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N the study of oscillating systems many ex-
amples are found in which the interaction
between the driving and the driven systems can-
not be neglected. This is true whether driver and
driven are two distinct systems or the driver is
simply one mode of oscillation of a single system
that is capable of vibrating in several different
ways. Much insight into the fundamental phys-
ics of such systems can be secured through a
quantitative experiment performed with very
simple equipment.

Satisfactory apparatus consists of two small
lead spheres attached to fish line strings so as to
be supported as simple pendulums from a hori-
zontal fish line, as shown in Fig. 1. It is con-
venient to pass one end of this string over a
pulley so that the force in the string mayv be
varied. It is easy to vary the length of one of the
pendulums and also to alter their distance of
separation on the horizontal string. This equip-
ment is thus sufficiently flexible to allow the
investigation of several aspects of the motion of
coupled oscillators. It has been found that the
coupling results from lateral motion of the sup-
porting member. This is true even if a stiff wire
is used for support and the pendulum strings or
wires are rigidly attached to it. Such a situation
is depicted in the “‘top view" of Fig. 1. The ex-
periments discussed herein have been performed
with a symmetrical system {(a=b5), and the
angular amplitude of motion has been kept con-
stant and small.

Theory of Coupled Oscillators

The theory of coupled oscillators is ably pre-
sented in several books. A very satisfactory
treatment is given by Morse,! and the present
outline is based on it.

The differential equations of motion of the two
oscillators are, assuming equal masses,

mdix,/df? = — Kyx1+ K s%s, )
mdixs/df? = — Kovo+ Kgx1,

where K; is the coupling coefficient, or force in
dynes on oscillator 1 per unit displacement of
oscillator 2 and vice versa.

Constants »;,, »: and u are introduced as

YP. M. Morse, Vibration and sound (McGraw-Hill,
1936), pp. 30-45.

follows:
Ki=47%>m,
Ky=4n%2m,
Ki;=47u2m;

v; and »; are the free, uncoupled frequencies of
vibration of oscillators I and 2, respectively, and
u is a new coupling coefficient. The solutions of
the differential equations of motion are of the
form x;=1:(¢) and x.=15(f). These will in general
be nonsinoidal and not even periodic. If it is
demanded that the solution be simple harmonic,
one finds that this condition can be satisfied
provided the system is set in motion under
proper conditions. For a pair of such coupled
oscillators there are two ways in which the
system will oscillate simple harmonically, and the
frequencies v, and v_ are, respectively, higher
than and lower than either »; or »2; v, and v_ are
the two roots of the equation

v={3(r2+v) £ (2 —vA)+4u' ]} (2)

These two modes of oscillation are called the
normal modes. Their importance is due to the fact
that the general motion can always be repre-
sented as a combination of the normal modes.
When expressed in this way, the solutions of the
equations of motion are

A cosa
= cos (2mv t—dL),

e

m
A_sin a

+———cos 2rv_t—3F_),
n

N

(3)
A, sin a
KXo == —— C0s 2rv t—o,),
Al
A_cosa
~————cos (2mv_t—3_).
A

The four constants A, 4_, ®, and ®_ are arbi-
trary, and their values are fixed by specifying
initial displacements and velocities of the two
masses; « is defined by the relations

yi2—p? u? —ut
tan a= = = =—

4)
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TOP VIEW

F1G. L. Diagram of apparatus.

Two subdivisions can be introduced: (i) the
case of resonance (v;=w,), and (ii) the case of
distuning (v;%vs).

Resonance

The experiments dealing with resonance will
be considered first. Equation (2) becomes

V= (Vlzzl:/“"Q)%y
and, because u is much smaller than »; for the
coupling encountered in this experiment, we can
write,
vy =vi+{(u?/2v1),
vo=v1—(u*/2v1),
vy—v_=p? v

()

For the case we are considering, the two simple
pendulums will oscillate with frequency »y if
their initial displacements are equal in magnitude
but opposite in direction. To produce the other
normal mode of frequency, »_, the initial dis-
placements should be equal in magnitude and in
the same direction. If these frequencies are
measured experimentally as a function of force in
the supporting string for constant distance of
separation, or vice versa, u?, and thus K3, can be
obtained as a function of these variables. A more
accurate method of obtaining K; will be given
presently, and this experiment may be performed
primarily to direct attention to the fact that the
two frequencies of the normal modes are always
higher or lower than either of the natural fre-
quencies of the pendulums and to give an indi-
cation as to the order of magnitude of K.
When a driver forces an oscillator at its natural
frequency, theory predicts that displacement
should lag behind the force by =/2 rad. This
prediction can easily be verified by starting the
pendulums in motion with the initial displace-
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ments x;=x, and x2=0 and the initial velocities
equal to zero. For the first few seconds pendulum
1is the driver, and the displacement of pendulum
2 is seen to lag by the expected 7/2 rad.
Further study of the system put into motion
under these initial conditions is very fruitful. The
motion is not simple harmonic under these con-
ditions but is a combination of the two normal
modes and, as such, the displacements are given
by Eqgs. (3). These equations can be greatly
simplified by applying the initial conditions and
the resonance condition in addition to assuming
small coupling. The resulting equations are

x1=3x0(cos 27w i-cos 2av_t),
%2 = $x9(COs 27v_f—cos 27y, ).

(6)

On substituting the equivalents of »; and »_ in
terms of the resonance frequency »;, then ex-
panding and simplifying, we have, finally,

xy=2x, cos {wu%/v1) cos 2rvi,
Xe=2x0 sin (wu?/v:) sin 27w

()

It is thus seen that each oscillator has a vibration
frequency »; with an amplitude oscillation of
frequency f, of magnitude u?/2v,, secured by
equating 2xft and wu®/v;. The period of energy
exchange, P, is the reciprocal of f and, as this is
the quantity measured, we have u?>=2y,/P. This
leads directly to the coupling coefficient K.
Effect of tensile force on coupling—To study the
effect of tensile force on coupling it is convenient
to use two pendulums of equal length, placed
symmetrically on the supporting string (¢=5% in
Fig. 1, and »;=w,). Small lead spheres of mass
about 100 gm serve as pendulum bobs. As long as
the force applied to the end of the string passing
over the pulley is quite large compared to the
weight of the bobs, the angle 8 between the string
and a horizontal line at the fixed points (pulley
and wall) will be quite small. Consideration of the
three forces acting at the point of attachment of
either pendulum to the supporting string leads
directly to the conclusion that the product of
tan # and the force T in the portion of the string
between the pendulums is constant; or, if 8 is
small, 79 is constant. Now, the true length of the
pendulums is /+-a sin 8, or approximately [4-a8.
The lateral displacement of the point of attach-
ment of pendulum to supporting string for either
of the pendulums will thus be directly propor-
tional to 8, and the coupling coefficient will there-
fore be proportional to 8. Combining this result
with the foregoing relation for T and 8, we have
TK;3;={_’, a constant. It should be observed that,
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when 6 is small, T is approximately equal to the
force applied to the end of the string passing over
the pulley.

Experimentally, the period of energy exchange,
P, is determined as a function of the tensile force
in the supporting member, Using a number of
different tensile forces and securing K; for each
from the observed periods of energy exchange by
means of the formula K;=8x%m /P, one finds
the dependence of K3 on tensile force (Fig. 2).
The data displayed in Fig. 2 were secured by a
student. It is to be noted that this curve is in
close agreement with the theoretically predicted
relationship, TK;=C".

Effect of natural period on coupling—Since
p>=2v;/P and »=(1/27)(g/l)}, we have p?
=(1/7P)(g/I). Also, u2=ks/4x*m, which leads to
k3= (dmm/P)(g/1)% If the pendulums are kept in
resonance and a series of observations is made on
period of energy exchange as a function of the
common lengths of the two pendulums, it is
possible to verify the fact that the product of K,
and PI* is a constant. A typical set of data
secured by a student is displayed in Fig. 3.

Effect of separation of the two pendulums on the
coupling.—The closeness of coupling of the two
resonant pendulums depends on their distance of
separation. The manner of variation may be
investigated by keeping the force in the sup-
porting string constant, choosing a convenient
length for the pendulums and measuring the
period of energy exchange as a function of
separation. The coupling coefficient K3 is calcu-
lated from the period of energy exchange as in
the previous experiments.

As the percentage separation 100d/(2¢4-d) is
increased, there is a reduction in the amount of
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F16G. 2. Reciprocal of coupling coefficient K
versus tensile force.
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F16. 3. Reciprocal of coupling coefficient K; versus Pit.
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F1c. 4. Reciprocal of coupling coefficient K;
versus percentage of separation.

lateral displacement of the point of attachment
of either pendulum. The rate of decrease of this
lateral displacement is less than the rate of
increase of percentage separation. The coupling
coefficient thus decreases slowly with increased
separation of the pendulums. Superimposed on
this is a practically linear decrease in coupling
due to increased separation. (A given lateral
motion of the point of attachment of one pendu-
lum produces less and less coupling force on the
second pendulum as their distance of separation
increases.) The combination of these two effects
accounts for the upward concavity of the curve
of Fig. 4, which is a graph of the reciprocal of K3
versus percentage separation. These results were
also secured by a student.

Distuning

When the natural frequencies of the two
pendulums are not equal, the amplitude of the
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F1G. 5. Period of energy exchange versus frequency of the
variable frequency pendulum.

pendulum which is originally displaced in order
to start the system in motion will remain fairly
constant, and will always be much larger than
that of the second pendulum. While it cannot be
said that this initially displaced pendulum exerts
a simple harmonic force of constant amplitude on
the other pendulum, many of the experimental
results which are observed under such conditions
are in approximate agreement with calculations
obtained by considering the initially displaced
pendulum to be a driver, and the other a driven
oscillator. With the constant-length pendulum as
the driver, the amplitude of the variable-length
pendulum will be small, provided coupling is
small and provided the variable-length pendulum
is not in resonance.

If the pendulums are started in motion in a
normal mode, then the amplitude ratio between
them will be maintained and the steady-state
amplitude of the driven oscillator can be calcu-
lated from the theory of forced oscillators.

I the distuned system is started according to
the initial conditions,

X1=%o, x2=0, (dxl/dl‘)():(dxz/dt)(y:(),
the motion will be nonperiodic, but rather simple

solutions for x; and x: can be obtained from the
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general solutions of Eq. (3):

x1=2x(cos? a cos 2mv,t-+sin® @ cos 2wv_t),
Xo=2xg sin a cos a(cos 2zv.t—cos 27v_t).

(8)

Since tan a[ = —p?/(»:2—»_?%)] is small for small
coupling, we see that cos « is approximately unity
and sin a is approximately —u?/(ri2—w?), v,
being just a little larger than »;, and »_ just a
little smaller than v,. Therefore,

4

xléxo[cos 2nvi i+ cos 21rv_t],
(r12—p32)?
2p2x0 (9)
X9 Usin 273 (vy+v )]
1112 - V22

X [sin 275 (vy—w_)t].

It is apparent from examination of these equa-
tions that the amplitude of pendulum 1 will
undergo small variations while pendulum 2 will
have a small amplitude which is modulated with
a frequency 3(vi—»s).

As the length of the variable-frequency pendu-
lum approaches that of the driver, its amplitude
of motion increases and the period of energy
exchange increases. If the period of energy ex-
change is plotted as a function of the frequency
of the variable pendulum, a typical resonance
curve results. If the dissipative forces are small,
the resonance curve is sharp. Typical results
secured by students are shown in Fig. 5. Similar
curves may be secured by plotting amplitude of
response as a function of the variable frequency.

The amplitude of the variable-frequency pendu-
lum is, according to Eqgs. (9), 4 =2u?x/(v2—»s%).
Within experimental error, measurements of A at
various frequencies lead to a constant value for p
when substituted in this equation.

L .

This experiment has been used during the past
two years in connection with a laboratory course
in mechanics for junior students majoring in
physics. The results secured by all the students
who have performed the experiment have been
uniformly good, and in all cases the experiment
has stimulated a great deal of interest in the
physics of coupled oscillators.
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