3 Dynamical models II.

Why is there a relationship between harmonic motion and uniform circular motion?

3.1 States of the system (2.2.2).

Jargon alert: bear with me as I develop some formal mathematical terminology that is useful in this context. Don't worry about memorizing the terms; we will just need to develop a precise language so we can describe some useful ideas. My notes will be more detailed than usual here.
Reference: Abraham \& Shaw, Dynamics: the Geometry of Behavior. (handout)

- Identify appropriate coordinates and use these to map physical states onto points in a mathematical space, that we call phase space or state space, e.g. $\mathbb{R}^{2}=\{x, \dot{x}\}$ for the position and velocity of a single object in one dimension, $\mathbb{R}^{6}=$ $\{x, y, z, \dot{x}, \dot{y}, \dot{z}\}$ for position/velocity in three dimensions. For a rigid body in three dimensions we need 12 dimensions, because we must also include rotational coordinates and velocities. For n bodies we need $12 n$ dimensions, etc. (Aren't you glad we will be sticking to one-dimensional motion in this course??!) Sometimes it is useful to include an additional t axis, and this is called extended phase space.
- Physical behavior can be represented mathematically as curves in extended phase space: $\{t, x(t), \dot{x}(t)\}$ in our $1 D$ case (we will not try to draw curves in the $7 D$ extended phase space for $3 D$ particle motion!). We expect these to be continuous and smooth (differentiable). When you plot $x(t)$ and $\dot{x}(t)$ separately, you are plotting projections of a curve in $\{t, x, \dot{x}\}$ onto the $\{t, x\}$ and t, \dot{x} planes.

3.2 Solve the DE (2.2.4).

Graphical method: the DE specifies a vector field on the phase space. Solutions to the DE are curves in phase space that are always tangent to the vector field.

- Introductory example: exponential growth and decay, $\dot{x}=r x$. Set $r=1$; afterwards can rescale x axis to account for $r \neq$

1. Draw slope field in extended phase space, show that it is tangent to exponential curves. Note symmetry under $t \rightarrow t+a$ (autonomous equation).

- Harmonic oscillator equation, $\ddot{x}=-\omega_{0}^{2} x$. Set $\omega_{0}=1$ for simplicity.
- Independent of time.
- Draw vector field projected along $\{x, \dot{x}\}$. See this Java applet on phase portraits of autonomous systems.
- Phase curves are circles. Circulation in counter-clockwise direction.
- Letting $x_{1}=x, x_{2}=\dot{x}$, we have

$$
\frac{d x_{2}}{d x_{1}}=\frac{\left(d x_{2} / d t\right)}{\left(d x_{1} / d t\right)}
$$

- The vector field can be determined from the phase space coordinate using a linear transformation that can be expressed in the following matrix form:

$$
\frac{d}{d t}\left[\begin{array}{c}
x \\
\dot{x} / \omega_{0}
\end{array}\right]=-\omega_{0}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x \\
\dot{x} / \omega_{0}
\end{array}\right]
$$

References: www.sosmath.com
Shankar, Basic Training in Mathematics.
Online matrix tutorial

- Alternatively, we may combine the pair of real numbers $\left\{x, \dot{x} / \omega_{0}\right\}$ into a complex number $z \equiv x+i \dot{x} / \omega_{0}$. In this case the linear transformation can be expressed as

$$
\frac{d z}{d t}=-i \omega_{0} z
$$

References:
Shankar, Basic Training in Mathematics (handout).
Dave's Short Course on Complex Numbers
John and Betty's Journey into Complex Numbers (A short introduction in the form of a children's book.)

