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I he pendulum has long been a favorite
instrument for measuring Earth’s grav-

itational field, i.e., g=9.8 N/kg, or the free-
fall acceleration, g=~9.8 m/s2. However, it is
not a trivial matter to measure g to better than
about 1% with a simple pendulum—one in
which a concentrated mass swings at the end
of a flexible cord. The biggest challenge in
this case is the accurate determination of the
distance from the support to the “center” of
the pendulum.! To obtain accuracies in the
vicinity of 1 part in 10%

Germany (latitude 52°N — 981,274) in the
early part of this century.

With the information provided in this arti-
cle, students should be able to easily measure
the gravitational field strength to a few parts
in 10,000, a degree of precision one to two
orders of magnitude better than can be
achieved with the usual simple pendulum
under comparable conditions. The instrument
involved is a “simple,” slightly adjustable
Kater pendulum.

has typically required a
long pendulum. This has
disadvantages. As the
length of a pendulum
increases, it is increasing-
ly susceptible to noises,
both from surrounding air
and also from the support,
which is never completely

inert.2 37.40 |+
Moreover, measure-

ment with a naive pendu-

lum will not show varia- lo

tions in g from one place
to another. For example,
the altitude must increase
from sea level to 3000 m
(~10,000 ft) for g to
decrease by 1 part in a
thousand. Similarly, the
extreme sea-level global
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The Kater Pendulum

Many of the difficulties
of the simple pendulum
are removed by working
with the reversible pendu-
lum first considered by
Captain Henry Kater in
1815. Being “reversible,”
the Kater pendulum oscil-
lates about either of two
axes. In conventional
form, there is either an
adjustable knife edge or a
moving mass that is posi-
tioned, ideally, so that the

0.6340 period of the pendulum is
Thickness the same about the two
0.320 pivots. When the periods

are matched so that 7'\= T,
=T, it is easy to show that
T =27 V{/g where {is

variation with latitude
and/or longitude is only
about 5 parts per thou-
sand. Because gravity differences over Earth’s
surface are very small, geophysicists have
used the milligal (10 m/s2) to state differ-
ences. In these units, going from the equator
(where the mean value of g = 978,049) to the
poles, g increases by 5172.3 The reference for
these gravimeter-based (relative) values is the
absolute g experiment that was performed
with six Kater pendulums in Potsdam,

Fig. 1. Design of student-friendly brass pendu-
lum; measurements are in centimeters.

the spacing between the
two axes.* Thus the sys-
tem is equivalent to a sim-
ple pendulum of length €. Since ¢ can be
measured with relative ease to a few parts in
10%, the Kater pendulum is an attractive
means to accurately measure g.

For those not familiar with the Kater pen-
dulum, a pedagogical example using a meter-
stick is provided in the Appendix. The theo-
retical estimated period obtained there (7 =
1.6 s) easily can be compared with a crude
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experiment. Simply hold the meterstick between the fin-
gernails of thumb and middle finger and measure period
with a stopwatch. First, hold the meterstick at the zero
end, then reverse the stick and hold it at the 67-cm mark.
Of course the large damping demonstrates that this “sys-
tem” is not practical for a precise measurement of g. The
same proves true when we try to provide axes of rotation
by using sharpened pins that barely press into the stick.
Using small circular rods inserted through the stick to
serve as axes will also be found unsatisfactory.

Present Instrument

The conventional Kater pendulum can be difficult to
use, however, partly because the range of period adjusta-
bility is usually quite large. As we searched for a user-
friendly design suitable for student labs, we turned to the
computer. As a result, the basic unit for our pendulum is
a piece of brass (37.4 cm long, 0.320 cm thick, and 1.30
cm wide). The overall length of 37.4 cm was chosen so
that the period would be nominally 1 s for rotation about
both axis 1 (an end) and axis 2 (a point ~ 0.67 x 37.4 cm
away from axis 1). For a uniform rectangular physical
pendulum of length L, having small width and thickness

compared with L, T =27 /i—L (see Appendix).
8

Placement of the axes (holes) in a Kater pendulum
requires a more complicated geometry than an “ideal-
ized” case. So, with the aid of the computer, using the
parallel-axis theorem and recognizing the hole as hav-
ing negative mass, we drilled two quarter-inch holes
with their centers positioned 18.18 and 5.995 cm from
the midpoint of the brass strip, as shown in Fig. 1.

The Knife Edge

A knife edge is required to hold the pendulum. A
square cross section (0.25 x 0.25 in, ~ 1 in long) of car-
bon steel of the type used for cutting tools in a lathe was
ground to an ‘“edge,” with the interior angle between
planes roughly 30°. We clamped the unground end of the
piece between the jaws of vice-grip pliers, which in turn
were clamped to a conventional laboratory stand. For our
brass pendulum, the log-decrement of the motion was
small enough that its motion could still be visually per-
ceived 30 min after initiation of motion. Note that the
knife edge must have a rigid support; a flimsy one will
both lengthen the period and increase the log-decrement.

Period Adjustment

Typically, there are two ways to accomplish period
adjustment—by moving the position of one of the pivots,
or by changing the moment of inertia by altering the mass
configuration. For a student-friendly apparatus, we chose
the latter method.

To change the period around the nominal 1-s value, we
used two ordinary metal spring clips of the type used to

Period (s)

T2 = 6E-05X” - 0.0029x + 1.0247
R? = 0.993

T1 = 2E-05x° - 0.001x + 1.0084.
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Fig. 2. Variation of period with binder-clip position.
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Fig. 3. Enlargement of Fig. 2 in region of period matching.

bind documents that are too thick for a paper clip. Each
binder clip has a mass of 1.2 g, small compared with the
pendulum mass of 129.3 g. By using a pair of clips, rather
than just one, and positioning them on opposite sides of
the pendulum, the center of mass of the system remains on
the line of symmetry of the pendulum.

Operationally, students move the clips in increments of
1 cm, starting near one end of the pendulum and advanc-
ing toward the other end, measuring the period about each
of the two axes for a given position of the clips.

Timing

Period measurements were made using a standard pho-
togate with the Precision Timer (Vernier software) system
sold by PASCO, for their CI-6510 Signal Interface. The
beam of the photogate was positioned vertically at the

midpoint of whichever hole was not being used as an axis.
The horizontal position was selected such that the beam
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was interrupted by the small segment of brass between
one side of the pendulum and the near edge of the hole.
For this placement of the photogate, the period measured
will be other than = 1 s if the amplitude is unacceptably
large or small. Thus this arrangement proved useful in de-
termining the onset of non-isochronism (amplitude large
enough to increase the period through nonlinearity). A 30-
min comparison of the timer system against WWV>
showed that the times displayed by the timer were uni-
formly slightly long, so all data were corrected for this
systematic error by dividing by 1.00038.

Results

Data collected with the pendulum are shown in Figs. 2
and 3. Fitted to the data, which were plotted with Excel,
are quadratic fits for which the R? values are close to
Unity. For Fig. 3, we used a linear least-squares fit; the
matched condition is one for which 7 = 0.9999 s. The
abscissa in both graphs corresponds to the clamping place-
ment of the binder clips, with zero being near the end of
the pendulum opposite axis 1. Position 36 (unused) corre-
sponds to the clips being centered on axis 1 (top edge of
the top hole).

Using the matched period value of 0.9999 s and the
value of € = 0.2481 m, the acceleration of gravity in
Macon, Georgia, was measured to be g = 472/T? =
9.797 m/s?.

Predicting the Uncertainty in g

Assuming random errors in the measurement of € and

T, the relative uncertainty in the acceleration of gravity is
given by 8g/g = [(8€/€)% + 2(8T/T)%]"2. For our case, it
was assumed that the machinist produced the pendulum
(on a milling machine) with all dimensions to the nearest
0.001 in. Thus the relative uncertainty in € is 6¢/€ = 1 x
10+, The random uncertainty in the period measurement
(independent of the systematic error mentioned earlier,
which was corrected) was determined by taking 100 mea-
surements at a few points and calculating the standard
deviation, which yielded 67/T =2 x 104, With these num-
bers, the uncertainty in g is determined to be 0.003 m/s2.

Leeways

We also constructed and evaluated a low-mass wooden
(oak) pendulum, expecting that it would be a less precise
instrument. It was fabricated “crudely” by cutting to the
requisite rectangular shape on a table saw. The width
turned out to be 1.25 cm, the thickness 0.42 cm, and the
length 37.4 cm. The holes for the knife edge support were
drilled with an ordinary Y-in bit. Compared with the
binder-clip mass total of 2.4 g, the mass of this pendulum
was quite small at 13.2 g (an order of magnitude less than
the 129-g brass pendulum). As expected, the timing errors
proved larger, at approximately 3 ms—about an order of
magnitude greater than those of the brass pendulum at 0.2
ms. Additionally, the length was not measured as precise-
ly—the uncertainty being estimated at 0.2 mm. The varia-
tion of period about the two axes proved similar in trend
to that of the brass pendulum, except that the range of
variation was much greater, as expected. About axis 1, as

Appendix — Meterstick “Kater” Pendulum

Consider a uniform stick of length L = 1m, oscillating first about an axis at its upper end A
A, as shown in the figure. Our problem is to find a second axis, whose distance x from the —
center toward the opposite end B, yields the same period as the first axis. Note that oscil- 1
lation about this second axis requires that the meterstick be turned upside down.

We now calculate the periods of the pair, starting with the first axis. The moment of iner-

<4 1st axis

tia of the uniform stick, with respect to its center, is I, = M L%12 (assuming that both the * 6

width and the thickness are much smaller than the length of the stick). For rotation about

I,
the first axis at L/2 from the center, the parallel-axis theorem yields /| = M(E)Z +1, L[|+
= M L%/3. Thus, the period about the first axis is given by

~ 2 [tn 2/(tmet) =20 [E =20 [Z w0m [Z - <+— 2nd
T1—27T\/3ML/<2MgL>—27T\/3g—277\/3g 2w [2=16s.

Now turn the meterstick upside down from the first position and allow it to swing about an
arbitrary second axis at distance x from the center toward B. Here the moment of inertia is y

i

axis

2
given by I, = M x% + I, and the period is T, =2 \/x—';g“—lz Setting T, = T yields B

the quadratic equation x2 2 !

3 12

— =x + — = 0, which has roots x = 1/2 (non-interesting) and x = 1/6, which is the

Kater pendulum case. In particular, note that the distance between the two axes is € = (1/2 + 1/6)L = 2L/3.

Thus, the meterstick Kater pendulum is described by T=T, =T, =27 \/% ~ 2T /% ~ 1.6s.
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the clips were moved from O to 34 cm, the period var-
ied through a total range of 87 ms, compared with 9 ms
for the brass; likewise, about axis 2, the total range was
0.42 s, compared with 36 ms for the brass. With this
wooden pendulum, the periods were found to match
(from a linear least-squares fit) for the clips at 11.4 cm,
yielding 7= 1.003 s, and an estimate for the accelera-
tion of gravity, g = (9.77 = 0.05) m/s2. It was thus
demonstrated that a crude, low-mass wooden Kater
pendulum can do as well as a decent simple pendulum,
although it is not recommended that such a pendulum
be built.

Based on these results, we expect that a reasonably
good pendulum might be made of soft aluminum, cut
with shears. It is recommended, however, that a metal
of higher density be used, and at the very least cut with
a bandsaw and then filed to shape. Preferably, these
operations should be performed on a milling machine.
Not only will this yield an instrument whose dimen-
sions are closer to the nominal values indicated in Fig.
1, but a separate measurement of the distance between
the holes is then also unnecessary, assuming that the
translating stages of the machine are properly calibrat-
ed.
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