 Ω   
! R3 = 22 Ω 

Variable Resistance:         ! R2 = 100 Ω 
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1. Since you are going to test your theoretical results for Kirchhoff's law 
calculations for this circuit experimentally, you should measure the actual 
values of the two fixed resistors (rated at 47 Ω and 22 Ω) and the two battery 
voltages with a multimeter.  List the results below.

Measured value of the battery emf rated at 4.5 V ! ε1 = ________

Measured value of the battery emf rated at 1.5 V! ε2 = ________

Measured value of the resistor rated at 47 Ω:! R1 = ________

Measured value of the resistor rated at 22 Ω:! R3 = ________

2. Carefully rewrite Equations 23-1, 23-2 and 23-3 with the appropriate 
measured (not rated) values for emf and resistances substituted into them.  
Use 100 Ω for the value of R2 in your calculation.  You will be setting a 
variable resistor to that value soon.

(d) Solve these three equations for the three unknowns I1, I2 and I3 in amps 
using one of the following methods: (1) substitution or (2) determinants.
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(e) Show by substitution that your solutions actually satisfy the equations.
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50 min
Verifying Kirchhoff's Laws Experimentally  
Since circuit elements have become smaller in the past 30 years or 
so, it is common to design and wire simple circuits on a device called 
a breadboard.  A breadboard has hundreds of little plastic holes in it 
that can have small diameter (22AWG) wire poked into them.  In the 
breadboard model shown in Figure 23-14 below, these holes are 
electrically connected in vertical columns of 5 near the middle.  The 
top of the breadboard has two horizontal rows of connected holes. 
There is a similar arrangement at the bottom.

Horizontal rows of holes 
are all connected left-to-
right. (left and right 
halves may be separate 
on some versons.)

Each vertical column of 
5 holes is connected 
up-and-down.

Terminals for voltage inputs

  Figure 23-14: A “Proto-Board” breadboard. Top View and Bottom View. The bottom view reveals the 
connections among the holes.

Usually, one connects the voltage inputs to the long rows of 
connected dots toward the outside of the circuit; these rows can then 
serve as power supplies.  As part of the next project with the 
breadboard you will be using some simple circuit elements to design 
a tricky circuit with more than one battery and several branches in it!  
To design this circuit you will be using the following items:
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! ! • 1 pot (200 Ω DIP style set at 100 Ω)
! ! • 2 resistors (rated at 22 Ω and 47 Ω )
! ! • 4 D-cell alkaline batteries in two holders (1,3)
! ! • A “Proto-Board” breadboard 
! ! • A digital multimeter
! ! • A small screw driver 
! ! • Assortment of small lengths of #22 wire

The word "pot" stands for potentiometer. It is a variable resistor. 
There is a 200 Ω pot already installed on your breadboard. The pot 
has three leads. The two outside leads are across the 200 Ω resistor 
while the centre lead taps off part of the 200 Ω .  The resistance 
between an outside lead and the centre tap can be adjusted from 0 to 
200 Ω  with a screwdriver; the resistance between the two outside 
leads is always 200Ω.  The circuit symbol for the pot is shown 
below.

                                                                
! ! Figure 23-15: A breadboard pot

To wire up the circuit shown in Figure 23-12 on the breadboard, you 
will need to examine the details of how the breadboard is arranged, 
as shown in Figure 23-14.  

✍Activity  23-15: Testing the Loop Rule with a Real 
Circuit
(a) Use the ohmmeter feature of the digital multimeter to measure the total 
resistance across a pot that is labelled 200 Ω. Then measure the resistance 
between the centre tap on the pot and one of the other taps.  What happens 
to the ohmmeter reading as you use a small screwdriver to change the 
setting on the pot?

(b) Set the pot so that there is 100 Ω between the centre tap and one of the 
other taps.  

(b) Wire up the circuit  pictured in Figure 23-12 above; use a breadboard 
and the pot (set at 100 Ω) as R2.  Measure the current in each branch of the 
circuit and compare the measured and calculated values of the current by 
computing the % difference in each case. 
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Note: The most accurate way to measure current with a digital multimeter is 
to measure the potential difference across each of the resistors and use 
Ohm's law to calculate I from ∆V and R.

Measured R Measured 
ΔV  

Measured  I= ΔV/R Theoretical i %Diff

1

2

3

(c) What do you predict will happen to each of the currents as the resistance 
on the pot is decreased?  That is, will the currents I1, I2, and I3 increase or 
decrease?  Explain your predictions.

(d)  What actually happens to each of the currents as you decrease R2? How 
good were your predictions?
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Appendix: Propagation of Uncertainties, General Rules
The uncertainty of calculated quantities depends directly on the uncertainties of the variables used in the 
calculation. For brevity we simply state the rules for commonly encountered situations here. Later some of 
these rules will be justified but a complete understanding needs statistical methods which are too advanced 
for this course.
! In the following let A, B, C, ... stand for independent quantities going into a calculation with 
uncertainties ΔA, ΔB, ΔC, .... Let Y = f (A,B,C, ...) be the calculated quantity of interest.

1.! Rule 1: A constant multiple
If 
! ! Y= k A 
where k is a constant, then
! ! ΔY = k ΔA

2.  Rule 2: Addition and Subtraction
If 
! ! Y = A ± B ± C
then
! ! ΔY =.

€ 

(ΔA)2 + (ΔB)2 + (ΔC)2

The generalization to four or more addends should be obvious. The reason for taking the root-squared sum 
instead of just adding the uncertainties is that we are not certain whether the errors will cancel or add. If 
there are many terms in the sum, there will typically be some cancellation and the combined error will not 
likely be as large as the error given by the sum |ΔA |+ |ΔB| + |ΔC| + ... .

3. Rule 3: Multiplication and Division
If
! ! Y = ABC, Y = ABC–1, Y = AB–1 C–1, or Y = A–1 B–1 C–1
then

€ 

ΔY
Y

=
ΔA
A

# 

$ 
% 

& 

' 
( 
2

+
ΔB
B

# 

$ 
% 

& 

' 
( 
2

+
ΔC
C

# 

$ 
% 

& 

' 
( 
2

For multiplication and division we add the fractional (or percentage) errors.

4. Rule 4: Powers
If
! Y = Aα, where α is arbitrary: integer, fraction, positive or negative
then 

€ 

ΔY
Y

= |α| 

€ 

ΔA
A

5. Examples
! (1)  Y = AB2
! Let C = B2 so that Y = AC.

Then according to rule 3!  

€ 

ΔY
Y

=
ΔA
A

# 

$ 
% 

& 

' 
( 
2

+
ΔC
C

# 

$ 
% 

& 

' 
( 
2

According to rule 4 !

€ 

ΔC
C

= 2 ΔB
B

Therefore ! !

€ 

ΔY
Y

=
ΔA
A

# 

$ 
% 

& 

' 
( 
2

+ 4 ΔB
B

# 

$ 
% 

& 

' 
( 
2

.
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Example (2) Y = 

€ 

1
A

+
1
B

Let C = A–1 and D = B–1.

According to rule 4 

€ 

ΔA
A

=
ΔC
C

 and 

€ 

ΔB
B

=
ΔD
D

However C = A–1 and D = B–1 so these latter two expressions can be written as

! !

€ 

ΔC =
ΔA
A2

 and 

€ 

ΔD =
ΔB
B2

.
Hence
!

€ 

ΔY =
ΔA
A2

# 

$ 
% 

& 

' 
( 
2

+ 4 ΔB
B2

# 

$ 
% 

& 

' 
( 
2

.
6. The General Case
The four rules and the rule for the general case can be derived with the help of calculus. In this discussion 
we will assume a function of the form
! ! Y = f (A,B) ! (1)

Generalization to functions of more variables is easy.

! Calculus tells us that if we change A by a small amount dA and B by dB then the change in Y  is give 
by

! !

€ 

dY =
∂f
∂A
# 

$ 
% 

& 

' 
( 
B
dA +

∂f
∂B
# 

$ 
% 

& 

' 
( 
A
dB
!

(2)

 (That is the definition of partial derivative.) For convenience these subscripts are omitted from now on.
! This equation tells us how fast the function Y changes when we change inputs A and B by some small 
amounts dA and dB. The subscript A or B on the partial derivatives has the conventional meaning that the 
quantity A or B is to be held fixed while taking the derivative. We can identify these small changes with 
small errors in our measurements, ±ΔA and ±ΔB. These errors can have either algebraic sign and so can the 
derivatives (∂f/∂A) and (∂f/∂B). In the worst case both terms in (2)  are positive or both negative in which 
case you have

! !
    

€ 

ΔYworstcase =
∂f
∂A

$ 

% 
& 

' 

( 
) ΔA +

∂f
∂B

$ 

% 
& 

' 

( 
) ΔB  ! (3)

On the other hand it could turn out that you are lucky and the two terms in equation (2) tend to cancel. Then 
you would have

! !

    

€ 

ΔYbestcase =
∂f
∂A

$ 

% 
& 

' 

( 
) ΔA −

∂f
∂B

$ 

% 
& 

' 

( 
) ΔB ! (4)

! In practice there is no way of knowing if the errors are going to cancel or add in the final answer. 
Probability theory says that in this case, if the errors are independent and have a normal distribution then 
we should add the individual errors “in quadrature,” i.e., form the root-squared sum as follows
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! !

€ 

ΔY =
∂f
∂A
$ 

% 
& 

' 

( 
) ΔA

$ 

% 
& 

' 

( 
) 

2

+
∂f
∂B
$ 

% 
& 

' 

( 
) ΔB

$ 

% 
& 

' 

( 
) 

2

! (5)

Note that ΔY  has the property

! ! ΔYworst case ≥ ΔY ≥ ΔYbest case.

 

You can visualize this way of adding errors by means of a right triangle.

! The generalization of equation (5) to an arbitrary number of variables Y = f(A,B,C...) is

!

€ 

ΔY =
∂f
∂A
$ 

% 
& 

' 

( 
) ΔA

$ 

% 
& 

' 

( 
) 

2

+
∂f
∂B
$ 

% 
& 
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( 
) ΔB

$ 

% 
& 

' 

( 
) 

2

+
∂f
∂C
$ 

% 
& 

' 

( 
) ΔC

$ 

% 
& 

' 

( 
) 

2

+ ...! (6)

With a little effort you should be able to convince yourself that rules 1 through 4 are but special cases of 
equation (5). Equation (5) can also be used where the rules do not work.
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