
Physics 430 — Digital Electronics and Computer Interfacing
Instructor: Neil Alberding

Fall 2001 Lecture Notes Table of Contents
Logic ...4
Electronic Logic..5
Types of Logic Gates..7

Transmission Gate Logic (TGL) ..7
Mickey Mouse Logic (M2L)..8

Diode Transistor Logic (DTL)..8
Resistor Transistor Logic (RTL) ..8
Transistor Transistor Logic (TTL) ...9
Complementary Metal Oxide Semiconductor (CMOS) ...10

Electronic Arithmetic..12
Circuits for Arbibrary Functions...14
Flip-Flops and Memory ..14
More on Flip-Flops ...17
Microprocessor Architecture...30
Tips for Constructing Wire-Wrap Circuits ...32
Hardware Debugging Hints ..32
Communication of the Microprocessor with the Outside World..33
Decoding the Address ...36
Latching and Buffering the Data...38
The 68000 Series of Microprocessors...39

The PDP-11 unibus...43
The 8255 Programmable Peripheral Interface..45

computer-side lines...45
peripheral-side lines..45
Mode 0..45
Mode 1 of the 8255...47

The 8253 Programmable Interval Timer...51
Programmimg the control register..51
The six modes of the 8253..51

Mode 0 ...51
Mode 1 ...51
Mode 2 ...51
Mode 3 ...51
Mode 4 ...51
Mode 5 ...51

Table of Contents Continued

The Real World...53
Digital -to-Analog Conversion ...53
Analog-to-Digital Conversion...56
Other A/D Conversion Methods ...57
Stepping Motors..63

Unifilar and Bifilar Stepping Motor and their Drives ..63
Ramping, Damping and Vibration...67
Transients and Their Suppression...68

Hardware Interrupts ..71
Interrupt Circuit..75

Direct Memory Access ...77
DMA, the Software Side...80

The IEEE-488 Instrumentation Bus..83
The Talker, The Listeners and the Controller...84
Choosing Talkers and Listeners ...85
The Three Wire Handshake..86
Other Control Lines..87
You Didn’t Really Have to Know…..88
But If You’re Really Stuck...90

 Lecture 1 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) 1

Physics 430–Digital Electronics and Computer Interfacing
Fall 2000 Lecture Notes

Computers, Physics and Philosophy

Physics is a branch of philosophy, or at least it used to be. “Natural Philosophy” is an old name for physics
and it implies the philosophical exploration of the natural world. These days there are still some who go
into physics out of the love of studying and understanding what goes on in the world. This undertaking will
never reach its ultimate goal. We’ll probably never really understand everything and its most fundamental
nature. We persist because it’s not the destination, but the journey that counts. In this journey of exploration
we do turn up things that are of interest in a mundane and practical way—things like better ways of sending
messages, faster and cheaper transportation, improved building methods, more efficient calculating
machines, more destructive weapons. These spin-offs of our philosophical journey benefit people who can
exploit these discoveries for profit. These technological spin-offs belong to the realm of technology, not
science. They can help finance our philosophy, but they shouldn’t be confused with it.

So here we are in a physics course learning about electronics and computer interfacing. Is this
Technology or Science? Because this is a physics lecture we can start a little more philosophically than
might be expected in a more engineering-oriented lecture. Don’t worry though. We won’t stray too long on
this path.

* * *
Computers. Computer Science. These words are symbols. It is sometimes useful to examine our

symbols before we start to use them. People go astray when they confuse the symbol with the thing. The
English verbal symbol (word) “computer” for this machine implies something that takes a bunch of
numbers, adds them, subtracts them multiplies, divides, integrates, differentiates… Computers do all these
things, but they also do much more. The question arises, “is ‘computer’ a good symbol.” If not, well, it’s
too late to change it, but how does this choice of symbol influence how we deal with it? Similarly, how
does attaching the word “science” to “computer” influence our dealings with them?

The English-speaking world is careless about how it uses words. We tend to pick up words from
anyplace, without thinking, and start to use them right away. The French are far more careful with their
language. They have an Academy that scrutinizes every new word added to the vocabulary. In French they
use the word “ordinateur” instead of computer. This has the connotation of ordering or organizing things.
That is much more general than the meaning of “computer” which points out only a small fraction of what
these machines are used for.

Similarly, the study of computers, “computer science,” in English carries with it a certain sense
that we’re studying the fundamental laws of these machines which we humans have made. This seems a
little ridiculous because if we’ve made them, then we surely don’t have to take them apart to find out how
they work, do we? In French this discipline is called more aptly, “l’informatique.” This implies a study of
information, how to get it, how to organize it, how to use it, etc. I think one should keep in mind that
computer science is a study of information and its interaction with ourselves and the world, and that com-
puters are machines for dealing with information.

* * *
Information: what’s that? Ask yourself what is the smallest piece of information that is possible to

convey. This is what we usually call a “bit.” * Imagine one of those isolation experiments where somebody
puts himself in a room alone with no contact to the outside world. Now let’s imagine that we will allow
only the smallest quantum of information to be passed to this person. First of all there must be an
agreement as to what this information will be about. For example, it might be the time or, perhaps.
information about the weather. What would be the smallest imaginable amount of time information? What
about telling him whether it’s day or night? You can’t be much less informative than that and still give
information. Here we’re distinguishing between two possible conditions, day and night, which can’t happen
at the same time. If we were to give information about the weather, it might be to say if it’s cool or warm.
We might arbitrarily define cool as below 20° C and warm as above 20° C or something like that. Again we
first pick what our information will be about, then we divide it into two, mutually exclusive conditions it

* In English we use the word “information” in the singular to designate a measurable quantity like milk. In
French, “informations ” is plural: a countable quantity like beads.

2 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 1

can be in. The information will be to specify which of these two conditions is true.

There are many possible mechanisms for passing this information. We could have a rod through
the wall into the isolation chamber. When the rod is pushed in it’s day. Pulling the rod out would mean
night. Or we could have a wire with one voltage on it for day, and another for night. In both cases we are
using something with two states: in/out, high/low, on/off. Whatever we use will be a symbol for the
day/nightness of the time. As long as the persons inside and outside the room agree to the meaning of this
symbol, information can be transmitted.

It’s possible to extend this experiment to pass information about many more things. In each case,
the starting point is dividing the subject into two polar states, then symbolizing these states by a device. The
means of conveying the information, the symbolic mechanism, can be the same no matter what it is we’re
informing about. You might say, “This bit tells me the time, this one the weather, and this bit over here tells
me whether our side won their last ball game or not.” Not only can we have bits for information about
different things, but we can add bits to be more precise about something. For example, an extra bit about
time might tell us whether or not we are in the first half of the day or the night. By adding more and more
bits, we can be as precise as we like.

There seems to be an almost natural division of things into polar opposites. This binary
information scheme was recognized in ancient Chinese philosophy by the idea of yin and yang, the male
and female principles.* Originally yin and yang stood for the sunny and shady sides of a hill. In philosophy
though, these words came to designate the two polarities in which almost all things can be classified. For
example bland food is yin and hot, spicy food is yang. Similar dualities are female/male, soft/hard,
negative/positive, shady/sunny, nothing/something, 0/1. It seems that every aspect of life and the world can
be categorized as either yin or yang. Using a binary symbolism to fit the duality of nature has proved very
powerful in its application to computers. Various computer designs have proved inferior to the binary
digital computer. For example, analog computers represent different numbers by different voltage levels.
Today analog computers are an interesting curiosity, whereas digital computers are everywhere.

Chinese characters for yin and yang.

Computer memories can be viewed then as massive arrays of yin/yang symbols. Each one
represents the smallest, indivisible quantity of information: a bit. These bits are carried on electrical wires
or pc board traces by voltages. A common convention is 0V = yin, and 5V = yang. On paper we usually
write 0=yin, and 1=yang. As always we must keep in mind that for these symbols to have meaning, there
must be some convention as to what each and every symbol refers to: time, weather, colours, tastes, etc.

The first great bureaucracies of history were established after the invention of pen, ink and paper
for the symbolic recording of information. These implements allowed recording large amounts of
information and storing them for long periods of time. Computers give another dimension to the recording
and storage of information: motion or interactions. The symbols can not only be stored, they can be brought
together to interact and produce new symbols. Such transformations of symbols can be made to simulate
the transformations of things and events in the world. Now, not only can a static state be symbolized, but
also the processes of evolution and change of these states from one form to another can be symbolized. In
fact we use the word “simulation” to represent a dynamic symbol of a process. Computers, through their
ability to record processes, i.e., dynamic information, as well as states, i.e., static information, are bringing
the world, and bureaucracies, through another turning point, another revolution, such as was brought about
by pen and paper.

The laws of combination of things with two possible states were first stated in terms of logical
propositions. A proposition is statement that can be either true or false. George Boole set forth his
“Boolean” algebra in 1847 in a treatise called “The mathematical analysis of logic.” Boolean algebra is
only one instance of things with two possible states and their combinations. When discussing digital and
computer design, it’s conventional to speak in terms of the algebra of propositions for concreteness.
However, our bits of zeros and ones, yins and yangs don’t have to represent propositions which are true or
false. They often represent the myriad other things which can be expressed in a binary, 0/1 way—things

* Joseph Needham, Science and Civilisation in China

 Lecture 1 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) 3

like the existence or nonexistence of the universe, God and the devil.

Let’s try to imagine now the most primitive sort of interaction that can occur between bits of
information. The simplest transformation is one bit goes in, and one bit comes out. There are four ways this
can happen: 1. The same bit comes out that came in, the identity operation, 2. the bit gets changed to its
opposite, the inversion 3. the bit is always transformed to 0 or 4. the bit is transformed to 1. Let’s let A
represent something that can be either 0 or 1 (yin or yang). Then if A is transformed to B, the four
operations are written algebraically as

B = A B = 0
B = –A B = 1

Now let’s investigate the transformation of two bits of information. To keep it simple let’s say two
bits combine to form just one other. Two bits go in, one comes out. There are four ways that two yin/yang ,
0/1, bits can combine: (1) first bit=0, second bit=0, (2) first bit=0, second bit=1, (3) first bit=1, second
bit=0, and (4) first bit=1, second bit=1. The results of each combination can each be either 0 or 1. One type
of interaction process would result in a definite outcome for each of the four starting combinations of the
two interacting bits. Thus the number of different processes symbolized by the combining of two bits is 24

or 16. One of them can be illustrated in a table showing the two original bits and the result

bit 1 bit 2 result
0 0 0
0 1 0
1 0 0
1 1 1

There are 16 different ways of writing the result column before we start to repeat.

To Boole, 1 represented True and 0, False. So the table above represented the process of writing
an and between two propositions to form a third proposition. This new proposition is true only if both the
original ones are also True. In writing we could say

let A= bit 1, let B= bit 2, let C=result
then C = A•B.

Here the big • represents the and. Similarly the or operation would have the “truth table” as follows:

bit 1 bit 2 result
0 0 0
0 1 1
1 0 1
1 1 1

This or operation is represented algebraicly as C=A+C.

By combining ands, ors, and the four one-bit operations you can get all the other 14 two-bit
operations.

4 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 1

Logic

A simple decision about whether to go to lunch can illustrate principles of propositonal logic.
Let's say that two conditions must be met: (1) you're hungry and (2) you have money, i.e., you are solvent.
If both are true at the same time then you can go to lunch. This is the logical AND operation:

(hungry) AND (solvent) ⇒ go to lunch

A truth table is used to solve this kind of dilema. It's just a case of writing down all possible combinations
of the conditions and their result.

hungry solvent hungry AND solvent

false false false
false true false
true false false
true true true

It would also be possible to state the problem in terms of the logical inverses of "hungry" and
"solvent," that is "full" and "broke." The truth table can be extended to cope with this.

hungry solvent full broke full OR broke NOT (full OR broke)

false false true true true false
false true true false true false
true false false true true false
true true false false false true

Being hungry and solvent is the same as not being full or broke. Note that the OR is an inclusive
OR, which means that the result is true if either one or both of the conditions is true. Also one must be
careful to place the brackets around "full OR broke" to show that the OR is done before the NOT.

Stating the problem in terms of "hungry" and "solvent" could be called positive logic and in terms
of "full" and "broke," negative logic. The observation that

 (hungry AND solvent) = NOT (full OR broke)

is called DeMorgan's Theorem. DeMorgan's theorem is about the highest level of mathematics we shall use
in this course and it can be stated as follows:

A positive logic AND is a negative logic OR and
a positive logic OR is a negative logic AND.

Symbolically we can use the letters A and B to denote logical conditions. Sometimes the logical
AND operation is writen like multiplication: A•B or just AB. Likewise the OR operation is written like
addition: A+B. The inverse, NOT, is written with a bar over the letter: A

–
, or with a minus sign: –A.

Then DeMorgan's theorem is

A•B = –((–A) + (–B)) and
A + B = –((–A) • (–B)).

(Another symbolism uses ∧ for AND, ∨ for OR and ~ for NOT: A∧B = ~((~A) ∨ (~B)).)

The set of rules for manipulating logical expressions is called Boolean algebra. Most of the rules
are fairly obvious. Here is a list.

 Lecture 1 Physics 430–Digital Electronics and Computer Interfacing.(revised 9/3/00) 5

ABC = (AB)C = A(BC)
AB = BA
AA = A
A•true = A
A•false = false
A(B + C) = AB + AC
A + AB = A
A + BC = (A + B)(A + C)

A + B + C = (A + B) + C = A + (B + C)
A + B = B + A
A + A = A
A + true = true
A + false = A

–true = false
–false = true
A + (–A) = true
A(–A) = false
–(–A) = A
A + (–A)B = A + B
–(A+B) = (–A)(–B)
–(AB) = (–A) + (–B)

Electronic Logic

An electronic device can be constructed to make these kind of decisions. Voltage levels with
respect to a common ground can be used to represent the logical true or false states, e.g., +5V for true and
0V for false. An AND operation could be done with a circuit with three terminals. Two terminals are for
input and one for output. A voltmeter between the output and ground would measure 5V if both inputs
were connected to 5V. If either input were at 0V, the output would drop to zero. The "user interface" of
such a device would entail connecting each input to a switch so that the inputs could be switched between 0
and 5V at whim. The output could be connected to light a lamp when it is 5V. This interface could be
called "user friendly" if the switches were labelled with words like "Hungry", "Full", "Solvent" and
"Broke" and the output lamp were labelled, "Go to Lunch."

Without worrying about the details of how to build this circuit, it can be represented by a symbol
showing the inputs and output. A little truth table beside it shows its function.

input 1 input 2 output
0V 0V 0V
0V 5V 0V
5V 0V 0V
5V 5V 5V

inputs output

AND

An OR gate can be diagrammed as follows:

input 1 input 2 output
0V 0V 0V
0V 5V 5V
5V 0V 5V
5V 5V 5V

OR

6 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 1

and a NOT device, or "inverter", is drawn as

input output
0V 5V
5V 0V

INVERT

Our Lunch Decision box could be wired up as below.

5V

Go To Lunch

Hungry

Full

Solvent

Broke

not connected

connected

It could also be built with negative logic.

5V

Go To Lunch

Hungry

Full

Solvent

Broke

The combination of an OR gate with its output connected to an inverter is so common that it is
given a special name, the NOR gate. Its symbol is

NOR
Similarly NOT AND is a NAND gate with the symbol

 NAND

The ability to feed the output of one gate to the input of another allows constructing circuits for
even more complicated decisions. For example

 Lecture 1 Physics 430–Digital Electronics and Computer Interfacing.(revised 9/3/00) 7

if hungry and solvent and not busy then go to lunch.

5V

Go To Lunch

Hungry

Full

Solvent

Broke

Busy

Idle

Assignment problem: Sketch two other circuits to accomplish the same logic with the same switch
connections.

The electronic symbols provide another notation for Boolean expressions. For example,
DeMorgan’s theorem can be expressed by changing a NAND gate to an OR gate with inverters on both
inputs. (Notice that a little circle on a gate’s input indicates inversion of the input signal.) NAND gates are
often represented by the “bubbled OR” symbol. You can now see that either an AND gate or an OR gate
can be mde from a NAND and one or two inverters. Also it is very simple to make inverters out of NAND
gates. Thus any logic circuit can be made from a collection of NAND gates.

=

=
DeMorgan's Theorems

=

Bubbles Burst Bubbles

= =
NANDs and NORs as NOTs

Types of Logic Gates

Transmission Gate Logic (TGL) is the most straightforward. It is just a connection of electrical
switches, relays or field effect transistors. A CMOS analog switch chip such as 4016 could be used. With
TGL, some input to output connections can be used in reverse: they are bidirectional.

8 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 1

10k

1k

Vcc

output

A

Inverter

Vcc

A

B

output

OR

A

B

Vcc

output

AND

10k
10k

4016
4016

4016

 g
Mickey Mouse Logic (M2L)uses discrete diodes and transistors.

output

OR

A

B

output

A

B

+5V

AND

A

+5V

INVERT

These circuits are not often useful because the 0.6V drop across the diodes degrades the output voltage
levels making them not strictly TTL compatible. Furthermore the passive pullup resistors on the outputs
slow the response time. These circuits draw a fair amount of current and are limited to relatively slow
switching rates. A occasional M2L gate is ok, if linput levels are not close to the TTL limit,, and can save
an additional chip.
Diode Transistor Logic (DTL) is an old family of logic chips that uses these diode input circuits followed
by transistor output circuits. Although DTL is no longer used as such, the newer LS-TTL series uses
Schottky diodes and transistors with very similar diode inputs for its NAND and NOR gates

Resistor Transistor Logic (RTL) is an obsolete system that was used before TTL and CMOS logic
gates became common. For example here is an RTL OR gate. Notice the similarity to the simple inverter
above.

RTTL NOR Gate
+Vcc

680

680

470

A

B

Q = A + B

 Lecture 1 Physics 430–Digital Electronics and Computer Interfacing.(revised 9/3/00) 9

Transistor Transistor Logic (TTL) is the basis of Texas Instruments famous 7400 series chips.
Here is an example of a TTL NAND gate.

TTL NAND Gate

A

B

4k 1.6k

1k

+5V

Q = AB

130

Totem Pole
Output

Diode
input
protection

The two-emitter transistor functions somewhat like the diode AND gate. The rest of the circuit
acts like an inverter. If one emitter is low the output is high. Both inputs must be high for the output to be
low. The input is usually protected from negative voltages by a diode. This also helps to dampen ringing of
pulses.

The original 7400 family of TTL chips required 1.6 mA for each input and could provide 16 mA at
the output. It is now common to use the low power Schottky family of chips which requires only 0.4 mA
for each input, whereas an output can supply 8 mA. These low power Schottky chips are marked with
numbers 74LSxx instead of 74xx and use M2L-like Schottky diode inputs. In general one should not
connect an output to more than ten inputs of chips in the same family—the maximum "fan out" is ten.

Simplified LS TTL NAND GATE (Input protection diodes not shown.)

8k

3k

+5 V

output

20k 120

A

B

TTL and LS TTL outputs are HIGH or TRUE between 2.4V to 5V and LOW or FALSE from 0V
to 0.4V. TTL and LS TTL inputs from 2 V to 5 V are HIGH and from 0.8 and 0 V are LOW. There is a 0.4
V margin for error between the lowest TTL high output and the lowest TTL high input. Similarly there is a
0.4 V difference between the highest TTL low output and the highest TTL low input. This is necessary to
allow for voltage drops or noise pickup between the output of one gate and the input of another gate to
which it is connected. This margin is sometimes called “noise immunity.”

The standard two-transistor output is called a "totem-pole" output. In order for the output to pull an input
low, it must be able to pass current, 1.6 mA for regular TTL or 0.4 mA for LS-TTL. On the other hand, a
high level does not sink any current. In fact, an unconnected TTL input is high.

The lower transistor of the totem pole is designed to sink more current than the upper transistor

10 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 1

can source. If a light emitting diode is put on the output it is preferable to connect it between the output and
a resistor to 5 V rather than between the output and ground. Another practical consideration is that when the
gate is switching between high and low levels, both transistors momentarily conduct. This draws more
current and can load the voltage supply and ground lines abnormally. To avoid consequent voltage drops, a
"despiking" capacitor can be connected between the +5V pin and the ground pin to serve as a reservoir for
the chip's momentary current needs. One such despiking capacitor for every three or four chips is usually
enough.

Complementary Metal Oxide Semiconductor (CMOS) Logic uses field effect transistors (FETs) as
switches. n-channel and p-channel FETs are used in complementary pairs. The standard 7400 series of
chips is available in CMOS and are labelled 74HCxx. There is an older series of CMOS chips originally
manufactured by RCA with numbers 4xxx. These chips are also acceptable but do not follow the 7400
series pin assignments.

CMOS NAND gate (unbuffered version) CMOS Inverter
Buffered gates are followed by two CMOS inverters.

A

B

output

+5 V

p

n

p

n

output

+5 V

p

n

in

Because of the high impedance input to FETs, CMOS uses almost no current unless it is
switching. But the capacitace of the input restricts the high frequency limit to about 10 MHz. TTL can be
used for higher frequency up to about 50 MHz. At the high frequency end of the CMOS range, TTL and
CMOS require about the same current.

The range of acceptable logic levels for CMOS is different from TTL levels. A CMOS HIGH
output is from 4.9 V to 5 V. A CMOS LOW output is between 0.1 and 0 V. An input voltage from 3.5 to 5
V is accepted as HIGH and input levels from 1.0 V to 0 V are accepted as low.

NMOS and PMOS are also used sometimes. They have only n-channel or p-channel FETs
respectively. Higher component packing densities are possible at the expense of higher current usage.

 Lecture 1 Physics 430–Digital Electronics and Computer Interfacing.(revised 9/3/00) 11

CMOS and TTL logic levels for output and input.

out in
TTL CMOS

out in
5 V

2.4
2.0

0.4

0

0.8

0.1

1.0

3.5

4.9

noise
immunity

HIGH

LOW

noise
immunity

CMOS is sensitive to static discharge. A static spark can ruin a chip. Unused CMOS inputs need
to be connected to ground or 5 V. Unconnected CMOS inputs do not default to high like TTL inputs.
Unconnected inputs could assume an indeterminate voltage allowing both transistors in the inverter circuits
to conduct and to consume a lot of current. CMOS Vcc can be set to any voltage between 3 to 15 V and
runs best around 9 V. However, if TTL chips are to be used in the same circuit, a 5 V supply is convenient.
If Vcc - 5 V then CMOS output levels are compatible with TTL input criteria but a TTL HIGH output level
may not fall within the required CMOS input range. Therefore TTL outputs should not be fed directly to
CMOS inputs. A special CMOS series labelled 74HCTxx will accommodate TTL input levels.

The totem pole output of TTL gates and the inverter output of buffered CMOS gates are
sometimes replaced by open collector or open drain outputs.

Open Collector Output

1.6k

1k

+5 V

output

pullup resistor
must be supplied
by the user: 2.2k
typical.

0 to + 30 V

The open collector output is connected through an external resistor to a voltage line. This is useful if an
output voltage other than 5 V is required. The resistor can be connected to any voltage level up to 30 V.
Several outputs can be connected to the same resistor. If all the outputs are high then the output is high. But
if any of the gates connected to that resistor goes low, the output is low. This arrangement is called a
"wired or" or sometimes "cheap or." Open collector outputs are commonly used on bussed lines where
several devices share the same bus. The quiescent level is high, but any device can take over the line by
pulling it low while the other devices are still high. If a totem pole output were so connected, a conflict
would arise between the high outputs and low outputs on the bus which could damage the circuit. The
CMOS version of open collector is called “open drain” output.

Another scheme for allowing bussed output is so-called "three-state" logic. Here there is a third

12 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 1

input to the gate which is called the "enable" though it is often the inverse–enable. If enable is high, the
output is disconnected from the circuit. Only when enable is low is the output actively engaged and acts
like a normal TTL output. The trick here is to enable the right gate at the right time.

Three-State Gate using CMOS transistors and logic gates.

output

+5 V

p

n

enable

in

Electronic Arithmetic

In order to make logic circuits do arithmetic, we can assign a numerical value to True and False
states.

True = 1
False = 0

A sequence of logic levels can represent a number using binary notation. E.g., True,False = 10 (binary) = 2
(decimal). In general let A0, A1, A2, ..., An be n+1 binary digits which corresponds to n+1 wires at 0V or
5V. Each Ai is 0 or 1. This sequence of digits or wires represents the number X given by

X = A0 + A1•2 + A2•22 + ... + An•2n.

Any integer can be represented this way up to a maximum determined by the number of wires available.
Each of the numbers from 0 to 15 decimal are represented by four binary numbers as shown in the table.

decimal binary hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Dealing with long binary numbers is confusing; therefore, we usually group binary digits in fours. Each
group of four digits can be represented by one hexadecimal digit which represents a number between 0 and
15 decimal. Thus a 16 digit binary number would be represented by a 4-digit hexadecimal number. If Hi are
the digits of a hexadecimal number then its value is given by

X = H0 + H1•16 + H2•162 + ... + Ah•16n.

As an example, the binary number 0111 1100 0001 1111

 Lecture 1 Physics 430–Digital Electronics and Computer Interfacing.(revised 9/3/00) 13

would be represented in hexadecimal as 7 C 1 F.
Its decimal value would be calculated as follows
15 + 1•16 + 12•162 + 7•163 = 15 + 1•16 + 12•256 + 9•4096 = 31775.

Negative numbers can be represented by a system called “two’s complement.” One bit must be sacrificed to
represent the sign. Therefore, if negative numbers are to be represented with a given number of bits, only
half the range of positive numbers can be represented. The recipe to obtain the two’s complement of a
positive number is (1) reverse all bits from 1 to 0 or from 0 to 1. and (2) add 1. For example

0111 1100 0001 1111 = 31775 number to be inverted
(1) 1000 0011 1110 0000 reverse all bits
(2) 1000 0011 1110 0001 = –31775 add one to get the negative.

If you add the binary representation of -31775 to that of +31775 then all bits are zeroed.

A collection of 16 bits could represent a signed number or an unsigned number depending on the
established convention. The bits themselves do not carry that information. Thus a person or program might
interpret 100001111100001 as 33761 decimal if uniformed or misinformed about how to interpret the bits.

A circuit to add two one-digit (or one bit) binary numbers would have two inputs and two outputs
with the following truth table

input output
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

The low order bit of the output can be got by ORing the two inputs, except if both inputs are 1, then the
result must be zero. This is the exclusive OR, XOR. The exclusive or is written A⊕B and its symbol is

XOR
We can make a circuit to do XOR with the building blocks we've used so far.

A ⊕ B

A
B

A one-bit adder can be assembled as follows

One-bit Adder with Carry Output
A0

B0

0Q

Q1
carry bit

Σ⇔ A0

B0

0Q

Q1

Q1 is often referred to as the carry bit. To make a two-bit adder, just cascade the two one-bit adders.

14 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 1

Two-bit Adder without Carry Output

2Q

0Q

Σ
A0

A1

Σ
B0

B1

Σ
1Q

(carry bit)

Problem: Design a two-bit adder with carry input and output.

Circuits for Arbibrary Functions
Any arbitrary function may be built with the simple ANDs, ORs, and NOTs. For example, three

bits of input can be mapped to one bit of output. First make a truth table showing the result desired.

input output
ABC Q
000 1← (–A)(–B)(–C)
001 0
010 0
011 1← (–A)BC
100 1← A(–B)(–C)
101 0
110 0
111 0

OR the logic implied by every "1" that appears in the output column:

(–A)(–B)(–C) + (–A)BC + A(–B)(–C) = Q

Now use the Boolean algebra rules given under the Logic section to simplify this expression.

((–A)+A)((–B)(–C)) +(–A)BC = Q
(–B)(–C) + (–A)BC = Q
–(B+C) + (–A)BC = Q

Then translate it to logic gates. The most practical circuit may not be the one with the simplest algebraic
expression. It will depend on the gates available. Computer programs exist to do these manipulations.

Another method of reducing logical expressions is the Kernaugh map. Kernaugh maps only work
for up to four inputs. You can find an example of Kernaugh maps in Horowitz and Hill (p 333). Complex
combinatorial logic devices are most easily achieved using programmable logic devices such as PALs
(Programmed Array Logic). These are fundamentally read only memories which can be programmed for
any possible output for any possible input.

Flip-Flops and Memory

The flip-flop circuit illustrated has two outputs but can exist in only two states which are stable.
The outputs must be in opposite states in order to be stable so the two states are 0 1 and 1 0. For this reason
the outputs are usually labelled Q and –Q. When this switch is thrown to one pole or another, one of the
two states is chosen. If the switch is not on either of its poles, the state previously chosen stays. Therefore
the flip-flop can be used as a memory register. Eight flip-flops can store an eight-bit number.

 Lecture 1 Physics 430–Digital Electronics and Computer Interfacing.(revised 9/3/00) 15

A Set-Reset Flip-flop

1

0

2.2k

2.2k

5 V

out

If several such registers are connected to an eight line bus, three-state logic gates could be used to
connect the inputs of just one of the registers to the bus in order to store the number on the bus. That
number could be read later by connecting the outputs to the same bus.

With an adding circuit and a bunch of registers together with some switching circuitry, we have
the basic components of a computer.

References
Albert Malvino, Digital ComputerElectronics, 2nd ed. McGraw Hill, 1977. (or 3rd ed., 1993) Chap 1-6
Horowitz and Hill, The Art of Electronics, 2nd ed, Cambridge, 1989. Chap 8 and 9.
Joseph Needham, Science and Civilisation in China, V2, Cambridge, 1956. Chap 13, esp. sec. g.

Lecture 2 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 17

Lecture 2

More on Flip-Flops

The simplest type of lip-flop is the RS flip-flop where RS stands for Set-Reset. It can be
made with two NAND gates or two NOR gates as shown below. In the NAND gate version the two
inputs are really –set and –reset, the inverse of set and reset. Such a circuit is useful for switch
debouncing. Normally a switch may jump open and closed momentarily after being changed. A flip-
flop can stop any bounce of the signal from the switch because the output does not change when the
switch opens after having been closed on either the high level or the low level.

A set-reset flip-flop made from two NAND gates

Qset (or preset)

reset (or clear) Q

Set-Reset flip-flop circuit

S

R

Q

Q

Symbol

Truth table for the NAND set-reset flip-flop
–S –R Q –Q
1 1 no change
0 1 1 0
1 0 0 1
0 0 not used

A set-reset flip-flop made from two NOR gates

Q
set

reset Q

Set-Reset flip-flop circuit

S

R

Q

Q

Symbol

Truth table for the NOR set-reset flip-flop

S R Q –Q
0 0 no change
1 0 1 0
0 1 0 1
1 1 not used

The “not used” state is not useful because the outputs are unpredictable. Going from the “not used” state to
the quiescent state involves changing both inputs. Because it is unlikely that both inputs will change at
exactly the same time, the flip-flop will momentarily pass through either the set or the reset state. Thus the
outputs depend unpredictably on which input changes first.

Besides being used as switch debouncers, the SR flip-flop is useful for storing data and it forms
the basis for static ram devices. They have serious limitations for other uses: 1. there is no mechanism for
clocking the input, the output changes the moment the input changes, 2. the inputs are level sensitive
instead of edge sensitive and 3. there is a disallowed state possible. To overcome these problems two other
types of pre-packaged flip-flops are available—the JK flip-flop and the D flip-fop.

A clocked input to the RS flip-flop insures that the output changes only when the clock input level
indicates that the signals are valid.

18 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 2

Clocking added to the basic set-reset flip-flop

Q

Q

S

R

clock

Sometimes you want to transfer data consecutively from one flip-flop to the next by hooking
the output of one RS flip-flop to the input of another. With the simple or clocked RS flip-flop the
data will race through the chain. The Master Slave flip-flop combines two clocked RS flip-flops to
control the transfer of data from one stage to the next in step with the clock pulses. When clock is
high the signal is loaded into the master's inputs while the slave is disabled. Then the clock goes low
and the output of the master is transferred to the slave and appears at the slave's output. These can be
chained to allow an orderly flow of data. Often the output AND gates have a third input to allow
initializing the slave to a definite state.

The Master-Slave flip-flop

Q

Q

clock

S

R

Master Slave clear

set

Feeding the Q output of the slave to the S input and the –Q output to R creates a T flip-flop.
This toggles on every second down tick of the clock and divides the clock frequency in half.

A common type of flip-flop used in circuits is the JK flip-flop. (Does anybody know what JK
stands for?) Functionally, it is like the T flip-flop where the feedback lines are NANDed with the J
and K inputs. Its truth table shows that it operates like a Master-Slave flip-flop triggered on the down
beat of the clock except when J and K are both high when it becomes a T(oggle) flip-flop.

The Master-Slave system is used because the datum on the master is transferred to the slave
on the falling edge of the clock. As long as the clock is low, changes on the master’s inputs have no
effect on the output. When the clock rises the slave is locked. Still no change is possible on the output
until the clock falls again at which point the datum on the input is again given to the slave’s inputs.
But this datum doesn’t get to the output until the clock rises again. Data are captured only at the
instant of clock transition from high to low but the delay from input to output is the clock pulse
length.

Lecture 2 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 19

J-K flip-flop

Q

Q

clock

K

J

Master Slave
clear

set

J Q

–Q
CLR

K

symbol

Chips in common usage based on the Master-Slave principle are the 7473, 7476 and 74107,
74109 and 74112. The clock signal is level sensitive. Therefore, the input data should not change
except immediately after the clocking happens. Then it can only be changed once. If continuously
changing data is being sampled, the output may not represent the data on the input at the time of the
clocking. Master-slave designs are difficult to use and have been superseded by newer designs such
as that of the D flip-flop.

It is desirable to have the input-to-output transition time independent of clock pulse length.
A way one might get such edge triggering is by putting a “half-monostable,” or RC high-pass filter,
on the clock so that a high clock pulse decays rapidly. Now the transition time depends only on the
RC time constant. (R must include the input-impedance of the logic gates.)

Cheap way to get edge triggering from a level trigger

to clock inputclock

Capacitors and resistors are usually hard to make on an integrated circuit so most edge-
triggering schemes use delays to create a short pulse from a clock transition. The figure below
illustrates the principle.

How to get a short pulse from an edge

in out

in

out

timing

When the input goes from low to high both inputs to the AND gate are high for about 10 ns.
The direct input on the bottom rises immediately but the top input stays high until the change has
passed through the invertor. For this delay period, the output is high. The transition from high to low
doesn’t cause any pulse on the output.

The D flip-flop is functionally very similar to a J-K flip-flop in which the K input is wired to
be the inverse of the J input. Most packaged D flip-flops are truly edge-triggered. Data is captured
only during the clock transition. Common TTL D flip-flop packages are the 7474, 74175 and 74174.
They are triggered on the positive clock transition. The D-flip-flops use a delay mechanism for their
triggering.

20 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 2

D flip-flop insides

reset

D

set

Q

Q

clk

Symbol for D flip-flop

D

clk

Q

Q

R

S2

3

4

1

5

6

positive
edge trigger

negative
edge trigger

set and reset inputs
are active low,
0 V = True

Pin numbers
for 74xx74

Vcc: pin 14
gnd: pin 7

D flip-flop truth table
S R clk D Q
0 0 x x *
0 1 x x 1
1 0 x x 0
1 1 0 x NC
1 1 ↓ x NC
1 1 ↑ 0 0
1 1 ↑ 1 1

* = not defined
x = doesn’t matter, could be either 0 or 1
NC = no change

The 74xx74 is the most commonly used D flip-flop chip with two per chip. Important timing
parameters for the D flip-flip are as follows:
the setup time, ts time the data must be stable before the clock edge
the propagation delay time tp, time for the input data to transfer to output after clock edge
the hold time. th time data must be stable after the clock edge.

Lecture 2 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 21

These are illustrated on the following sketch.

Timing for the D flip-flop

t t

t

s h

p

don't care

clk

D

Q

7474 74LS74 74HC74
tp 10 ns 10 ns 30 ns
ts 15 ns 15 ns 20 ns
th 5 ns 0 ns 0 ns

The D flip-flop can be configured to act like a toggle-flip flop or even a simple set-reset flip-flop if
necessary.

Flip-Flop Applications
A common use of flip-flops is for data storage. The simplest parallel-in parallel-out (PIPO)

register is made by stringing together several D flip-flops on the same clock signal. As many bits as
needed can be made by continuing the sequence.

Simple parallel-in parallel-out (PIPO) buffer register

D Q D Q

clock

D

Q

0

1

D

0 1Q

...

This simple register transfers the input data to the outputs on every clock pulse. This may present a
problem when the register is used in a situation where the data do not need to be changed at every
clock cycle. Another signal, LOAD, needs to be provided so that the register can be informed as to
when the input data are valid and when they are to be ignored. The simplest way to accomplish
LOAD would be to AND the LOAD signal with the clock before the clock signal is sent to the flip-
flops’ inputs. The practical problem with this design is that the actual loading of the data is delayed
by the AND operation. In many situations it is important that the actions of all devices such as
registers and counters be exactly synchronized with the clock. Another way to accomplish the load
function is illustrated below. When LOAD is high the load logic circuitry transfers the input data to
the D input of the flip flops. If LOAD is low then the D input of each flip-flop is presented with its
own Q output, thus leaving the state unchanged. There is a delay between assertion of the LOAD
signal and the time when it is in effect. Thus the LOAD must be asserted about 40 or 50 ns before
that clock pulse which is to load the data.

Two more functions are shown on the circuit. A clear signal enables all outputs to be zeroed
and ENABLE which allows the outputs to be disconnected from other circuitry. This allows several
buffer registers to share the same data bus.

22 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 2

A practical data buffer register with LOAD, CLEAR and ENABLE control signals.

D Q

clock

D

0

1

D
Q 0

load
load

D Q

Q 1

...

...

...clrclr

...clear

enable

3-state
buffer

load logic

Data
input

data
output

control
signals

Two two-bit registers connected to a bus with three-state buffers

L C E

RA

A A A

R B

LCEB B B

Q Q1 2

clk clk

Many registers can be connected to the same bus. All share the same clock signal and the
inputs and outputs of each register are isolated from the bus unless the appropriate signals are
invoked. For example, to transfer data from register A to register B signals EA and LB must be
raised. The next clock pulse causes the data to flow.

Shift registers are composed of a sequence of flip-flops. Serial-in serial-out shift registers
accept data bit-by-bit on the input and then send them out in the same manner. Serial-in Parallel-out
shift registers will accept bits clocked in serially and shift them into consecutive parallel output
locations.

A serial-in serial-out (SISO) shift register

D Q D Q D Q D Q
serial
data in

serial
data out

clock

A serial-in parallel-out (SIPO) shift register

Lecture 2 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 23

D Q D Q D Q D Q
serial
data in

parallel data out

clock

Q Q Q Q4 123

Counters

Flip-flops are also the basis for counters. Because J-K flip-flops act as toggle flip-flips when
both J and K are high, they are natural for counter applications. The simple two-bit ripple counter
cycles one step through the sequence 00–01–10–11–11–… on every clock pulse. The clock is fed
only into the lowest order bit. The flip-flops for the higher order bits are clocked from the output of
the next lower flip-flop. Thus there is a delay which gets larger as the flip-flop gets farther from the
low order bit. Ripple counters are an easy way to divide down the frequency of clocks, but
synchronous counters are better for real counter application.

Ripple counter

J Q

CLR
K

J Q

CLR
K

+5V

Clock in

+5V
Q Q0 1

The synchronous counter shown below allows all bits to respond to the clock at the same
time. Most prepackaged, multi-bit synchronous counters have a clear and some have a parallel load
feature. You must be careful when using clear and load because sometimes these functions occur
immediately when activated (asynchronously) and sometimes they occur only on the clock edge
(synchronously). The 74LS161 used in the lab has an asynchronous clear and a synchronous load.

Synchronous counter

J Q

CLR
K

+5V

J Q

CLR
K

Clock in

Q Q0 1

J Q

CLR
K

Q2

Another type of counter which is used in computer design is the ring counter. In its basic version,
only one of the output bits, Q1...Qn, of the ring counter is active at one time. Each successive clock pulse
moves the active bit to the next successive bit. Thus if Qi is active, tQi+1 is active after the next clock pulse
and all others are off. When the active bit reaches the end, it reverts to the first bit. Variations on the ring
counter may move the active bit lower instead of higher at each clock pulse or leave the previous bit on
until all are on and then start over with only the low bit on–the”walking ring counter.”

24 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 2

Ring Counter

D Q D Q

CLR

Clock in

Q Q0 1

D Q

CLR

Q2

PR

–Clear

Other Flip-Flop Applications

See the TTL Cookbook for ideas. For fun you might want a pseudo-random number generator.
Although the binary sequence repeats after 2n–1 binary digits, where n is the number of registers, any
short portion of the sequence appears random.

Pseudo-random number generator

D Q D Q D Q D Q

pseudo-random data out

clock

Q Q Q Q4 123

References
Don Lancaster, The TTL Cookbook, Sams, 1974
Don Lancaster, The CMOS Cookbook, Sams, 1977

Lecture 3 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 25

Lecture 3
Memory

Buffer registers made from flip-flops offer an obvious way to design computer memory. However,
for large amounts of memory a simpler method is needed to save overhead. Memory which can be easily
changed and read is usually called Random Access Memory (RAM) to distinguishit from memory which
cannot be easily changed which is called Read Only Memory. Random access means that any memory
location can be read without having first read previous locations. In fact, read only memory is also random
access but it has become conventional to call Read-Write memory RAM and Read-only memory ROM.

Read-Write memory (RAM) is available in two form: Static and Dynamic. A sttatic memory cell
is a simple two-transistor flip-flop. In addition to the two transistors of the flip-flop, two more transisors are
used as load resistances. (Transistors are easier to make on integrated circuits than resistors.) As long as the
power is on, the flip-flop maintains its memory.

Static Memory Cell Dynamic Memory Cell
VDD

D D

control
line

Sense line

storage
capacitor

Dynamic memory is essentially a capacitor which can be charged and discharged through a
transistor switch. When a high memory bit is read, the capacitor discharges and must be restored.
Furthermore, the capacitor discharges spontaneously over time. Most dynamic memory must be refreshed
at least every 2 milliseconds. In most computers the memory refresh cycle is controlled by the Direct
Memory Access controller which takes over the computer bus every 15.12µs in order to refresh 1/128th of
the memory simultaneously.

Read-only memory is useful for routines such as boot-up sequences, basic input-output systems,
graphics and numerical routines. The memory holding these machine instructions need never change. The
basic design of read-only memory utilizes an array of diodes. Each row of the array is one memory
location. The columns are bits of the output. When a diode connects a column and row that bit of the
memory location is high. The absence of a diode results in a low value.

26 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 3

Read-only memory using a diode aray

5 V

0

1

2

3

D1 D 2 D 3 D 4

Read-only memory with on-chip decoding

D1 D 2 D 3 D 4

A A0 1

0

1

2

3

The Simple as Possible Computer: SAP-1

We now have the components needed to construct a real working computer: the SAP-1. This
“Simple as Possible Computer” was invented by Albert Malvino to illustrate the basics of computer design
with a model system capable of being built using available TTL or CMOS logic chips. The components
used are a counter, several registers made of flip-flops, a 8x16 static random access memory, an arithmetic
logic unit which does additions and a controller/sequencer which translates binary machine instructions into
the control signals for the components. These components interconnect via an 8-bit bus called the W bus.

Lecture 3 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 27

Cp Ep –LM –CE –LI –EI –LA EA SU EU –LB –LO

–CLK
–CLR

Ep

CLK

–LM

–CE

CLK

–LO

4 8 4

8

8

8

4

4

8

–L

CLK

E

A

A
8

8
W bus

Accumulator

S

E

U

U

Adder/Subtractor
(ALU)

–L

CLK

A

B Register

8

8

8

4

–CLK

8

4

Input and
Memory Address
Register (MAR)

16 x 8Random
Access

Memory(RAM)

Output
Register8

Binary
Display

8

4

Instruction
Register

12

Controller/
Sequencer

Program
Counter

Cp

CLK
CLR
–EI

–LI

CLK

CLR

–CLR

Architecture of the Simple-as-possible Computer

The program counter (PC) keeps track of which machine instruction is to be executed next. It
starts at zero when the machine is turned on and increments during each instruction. The program in the
form of 8-bit binary numbers is stored in the RAM starting at location 0000. The number in the PC
indicates the memory location containing the next instruction.

The instruction set is also as simple as possible consisting of the following:

mnemonic op code explanation
LDA 0000 nnnn load accumulator with number in memory location nnnn
ADD 0001 nnnn add number in memory location nnnn to accumulator
SUB 0010 nnnn subtract number in memorylocation nnnn from accumulator
OUT 1110 xxxx output accumulator to the lights (xxxx = anything)
HLT 1111 xxxx stop everything

All instructions are coded with four bits at the high end of the byte. LDA, ADD and SUB have an
additional four bits in the low half holding the address in RAM where the operand resides. OUT and HLT
don’t care about their low four bits.

The Memory Address Register (MAR) holds the the address of the memory location

28 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 3

currently being used. This location contains either an instruction or data. Addresses of instructions originate
from the PC in the SAP-1 and addresses of data originate from the low four bits of an instruction.

The instruction register has an eight-bit input for loading an entire instruction. The four-
bit output to the W bus sends the MAR the data address contained in some instructions. The other four-bit
output goes to the controller/sequencer which translates the instruction operation code into control signals
for the devices on the bus.
 Accumulator A can load data from the bus when –LA is active. It outputs its contents to the bus
when EA is active. Register B can only load data. This data is output to the adder / subtractor. The adder /
subtractor also receives data from A. The result of the addition or subtraction is output to the bus when EU
is high. The signal SU causes the unit to subtract when high; otherwise it adds.

Execution of each instruction takes place in up to six steps. Each step starts with a downward
clock transition. Midway through each step the clock rises. The next falling edge marks the beginning of
the next step. A six-bit ring counter keeps track of which step is being executed. The ring counter signals,
labelled T1 through T6, together with the instruction op code determine the control word which actuates the
devices on the bus.

T1 T2 T3 T4 T5 T6

Clock cycle

A control word with all signals inactive can be consider as a “no op” which does nothing:
NOP control word = 0011 1110 0011. A complete instruction cycle is illustrated by the ADD instruction.
The first three steps are common to all instructions and is called the Fetch sequence.

Control words for the Fetch sequence:
Load instruction: 0101 1110 0011 EP –LM active
Increment PC 1011 1110 0011 CP active
Fetch instruction 0010 0110 0011 –CE and –LM active

Fetch Sequence:

A

ALU

B

4

MAR

RAM

OutputIR

CON

PC

CON word

 edge.

A

ALU

B

4

MAR

RAM

OutputIR

CON

PC

CON word

T1: The contents of the program counter are loaded
into the MAR on the positive clock

T2: Positive clock edge advances program counter
by one.

Lecture 3 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 29

A

ALU

B

4

MAR

RAM

OutputIR

CON

PC

–LI

–CE

CON word

T3: The MAR sends an address to the RAM on the
negative clock edge then the contents of the
addressed RAM location are loaded into the
instruction register via the bus on the positive clk
edge.

The next three steps are unique to the ADD instruction.

Control words for the Add sequence:
Get data address 0001 1010 0011 –EI and –LM active
Load B register 0010 1110 0001 –CE and –LB active
Load sum into A 0011 1100 0111 –LA and EU active

A

ALU

B

4

MAR

RAM

OutputIR

CON

PC

CON word

–LM

–EI

ADD sequence:

.

––CE

A

ALU

B

4

MAR

RAM

OutputIR

CON

PC

CON word

–LB

T4: The address field of the Add instruction is
loaded into the MAR via the bus

T5: The contents of the addressed RAM location
are loaded into the B register on the positive clock
edge.

30 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 3

A

ALU

B

4

MAR

RAM

OutputIR

CON

PC

CON word

–LA

EU

T6: On the negative clock edge the ALU sums A
and B registers. The accumulator is loaded with the
sum on the positive clock edge.

Other instructions have similar control word sequences. These control words can be considered to be
microinstructions for a six-instruction microprogram of the ADD process.

Reference: Albert Paul Malvino, Digital Computer Electronics (2nd ed. or 3rd ed.), McGraw Hill
(1983 or 1993)

The Intel 8088 and the IBM PC

The first Intel microprocessor with 16-bit internal registers was the 8088 though in order to
minimize external connections, the 8088 still used an 8-bit data bus. The 8086 has the same internal
architecture as the 8088 but has a 16-bit data bus. Understanding the design of the 8088 serves as a
basis for understanding more advanced Intel microprocessors from the 8086 through the Pentium.

The architecture of the Intel 8088 microprocessor used in the original IBM pc computer is
shown below. There are three internal busses for the flow of data and instructions. AH,HL, BH,BL,
CH,CL and DH,DL are eight-bit data register pairs. SP, BP, SI, DI are the stack pointer, base
pointer, source index and destination index registers. There is a four-byte queue for incoming
instructions which speeds up the processing by preloading the next sequential instructions to be
executed.

The specific purposes of the pointer, index and segment registers can be found in any good
book such as Eggebrecht or Sargent and Shoemaker. The segment registers need some comment.
Normally the 16 bit address field of the 8088 instruction set would allow addressing only 64K (65536
bytes) of data. The 20-bit address line, however, allows addressing up to one megabyte. The 64K
limitation is circumvented by using the segment register to specify a specific region in the one
Mbyte. The contents of the segment register are shifted left four bits and added to the 16-bit
instruction address to form the 20-bit physical address Thus an address of 1 would refer to the
physical address 1 if the segment register were 0. If the segment register were 1 it would refer to 17.
If the segment register were 2, then the physical address would be 33. And so on ad nauseum.
Physical addresses on the pc are written as two numbers separated by a colon (ssss:aaaa) where ssss
is the segment register and aaaa is the address.

It's easy to write programs that use 64K of contiguous memory. But if you want to go
outside this region you have to manipulate the segment register. That's why many pc programs don't
let you have arrays or structures that take up more than 64 K. The 80286 processor in the pc AT also
uses this scheme of things. Real computers have 32-bit words. Starting with Intel’s 80386
microprocessor, 32 bit address and data registers became standard. Segment registers remain for
backwards compatibility.

Lecture 3 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 31

Internal structure of the 8088 microprocessor

Memory Interface

ES

CS

SS

DS

IP

4
3
2
1

AH

BH

CH

DH

SP

AL

BL

CL

DL

BP

SI

DI

A BUS

C BUS

Arithmetic/
Logic Unit

Control
System

Bus-Interface
Unit

Execution
Unit

Operands

Flags

Instruction
Stream Byte
Queue

32 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 3

How segment registers are used to get a 20-bit physical address from a 16-bit logical address

Logical Address

Segment Register

Adder

0000

15 0

15 0

19 0
20 Bit Physical Memory

Address

References:
Lewis C. Eggebrecht, Interfacing to the IBM Personal Computer, 2nd edition, 1990 (1st ed also ok.)
Murray Sargent III, Richard L Shoemaker, The IBM PC from the Inside Out., 1986
Paul Horowitz and Winfield Hill, The Art of Electronics, 2nd ed, Chap. 10, 1989.

Lecture 4 P430–Digital Electronics and Computer Interfacing (revised 9/3/00) 33

Lecture 4

Communication of the Microprocessor with the Outside World

The microprocessor uses an external bus to interface to memory and peripheral devices.
The bus has three parts: Address lines, Data lines and Control lines. For the most part, the lines on
the bus correspond to pins on the 8088 chip. However, the bus control lines are decoded from the
chip status pins, S0, S1 and S2.

The 40 Pins of the 8088 Microprocessor and how they Interface to the Bus

40 Vcc
39 A15
38 A16/S3
37 A17/S4
36 A18/S5
35 A19/S6
34 SS0
33 MN/–MX
32 –RD
31 –RQ/–GT0
30 –RQ/–GT1
29 –Lock
28 –S2
27 –S1
26 –S0
25 QS0
24 QS1
23 –Test
22 Ready
21 Reset

GND 1
A14 2
A13 3
A12 4
A11 5
A10 6
A9 7
A8 8
AD7 9
AD6 10
AD5 11
AD4 12
AD3 13
AD2 14
AD1 15
AD0 16
NMI 17
INTR 18
CLK 19
GND 20

8088
CPU

–S0
–S1
–S2
DEN
DT/–R
ALE

–S0
–S1
–S2

AD0—AD15
A16—A19

8088
CPU

CLK
Ready
Reset

8284
Clock

Generator

RDY

Wait State
Generator

–RES

Vcc

STB

74LS373
(3)

74LS245
(2)

DIR
–G

–MEMR
–MWTC
–MEMW

–IOR
–IOWC

–IOW
–INTA

NC

NC

ADDR/DATA ADDR

DATA

MN/–MX GND

8288
Bus

Controller

34 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 4

The Signals on the 8-bit portion of the ISA bus (IBM PC-XT)

SIGNAL PIN PIN SIGNAL

A0 A31 B31 GND

A1 A30 B30 OSC

⇒

A2 A29 B29 +5V

A3 A28 B28 ALE

A4 A27 B27 T/C

A5 A26 B26 –DACK2

A6 A25 B25 IRQ3

A7 A24 B24 IRQ4

A8 A23 B23 IRQ5

A9 A22 B22 IRQ6

A10 A21 B21 IRQ7

A11 A20 B20 CLOCK

A12 A19 B19 –DACK0

A13 A18 B18 DRQ1

A14 A17 B17 –DACK1

A15 A16 B16 DRQ3

A16 A15 B15 –DACK3

A17 A14 B14 –IOR

A18 A13 B13 –IOW

A19 A12 B12 –MEMR

AEN A11 B11 –MEMW

I/O CH RDY A10 B10 GND

D0 A9 B9 +12V

D1 A8 B8 RESERVED

D2 A7 B7 –12V

D3 A6 B6 DRQ2

D4 A5 B5 –5V

D5 A4 B4 IRQ2

D6 A3 B3 +5V

D7 A2 B2 RESET DRV

–I/O CH CK A1 B1 GND

A
d
d
r
e
s
s

L
i
n
e
s

D
a
t
a

L
i
n
e
s

⇒

Do not confuse
pin label number
with address line
number.

The basic method of interaction is illustrated by the cycle to read a byte of data from
external memory. At the first step the microprocessor puts the address of the desired byte on the
address lines. This happens during the first clock tick, T1. It then expects the external circuitry to

Lecture 4 P430–Digital Electronics and Computer Interfacing (revised 9/3/00) 35

take care of finding the data and putting it on the data lines. The 8088 shares some address lines with
data lines, so the address must be latched externally. The Address Latch Enable (ALE) goes low to
signal when the address should be captured by the external latch. At this time the Data Transmit/–
Receive goes low to show that the bidirectional data lines are to be used to receive data. At the
beginning of tick T2 –MEMR drops low to request the addressed data. DEN rises to connect the
data bus buffer to the 8088 data lines. Before T3 is over, or 342 ns after –MEMR drops, data should
be available. Memory used in these pc's usually take 200ns to respond to a read request. That leaves
plenty of time for the other circuitry to work. The cycle is finished at the end of T4.

Memory Read Bus Cycle Timings for 4.77 MHz Bus Clock

t2 t3

T1 T2 T3 T4
t1processor

clock

ALE t4 t5

valid memory addressA0–A19
t6 t10

t7

MEMR t8

t11

Data must be
valid here

t13

t12 t9 t10

Symbol Max Min

(ns) (ns)

t1 - 209.5

t2 - 124.5

t3 - 71.8

t4 15 -

t5 15 -

t6 128 16

t7 - 91.5

t8 35 10

t9 - 42

t10 - 10

t11 35 10

t12 - 342

t13 - 458.5

D0–D7

Timings vary for systems that operate at higher clock speeds. The ISA bus seldom runs
faster than 10 MHz, even if the microprocessor is much faster. A good rule is to scale the timings to
the clock speed of the ISA bus system. However, due to custom integrated circuits used in some
systems, it is nearly impossible to give absolutely reliable timings for all systems. For example, in a
10 MHz system t1=100 ns, t2=67 ns and t3=33 ns. Timings which are measured from a clock edge
are generally valid independent of clock speed, e.g., t5=15 ns.

The memory write operation works in similar manner except it's –MEMW that signals data
is available on the bus. (See Eggebrecht for complete timing charts of memory and I/O read and write
cycles.)

One way to send or receive data from a peripheral device is to wire it up to respond to
memory read and write instructions. The memory map of the pc shows that locations 640K to 784K
are used by the video display. To display a character, simply write to a memory location in this
range. This is called memory mapped I/O. The 8088 also provides specific instructions for I/O to
peripherals, the IN and OUT instructions. These use address lines A0-A15 allowing 65536 additional
ports. Cards on the ISA bus usually decode only A0-A9, giving 2048 addresses. By convention,
addresses with A9 low are on the motherboard and A9 high is for devices off the mother board. If a
device were designed to respond to adress 911 hex, it would likely activate a device at 111 as well, if
it existed, causing a real emergency. IBM has reserved many I/O address for specific devices. I/O
addresses 300h to 31Fh are reserved for prototype boards. Nevertheless, many ethernet cards use
300h by default, though this can usually be changed either by software, or by fiddling with dip
switches.

The control lines –IOR and –IOW signal data flow for input/output operations like the
–MEMR and –MEMW lines for data read and write. The instruction set for these I/O is not as varied
as for data read and write, but you don't have to reserve empty memory addresses to use them. .

If the device cannot respond fast enough to complete the data transfer within four clock
ticks, it can pull the I/O Channel ReaDY line low. This is an open collector line which suspends
operation of the cpu. When the device has data ready, it allows the line to rise again and the
processor continues. The READY line should not be held low for more than 2 ms, or the memory
won't be refreshed in time and all will be lost.

36 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 4

Decoding the Address
The first circuitry that needs to be made on a peripheral interface is the address decoding

circuit. The software will access the device by calling its "port address." For example the BASIC
statement X=INP(&H300) causes the address lines on the bus to have the following levels:

adr: 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
bin: 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
hex: 0 0 3 0 0

Besides the address lines there are two other control lines which must be monitored. The
AEN being low signifies that the address is coming from the microprocessor. Sometimes the Direct
Memory Access controller can take over the use of the bus temporarily to transfer data directly from
a device to memory. This situation is signalled by AEN going high which means that peripheral
devices expecting output from the micrprocessor should not heed the address lines. Besides AEN the
–IOW and –IOR signals will go low if an OUT or IN instruction respectively has been used to
address the lines. If memory write or read instructions are addressing the bus, the –MEMW or
–MEMR will drop. Only address lines A0–A15 can be activated by an IN or OUT instruction, but a
memory read or write can use all 20 of them.

Decoding is just doing a big AND on all the relevant signal lines. Those lines where a 1 is
expected go directly to the input of the AND gate and those lines where 0 is desired must first pass
through an inverter. The 7430 TTL chip is an eight input NAND gate that is commonly used for this
purpose. The 7420 chip is a four input NAND which is also useful. The figure below shows this
simple-mined decoding arrangement for a four-bit address to decode address A hexidecimal. The
right-hand diagram illustrates a conventional realization.

Simple 4-bit Address Decoding
A0

A1

A2

A3

chip
enable A

chip enable A
A0

A1

A2

A3

In the left-hand diagram the signal “Chip Enable A” is high only when A (1010) appears on
the address lines A3..A0. In the right-hand diagram –(Chip Enable A) is low only when A is on the
address lines. The output of the NAND can be wired directly to an active-low enable input of another
device, such as a latch or three-state buffer. To decode a 16-bit address, the outputs of two 7430s can
be ORed.

Other methods of decoding are more versatile. For example the 74138 takes three address
inputs and activates one of the eight outputs by pulling it low and leaving the others high. There are
also three inputs to enable the chip: two of them must be low and the other high for address decoding
to work. Six lines can be decoded with one 74138 chip to select eight different addresses. Similarly
the 74139 decodes two address bits to four outputs. The outputs of the decoder are sometimes refered
to as Chip Select lines (CS). The 74138 chip can be combined with NAND gates, other 74138s or
74139s by cascading them through one of the enable inputs.

Lecture 4 P430–Digital Electronics and Computer Interfacing (revised 9/3/00) 37

Pin Diagram and Truth Table of the 74 138 integrated circuit

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

C

B

A

7

9

10

11

12

13

14

15

3

2

1

74138

G1
G2A
G2B

6
5
4

enable

G1 G2A G2B C B A Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0
0 x x x x x 1 1 1 1 1 1 1 1
1 1 1 x x x 1 1 1 1 1 1 1 1
1 1 0 x x x 1 1 1 1 1 1 1 1
1 0 1 x x x 1 1 1 1 1 1 1 1
1 0 0 0 0 0 1 1 1 1 1 1 1 0
1 0 0 0 0 1 1 1 1 1 1 1 0 1
1 0 0 0 1 0 1 1 1 1 1 0 1 1
1 0 0 0 1 1 1 1 1 1 0 1 1 1
1 0 0 1 0 0 1 1 1 0 1 1 1 1
1 0 0 1 0 1 1 1 0 1 1 1 1 1
1 0 0 1 1 0 1 0 1 1 1 1 1 1
1 0 0 1 1 1 0 1 1 1 1 1 1 1
x = doesn’t matter

Some devices may need to have addresses which can be changed by a bank of little switches
on the board. The 74688 comparator chip is useful for this purpose. As configured in the circuit
below, the output is low only when all bits of both four-bit input ports are equal. The address select
signal from the comparator could be routed to an enable of a 74’183 which decodes the other address
lines and would allow switching among 15 consequetive I/O addresses. An eight-bit comparator
would allow switching among 128 I/O addresses.

Switch-selectable Address Decode

5V

A0

A1

A2

A3
COMPARATOR

P0

P1

P2

P3

Q0

Q1

Q2

Q3

–(P=Q) –address
select

DIP switch

In rare cases it might be necessary to have several devices with widely varying addresses
decoded on one board. The best solution for this could be PROM (programmable read-only memory)
which can be programmed to output anything for all possible inputs. For example all memory bits
could be 1 except those locations addressed when the desired port address appears on the PROM's
address lines.

38 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 4

Latching and Buffering the Data

Data transfer from the CPU to the peripheral device must be buffered by a latch. This is just
eight flip-flops which are clocked by the result of the address decoder circuit. The latch is necessary
because the desired data is on the data bus only when the address, AEN and –IOW signals are active.
At other times the data bus may contain anything or nothing. The latch stores the data until the next
write to its port. The 74273 latch chip is commonly used.

The timing for the I/O port write operation is shown below. For I/O operations, the
processor inserts an extra clock tick, TW, which is not in the memory write cycle. This wait state can
be extended if the peripheral device needs more time to carry out its task. The extra wait states are
requested by pulling -IOChanRdy line to ground during T2. It is an open collector line so any device
can request a wait state at any time. When the –IOChanRdy line is low on the rising edge in T2, the
CPU inserts wait states until the line is high on the rising of the clock. It will then proceed normally
after the end of the current tick.

Input/Output Write Cycle for the ISA BUS (Timings for 4 .77MHz Bus Clock)

t2 t3

T1 T2 TW T4
t1processor

clock

ALE t4 t5

valid I/O port addressA0–A15
t6 t10

t7

IOW t8

t11

t13

t12

t9

t10

Symbol Max Min

(ns) (ns)

t1 - 209.5

t2 - 124.5

t3 - 71.8

t4 15 -

t5 15 -

t6 128 16

t7 - 91.5

t8 35 10

t9 122 14

t10 - 10

t11 35 10

t12 112 -

t13 - 506.5

D0–D7

T3

valid data from 8088

The I/O read cycle presents the inverse problem. The data must be present on the bus only
when it is requested. If data are there at other times there will be conflict with other devices using the
bus. Gating the data to the bus at the precise time is accomplished with the 74241 tri-state buffer.
This has two groups of four-bit buffers. One group is enabled by an active-low signal (pin 1), the
other by an active-high signal (pin 19). Thus both the inverted and the non-inverted address decode
signals are used.

Lecture 4 P430–Digital Electronics and Computer Interfacing (revised 9/3/00) 39

I/O Read Cycle Timing

t2 t3

T1 T2 TW T4
t1processor

clock

ALE t4 t5

valid I/O port addressA0–A15
t6 t10

t7

IOR t8

t11

Data must be
valid here

t13

t12 t9 t10

Symbol Max Min

(ns) (ns)

t1 - 209.5

t2 - 124.5

t3 - 71.8

t4 15 -

t5 15 -

t6 128 16

t7 - 91.5

t8 35 10

t9 - 42

t10 - 10

t11 35 10

t12 - 551.5

t13 - 668

D0–D7

T3

The 68000 Series of Microprocessors

The Motorola 68000 series of microprocessors is used in many small computers like the
Macintosh, Amiga, Atari and NeXT. These microprocessors are derived from the older 6800 chip,
but Motorola, unlike Intel, decided to completely redesign the architecture and instruction set when
upgrading from its first-generation products. All members of the 68000 series have internal 32-bit
registers. There are eight data registers, seven address registers, two stack pointers a program counter
and a 16-bit status register. Notice the refreshing lack of segment registers. The lowest member of the
series, the 68008, interfaces to an eight-bit data bus and 20-bit address bus labelled A0 through A19.
The standard-bearer, the 68000 has a 16-bit data bus and a 23-bit address bus with lines labelled A1
through A23. Because of the 16-bit data bus, the lowest bit of the address is unnecessary. Only 16-bit
words beginning with an even-numbered byte can be addressed.

40 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 4

The 68000 Registers

D0
D1
D2
D3
D4
D5
D6
D7

31 16 15 8 7 0

byte

word
long

A0
A1
A2
A3
A4
A5
A6

31 16 15 8 7 0

stack pointer

alternate stack pointer

program counter

A7

A7

PC

status register

system user

Data Bus

Address Bus

Data are moved between registers or between a register and a memory location using the
MOVE instruction. One may request a byte move, a 16-bit word move or a full 32-bit "long" word
move by suffixing the MOVE with either a B, W or L. For example MOVE.W D0,D1 moves the 16
low-order bits of register D0 to register D1. MOVE.B D2,$C0000 moves the low-order byte of
register D2 to memory location $C0000. The full 32-bit memory address was included in the
instruction. It is also possible to use the contents of one of the address registers to refer to a memory
location. MOVE.L D3,(A0) would move all 32 bits of data register D3 to the four bytes of memory
starting at the location whose address is in A0. The contents of A0 would have been previously
loaded with a MOVEA instruction. Other addressing modes are possible such as post-incrementing,
pre-decrementing, and immediate. The versatility of the MOVE instruction illustrates the convenient
way the 68000 instruction set has been designed. All members of the 68000 series use the same
instructions. Further information on the instruction set can be found in Horowitz and Hill (2nd ed.) or
other good books on this microprocessor.

There are no separate instructions for peripheral input and output. The 68000 uses memory-
mapped I/O. This is really no problem because the extra one or two signal lines needed for port I/O
such as Intel uses can provide for addressing more memory. In addition, the full power of the
instruction set can be used on peripheral data as well as on memory data. The IN and OUT
instructions in the 8088 require all data to pass through the accumulator (register A). A simple bit-test
of an I/O port requires about five instructions. One instruction suffices if you are using the 68000

Lecture 4 P430–Digital Electronics and Computer Interfacing (revised 9/3/00) 41

instruction set. The only inconvenience with memory-mapped I/O is that all address bits must be
decoded on peripheral interface boards instead of just those consecrated for an I/O port.

The bus interfacing signals also reveal a slightly different philosophy at Motorola as
opposed to Intel. There is one R/–W signal which indicates whether the next data transfer will be
input or output. The "data strobe" line, –DS, initiates the data transfer after valid data are on the bus
and the R/–W line has been set up. There is an analogous –AS, "address strobe," which indicates a
valid address on the address bus, but it isn't usually needed. The –DTACK signal allows peripherals
to slow down the read process until the data are ready. –DTACK is by default high and can be pulled
low by any peripheral using a "wired or," open collector arrangement. After asserting –DS the cpu
expectes an acknowledgment in the form of –DTACK going low. If this acknowledgment doesn't
occur before the end of clock cycle S4, extra wait states are inserted. Reasonably competent (fast)
peripheral devices will assert –DTACK upon decoding its address. If one is sure all devices are fast
enough, –DTACK can be permanently tied low for so-called "DTACK-grounded" operation. (Other
similar terms are "zero-wait-state" and "pedal-to-the-metal.")

Motorola 68000 Bus Signals and Interface Circuitry Example

Vcc

gnd (2)

CLK

FC0

VC1

FC2

E

–VPA

–BERR

–RESET

–HALT

A0
.
.

A19

D0
.
.

D7

–AS
R/–W
–DS

–DTACK

–BR
–BG

–IPLO/–IPL2
–IPL1

MC68008
Microprocessor

(48 pin version)

Address
Bus

Data
Bus

Processor
Status

M6800
Peripheral

control

system
control

asynchronous
bus

control

bus arbitration
control

interrupt
control

D Q

CLR

D Q

CLR

E

A0-A19
20

–INTA

–DS

R/–W

–DTACK
pullup at cpu

from
peripheral

D0-D7 8

D0-D7
8

to peripheral

address
decode

42 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 4

68000 Read/Write Timing

s0 s1 s2 s3 s4 s5 s6 s7 s0
CLK

A0-A19

–AS

R/–W

–DS

D0-D7

R/–W

–DS

D0-D7

125 ns

30 min

80 min 140 min

35 min 50 min

valid address

valid data

valid data

270 min

30 min 237 max

Read
Cycle

Write
Cycle

290 max

–DTACK

Lecture 4 P430–Digital Electronics and Computer Interfacing (revised 9/3/00) 43

Fully Asynchronous Bus Protocols

The PDP-11 unibus is an example of asynchronous handshaking protocol. When the CPU
wants to convey data to a peripheral or memory, it puts the address on the bus and activates the
MASTER line. The peripheral reads the data and then raises the SLAVE line to say, "I've got it."
The MASTER line is then dropped to say, "I see you got it" and then the SLAVE drops signifying "I
see you see I got it." Similarly the read cycle starts with the CPU putting the address on the line and
then raises MASTER. The peripheral then puts the data on the line and raises the SLAVE line. When
the CPU gets the data it lowers MASTER and the peripheral acknowledges by lowering SLAVE and
removing the data from the bus. IBM's microchannel bus uses asynchronous handshaking.

PDP-11 Asynchronous Read/Write Protocol

75
ns

150
ns

75
ns

address and
command

master

slave

data

read cycle

S to M

write cycle

M to S

75
ns

44 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 4

Simplified 8086/8088 Instruction Set

arithmetic

MOV b,a move a → b; a unchanged
ADD b,a add a + b →b; a unchanged
SUB b,a subtract a - b →b; a unchanged
AND b,a and a AND b →b bitwise; a unchanged
OR b,a or a OR b →b bitwise; a unchanged
CMP b,a compare set flags as if a - b; a, b

unchanged
INC rm increment rm + 1 →rm
DEC rm decrement rm - 1 →rm
NOT rm not 1's complement of rm → rm
NEG rm negate 2's complement of rm → rm

stack

PUSH rm push push rm onto stack (2 bytes)
POP rm pop pop 2 bytes from stack into rm

control

JMP label jump jump to instruction label
Jcc label jump jump to instruction label if cc is

true
CALL label call push next address, jump to

instruction label
RET return pop stack and jump to that address
IRET return from interrupt pop stack, restore flags and

return
STI set interrupt enable interrupts
CLI clear interrupt disable interrupts

input/output

IN AX(AL),port input port → AX (or AL)
OUT port,AX(AL) output AX (or AL) → port

notes
b,a: any of memory,register register,memory memory,immediate

immediate,register
rm any of register or memory via various addressing modes
cc any of Z NZ G GE LE L C NC

(zero, not zero, greater than, greater than or equal, less than or equal, less
than, carry set, carry not set)

label via various addressing modes
port byte (via imm) or word (via DX)

Lecture 5 Physics 430–Digital Electronics and Computer Interfacing 45

Lecture 5

The 8255 Programmable Peripheral Interface

The combination of an output data latch and a tristate buffer is very common on peripheral
interfaces. A number of specialized integrated circuits have been developed which combine these
two functions on one chip. Most of these ICs also provide for handshaking, strobing of input data and
hardware interrupt interfacing. One of the earliest of these multi-purpose interfacing chips is Intel's
8255 Programmable Peripheral Interface, PPI. The 8255 was originally developed for the 8008
microprocessor and is useful for interfacing to almost any eight-bit data bus, although it fits Intel's
protocol the best. A block diagram of the 8255 below illustrates its functions.

Functional Block Diagram and Pin-out of the P255A PPI

Port A
(8)

Port B
(8)

Port C
(upper 4)

Port C
(lower 4)

PA7...
PA0

PB7...
PB0

PC7...
PC4

PC3...
PC0

Group A

Group B

Group A
Control

Group B
Control

Data
Bus
Buffer

Read
Write
Control
Logic

D7...
D0

–RD
–WR

A1
A0

Reset

–CS

8255A PPI

Bidirectional
Data Bus

I/O
PA4 40
PA5 39
PA6 38
PA7 37
–WR 36
reset 35

D0 34
D1 33
D2 32
D3 31
D4 30
D5 29
D6 28
D7 27

Vcc 26
PB7 25
PB6 24
PB5 23
PB4 22
PB3 21

1 PA3
2 PA2
3 PA1
4 PA0
5 –RD
6 –CS
7 GND
8 A1
9 A0
10 PC7
11 PC6
12 PC5
13 PC4
14 PC0
15 PC1
16 PC2
17 PC3
18 PB0
19 PB1
20 PB2

The computer-side lines D0-D7 connect directly to the eight-bit data bus for either input or
output to the peripheral device. The –CS (chip select) pin is driven by the address decoding circuitry.
–CS must be low to enable the PPI's operation. In addition there are two address lines, A0 and A1.
These should be connected to two of the buss address lines that are not decoded by the decode logic.
This will allow the 8255 to respond to three seperate address for three distinct uses. It is convenient
to use the lowest address bits from the bus, A0 and A1, to connect to the chip's A0 and A1 pins thus
making the chip's three addresses consecutive. The –I/ORD and –I/OWR bus lines connect to the
correspondingly labelled pins on the chip.

The peripheral-side lines are grouped in to three eight-bit ports, A, B and C. The C port is
further subdivided into two groups of four-bit nibbles, called upper C (PC4-PC7) and lower C (PC0-
PC3). At any time, only one of the eight-bit ports is active. The active port is chosen by the chip's
address lines: A0=0, A1=0 choses port A; A0=0, A1=1 chooses port B; and A0=1, A1=0 selects port
C. The functioning of the chip can be controlled by writing to its control register which is addressed
by A0=1, A1=1.

Mode 0 of the 8255 interface chip

There are three modes of operating the 8255 PPI. Mode 0 is the simplest. It latches output
data and buffers input data but provides no handshaking, strobing or interrupt signals. An eight-bit
control word written to the control register determines whether a port is in mode 0, 1 or 2 and
whether the port is to be used for input or output. The bits of the control word are described in the
illustration below.

46 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 5

8255 Mode Set Control Word (See 8255 Data sheet fig. 6 for another representation)

CW Bit 0 1

D7 bit set/reset mode set Determines function of control word

Port Group
D6 mode 0 or 1 mode 2 A,C-up A (If D7,D6 = 00: mode 0;
D5 mode 0 or 2 mode 1 or 2 A,C-up A 01: mode 1; 1x: mode 2)
D4 output input A A
D3 output input C-up A
D2 mode 0 mode 1 B,C-low B
D1 output input C-low B

When used for mode definition, bit 7 of the control word is always set to 1. Port A and the
lower nibble of C are controlled together and are called group A. Bits 6 and 5 select the mode for
both port A and lower C (C0-C3). D6=0, D5=0 chooses mode 0 for group A. D4 determines whether
group A is used for input to the computer, or output to the peripheral. 1 is for input and 0 for output.
(The mnenonic 1=I, 0=O fails if you forget whether it refers to input to the computer or input to the
chip! All references to input or output here are with respect to the computer.) D3 set the input/output
state of all four lower C lines. D2 determines whether the mode of port B and upper C is 0 or 1 and,
finally, bits D1 and D0 are the I/O bits of port B and upper C respectively.

All 16 control words for mode 0 operation are illustrated in the 8255 data sheet. As an
example suppose you want to select mode 0 for all ports with port A and upper C as output and port
B and lower C for input. The control word would be determined as follows

Mode select D7 = 1
Group A in mode 0 D6 = 0 8 (hex)

D5 = 0
Port A is output D4 = 0

Port C upper is input D3 = 1
Group B in mode 0 D2 = 0 A (hex)
Port B is input D1 = 1
Port C lower is output D0 = 0

In lab 3, the Q0 output of the 74138 decoder selects the separate latch and data buffer chips
when addressed by 300 hex. In Lab 4 we direct Q1 to the –CS line of the 8255. Port A is addressed
by 304 hex, port B by 305, port C by 306 and the control register by 307. Every port has its own
address even though for mode selection, lower C is grouped with port A and port B is grouped with
upper C. In this example Port C may be used either for input or output but a different nibble is
involved in each case. An OUT instruction to address 307 hex with the data 8A will set up the
operation as specified above.

The output ports latch the data on the bus when the PPI's –WR line goes low. The output
port chosen by the address lines will hold the data until the next write operation. The mode 0 data
output timing is illustrated below. The port address must be on A0 and A1 before the –WR drops to
signal a write request. The data on D0-D7 should be stable at least 100 ns before and 30 ns after the
write request signal rises again. This data will appear on the addressed output port no later than 350
ns after –WR rises. The address lines must remain stable 20 ns after –WR rises.

Please refer to the MODE 0 (Basic Output) timing diagram in the 8255 data sheet, p. 3-106

The input ports do not latch the data. When the –RD line drops, whatever is on the
addressed input port at that time will appear on D0–D7 and be read by the CPU. The timing diagram
shows the protocol. First the address lines select the port. Then the input data should be present
before the –RD requests input. The data lines will contain valid data a maximum of 250 ns after the
request. The important point is that the data should be stable on the port during the time that –RD is
low, a minimum of 300 ns. (If you are using the newer CMOS version, 82C55A, timings are more

Lecture 5 Physics 430–Digital Electronics and Computer Interfacing 47

lax, e.g. –RD can be low 150 ns minimum.)

More elaborate interfacing techniques of mode 1 or 2 can be used if the simple mode 0
operation is insufficient.

Please refer to the MODE 0 (Basic Input) timing diagram in the 8255 data sheet, p. 3-105.

Mode 1 of the 8255

Mode 1 allows the input data to be strobed. That is to say, the data are latched into the
buffer when the –STB line goes low. In mode 0, the data were captured at read time. Thus mode 1
allows the peripheral, not the CPU, to determine when valid data will be entered onto the port. It
then sets the IBF (input buffer full) flip-flop high to indicate that data are ready for reading. The
computer can poll IBF to see if the data are ready, After reading them, it resets the IBF flip-flip to
low on the rising edge of the –RD signal. Ports A and B use different pins of port C for these
handshaking signals, so they may be hand-shaken separately. The pins of port C that are not used for
handshaking may be used for other input or output if needed. Whether they are used for input or
output is determined, as before, by the control word bits for upper and lower port C.

Mode 1 output uses a –OBF (output buffer full) flip-flop to signal that data have been
written to the output port. –OBF is set by the rising edge of –WR. The peripheral can then
acknowledge reception of this data on the –ACK line. A low on –ACK acknowledges data reception
and resets the –OBF flip-flop.

Interrupt processing in Mode 1

Both mode 1 input and output provide an interrupt request signal, INTR. INTR will not be
operative unless its interrupt-enable flip-flop is set. Interrupts are enabled by writing a special word
to the control register which sets this flip-flop. Likewise interrupt processing for a port is disabled by
resetting its flip-flop.

Mode 1 Signals and Pins

 I/O INTE control word –STB IBF –OBF –ACK INTR
port flip-flop set reset bit pin bit pin bit pin bit pin bit pin

bit pin
in A C4 13 0xxx1001 0xxx1000 C4 13 C5 12 C3 17
in B C2 16 0xxx0101 0xxx0100 C2 16 C1 15 C0 14

out A C6 11 0xxx1101 0xxx1100 C7 10 C6 11 C3 17

out B C2 16 0xxx0101 0xxx0100 C1 15 C2 16 C0 14

In contrast to the mode definition control word, the control word to set the port C flip-flops has bit 7
= 0 . The set/reset status is indicated by bit 0 being 1 or 0 respectively. Bits 1, 2 and 3 is the binary
number of the port C flip-flop to be set or reset.

The input INTR line goes high when –STB is 1 and IBF is 1 signalling that data have been
loaded. For input, INTR is reset by the rising edge of –RD. The output interrupt request is high in
order to signal that output data have been received by the peripheral. It is set when –ACK is 1 and
and –OBF is 1, and is reset by the falling edge of –WR.

The diagrams in the data sheet illustrate the operation of mode 1.

Please refer to the MODE 1 (Strobed Input) timing diagram in the 8255 data sheet, fig. 9, p. 3-110.
Please refer to the MODE 1 (Strobed Output) timing diagram in the 8255 data sheet, fig. 11, p. 3-111.

Mode 2 of the 8255

Bidirectional input/output can be handled with mode 2. Only group A is used and the
handshaking signals are congruent to the mode 1 signals, except that both the input and output signals

48 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 5

are available. Interrupt enable, INTE, is controlled by the same flip-flops as for mode 1, port A: C6
for output and C4 for input. If –STB is 0, input is indicated and the bus can transfer data to the CPU.
Similarly, a low –ACK enables the three-state output buffer which is otherwise in a high-impedance
state. If you understand mode 1, then the following diagrams should be enough to give a general idea
of mode 2 operation.

Please refer the MODE 2 (Bidirectional) timing diagram in the 8255 data sheet, fig. 15, p. 3-113.

Other Interface Chips

There are various other parallel interface chips. The 6821 is a very versatile member of the
"68" family which is called PIA for Peripheral Interface Adapter. Its functioning is similar to the
6820 and 6521. The 6821 has six registers occupying four addresses. Each port has one data
register, one control register and one data direction register. This last feature distinguishes it from
the 8255 because each bit of a port can be defined as either input or output. Handshaking and
interrupt signals are also available. The 6822 operates like the 6821 except its outputs are open drain
and are capable of interfacing to non-TTL levels up to about 15 V. This is useful in laboratory or
industrial applications where many instruments use BCD outputs with voltage levels of 12 to 14 V.
This 6822 is called an Industrial Interface Adapter, IIA, for this reason. The diagram and discussion
of the 6821 PIA and its relations can be found in Ciarcia’s Circuit Cellar of August 1986 BYTE
magazine, ”Parallel Interfacing: A tutorial Discussion.”

The 6821 Peripheral Interface Adapter

Lecture 5 Physics 430–Digital Electronics and Computer Interfacing 49

Lecture 6 Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00) 51

Lecture 6

The 8253 Programmable Interval Timer

The 8253 Programmable Interval Timer can be used for a variety of counting and timing
applications. Its interface to the computer bus is almost identical to the 8255 programmable
peripheral interface with eight data lines, read and write signal inputs and a chip select and two
address pins. Only the reset input is missing. The circuit contains three independent counters and a
control register corresponding the four adresses of a chip. Each counter provides one output and
accepts a clock input and a gate input. All timing applications are controlled by the clock inputs
which may be any frequency up to 2.6 MHz. If faster clock rates are required, the 8254 or 8254-2 IC
will operate up to 10 MHz. Each of the three counters can be programmed to operate in one of six
modes by writing to the control register.

Programmimg the control register

In order to use any of the counters, a control word must be sent to the control register to
define the mode of that counter and then the counter register must be loaded. The state of a counter
is undefined before it is programmed. There is no initial or default start-up state.

The control register is programmed by making A0,A1 = 11 and lowering the –WR input.
After programming the control register, the counter must receive its data, either one or two bytes
depending on bits D4 and D5 of the control word. If a two-byte count has been requested, the least
significant byte is sent first and then the most significant. These bytes are written by addressing the
counter in question. These count bytes can be sent out any time after the control word for that
counter has been sent. For example, the control words for the three counters can be sent
consecutively, then all the count bytes for all the three counters. The only thing that matters is that
any particular counter gets its own bytes in order: 1. Control word, 2. least significant byte, 3. most
significant byte. The format of the first control word is described by the following diagram.

The six modes of the 8253

The function of each mode is described very nicely in the data sheet. Here we will just
glance at the general function of each mode and leave the details to the official data sheet. In general
the counter will count down from the number it has received and then do something with the output
line. The gate input can affect the counting is several ways depending on the mode. Sometimes it
delays, sometimes it triggers. Counting is always down from the count register value and can be done
in binary or decimal depending on the BCD bit, D0, of the control word: 1=binary coded decimal,
0=binary. A control register value of zero specifies the largest possible count: 216 for binary or 104

for BCD.

Mode 0 is the basic timing operation. The output line starts low after the mode is programmed.
Immediately after the count register is loaded, it starts counting down and raises the output when the
count reaches zero. The output remains high until the mode is set again. Counting stops temporarily
if the gate goes low during the count.

Mode 1 is a programmable one-shot. It is similar to mode 0 except that the output waits until the
rising edge of the gate before it goes low. The counting starts at that time and the output rises when
finished. If the gate drops and rises again any time during the count the counter is retriggered, i.e.,
the count restarts from the beginning and the output will remain low for the full count period.

Mode 2 is called a rate generator. It will start with the output low for one clock tick. It then rises for
the number of counts programmed and drops for one count again. This repeats. Thus a one-tick low
pulse is produced every so many counts. A low gate input forces the output high. When the gate goes
low the process starts over again. Thus the gate can be used to synchronize the pulses.

Mode 3 is a square wave generator. Like mode 2, it switches from high to low every so many counts,
but unlike mode 2 it spends half the time high and half low if the intial count is even. If the count
register is set to an odd number the output spends one more count high than low.

Mode 4 is a software triggered strobe. The output is high when the count is loaded and remains high
until the count terminates. Then the output goes low for one tick and rises again. It doesn’t repeat.
Counting is inhibited when the gate is low.

Mode 5 is a hardware triggered strobe. Here the count starts when the gate rises. The output is low

52 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Lecture 6

for only one clock tick after the countdown from the count register value.

Reading the counter

The value of the count may be read by the computer. There are two situations: (1) The
counting is stopped, or (2) the count is progressing.

In the first case, the gate or a stopped clock may be inhibiting the count. Then a simple IN
instruction, addressed to the counter’s own port will read the current count. Two bytes must be read
if a two-byte load has been specified by the control word written out before. The least significant
byte is read first, followed by the most significant byte.

If the count is progressing, the counter value should be latched by writing a special word to
the control register. If you try to read the count while it is going on, funny things might happen. The
latching command word is just the counter number followed by two zeros. The two high bits, D7,D6
of control word that latches the count indicate the counter you want to read. The next two bits, D5,D4
must be zero and the other bits can be anything. The next read of the counter specified by D5,D4
will return the count value at the time of the latching command.

Lecture 7 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 53

Lecture 7

The Real World

The pristine world of computing is all too often shattered by the need to deal with the real world.
This unforgiving world almost never prepares its data in binary or BCD form. Some control and data
monitoring may be done by opening or closing a single switch or monitoring an electrical contact. But in
general, if a computer is to control the world, or even a small part of it, internal binary data must be
converted to an analog quantity like a voltage or current that is variable. This analog voltage can then be
translated to movement, pressure, heat or other physical quantity. On the other hand, if the computer is to
measure the world, the analog measures of physical significance have to be converted to digital form. For
digital to analog conversion several lines of binary digital data, e.g, 0 or 5 V each, are translated to a one
analog voltage. For analog to digital conversion a single variable signal is translated into, say, eight,
twelve, or sixteen binary signals.

Digital -to-Analog Conversion

A straight-forward way to convert several lines of binary signals into an analog voltage, is to have
each line control a switch which connects a resistor in series with a voltage source. A current proportional
to the binary number is obtained if the high order bit switches in a resistance R, the next lower bit switches
in 2R, the next 4R, etc. If eight bits are to be converted, the lowest bit should connect a resistor 27 or 128
times the value of the resistor controlled by the highest bit. The eight bits, D0…D7, can be thought of as
forming binary fraction between 0 and 1-2-8 = 0.9961. The current pulled from a voltage source, V, is
given by

Iout =
V
R

 ()D7 +
D6
2

 +
D5
4

 +
D4
8

 +
D3
16

 +
D2
32

 +
D1
64

 +
D0
128

The negative input of an operational amplifier is a virtual ground, so the circuit below (shown for four bits)
will convert this current to a voltage determined by the feedback resistor Rf.

Vout = IoutRf.

Simple 4-bit digital-analog converter using a binary resistance ladder

–
+

V
R

2R

4R

8R
LSB

MSB
SW1

SW2

SW3

SW4

ref

R
F

Binary "1" = switch closed
Binary "0" = switch open

V
out

Vout = ()–Vref
R

 +
–Vref
2R

 +
–Vref
4R

 +
–Vref
8R

 RF

This sort of bit-weighted resistor network is convenient for converting a small number of bits, but
soon gets out of hand if many more than eight bits are in the number. For example, a sixteen-bit number
would require that the smallest resistor be 2–15 times smaller than the largest. So if R were 100 Ω, the
lowest bit would switch in a resistor of over 3 MΩ. It's difficult to get matched resistors over such a large
range of values. Their temperature characteristics are likely much different and accuracy will suffer.
Therefore another method can be used which is extendible to as many bits as necessary, the R-2R ladder.

54 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 7

Digital-analog converter using the R-2R Ladder

–
+

V

MSB

ref

R
F

Binary "1" = switch up
Binary "0" = switch down

V
out

R

2R

R

2R

R

2R

2R

2R

1

0

D3 D2 D1 D0

LSB

At each successive node down the ladder, the impedance of each branch is equal so the current
flowing into the node is divided equally between the two other branches. Therefore the current in the
ladder is halved at each node. The total current flowing from Vref is Vref/R. The current flowing to switch
D3 is Vref/2R. The current in switch D2 is one-half that in D3.; the current in D1 is one-quarter that in D3
and so forth. If a switch is in the “1” position, the current is routed through RF and contributes to Vout.
Otherswise the current flows directly to ground. Thus the current flowing through RF, and hence the
voltage at the output, is proportional to the binary number selected by the switches D3–D0.

It's very easy to build a ladder from a matched set of resistors. In fact you can use only one
resistance value if a series combination is used for the 2R values. This R-2R ladder is found in most
packaged A/D converters. In Lab 6 we connect the MC1408 current-output, multiplying A/D converter. It
puts out a current which is proportional to a reference current. It is called multiplying because the output
current equals the binary input number multiplied by one-half of the reference current:

Iout = Iref ()D7
2

 +
D6
4

 +
D5
8

 +
D4
16

 +
D3
32

 +
D2
64

 +
D1
128

 +
D0
256

.

D7 is the most significant bit and D0, the least significant bit. The Motorola data sheet refers to the most
significant bit as A1 and the least as A8. The settling time of the 1408's output is about 300 ns.

The current output is usually converted to a voltage by sending it to the input of an operational
amplifier. The op amp keeps the input at ground potential but, because of the amplifier's high input
impedance, almost all the current must pass through the feedback resistor. Therefore, the voltage at the
output is –IoutRf. Usually Iref and Iout both flow into the circuit. They are negative and the output voltage
from the op amp is positive. The following circuit shows the 1408 connected to an op amp and provides
both a span and offset adjustment.

Lecture 7 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 55

Schematic diagram of the 8-bit MC1408-8-based multiplying digital-to-analog converter with
span and offset adjustments

There exist pre-packaged D/A converters containing address decoding logic along with the
multiplying D/A and current to voltage converter. The Analog Devices AD558 takes write enable (–WR or
–CE) and chip select (–CS) inputs as well as eight data bits and it outputs a voltage between 0 to 2.56 V.
The AD558 doesn't need a separate reference signal and requires fewer external components. Its settling
time is less than 1 µs.

The Analog Devices AD558 digital-to-analog converter

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

LSB

MSB

AD558

Vout
Vout sense

Vout select

GND

GND

+Vcc
CS

CE

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

AD558 Functional Block Diagram

I2L LatchesI2L
Control
Logic

CE CS

Control Inputs Digital Data Inputs

DB0 DB7

8-bit Voltage Switching
D/A Converter

Vout sense

Vout select

V out
+

–

Band Gap
Reference

Output
Amp

56 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 7

Analog-to-Digital Conversion

Conversion of an analog voltage to a binary value is fairly easy once a Digital to Analog converter
is available. Though there are several methods of doing D/A conversion a common method is just a
guessing game. The analog voltage to be digitized is compared to the output of a D/A where an initial
"guess" is used to drive the D/A. The comparator circuit is just an op amp which saturates at about +5 V
or –5 V depending on whether the guess is too high or too low. The output of this comparator could be
monitored by an input port of the computer and a software algorithm could be used to home in on the right
value. Alternatively, if faster conversions are necessary, a hardware circuit could search for the right
answer.

The easiest search method consists of starting from zero and increasing the guess until it gets too
high. A faster method starts in the middle of the range and continues to divide the range by halves until its
finished. This is done by sequentially turning on the bits from high to low and leaving them on or off
according to the result of the comparison. Software and hardware implementations of this successive
approximation method are illustrated below.

Software controlled 8-bit analog-to-digital converter

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

Vout

Sense

Select

GND

+VccCS

CE

wr
cs

to
data
bus

+

–
311

to a bit of
a parallel
input port

vin

0–10 V

+15 V
comparator

Block diagram of 8-bit successive approximation A/D conversion

IN

lock

out

Analog
Reference

Digital-to-Analog
Converter

Successive Approximation
Register

Start
Conversion

-bit
arallel
utput

SB SB SB

SB

omparator

erial
utputlk

In Lab 6 we will play with the ADC0801 A/D converter. Besides an input for the voltage to be
converted, there are several control lines for interfacing to the computer bus. –CS is the chip select signal
which can come from the address decoding circuit or it can be grounded permanently. –WR is the write
input which is used for resetting and initiating the data conversion. A 0 to 1 transition on this line resets the
converter. The –INTR output goes low when a conversion has finished and rises again after either –RD and

Lecture 7 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 57

–WR drops because of either a read or a reset. The ADC0801 contains an internal clock with nominal
frequency of 640 kHz. A conversion takes 66 to 73 of its clock cycles so a typical conversion could take up
to 12 ms. The ADC0801 data sheet shows various configurations for using the converter.

If several analog inputs are to be monitored, the ADC0816 (National Semiconductor) has up to
sixteen multiplexed inputs which are addressed with four address bits and can be read into a single tri-state
latch buffer.

The ADC0816 has sixteen multiplexed input channels

16
Analog
Inputs

16
Channels

Multiplexing
Analog

Switches

Address
Decoder

4 Bit
Address

3-State
Output
Buffer

Start ClockComparator In

Common

End of
Conversion

8 Bit
Outputs

Ref + Ref –

8-bit
Successive

Approximation
Analog/Digital

Convertor

Address Latch Enable

Expansion Control

Other A/D Conversion Methods

If greater accuracy is required and speed is not so important, a voltage-to-frequency converter
produces pulses at a rate which is proportional to the input voltage. The digital value is obtained by
counting the number of pulses in a known time period. Long integration times provide very accurate,
average values of the quantity measured.

Another method for slow but accurate results is the dual-slope integrating A/D converter. It
integrates a positive input voltage Vin for a fixed time t1 and then integrates a fixed negative reference
voltage Vref until the op amp output voltage is driven back to zero. The time t2 required to get the output
back to zero is a measure of Vin.

58 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 7

A Dual-Slope Integrating A/D Converter

–

+
Vref

Vin

Clk
Start

digital
output

Control

Counter

comparatorR

C

Vo

Conversion
Complete

fixed time ∆t ∝ Vin

Vcap

I ∝ Vin I=const

t

For very fast conversions, the flash A/D converter simultaneously compares the input voltage to a
series of reference voltages through several comparators. In the diagram below, equally spaced voltage
levels are compared. The 74348 priority encoder converts the outputs of the comparators to a three-bit
octal value. A typical conversion time is about 20 ns.

A Flash A/D Converter
Vref

6

R

5

R

4

R

3

R

2

R

1

R

0

comparators

Vin

0
1
2
3
4
5
6
7

octal
value

74348
priority

encoder

273
Latch

sel

Lecture 7 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 59

A-D Conversion Problems
In principle an analog quantity can have an uncountable infinity of possible values whereas a

digital quantity can have only a countable infinity of possible values. This fundamental difference becomes
irrelevant in real world measurements because of measurement inaccuracies in the instrumentation or the
operator. If we confine ourselves to a fixed interval, 0–1 V for example, any measured analog quantity can
have only a finite number of distinguishable values. The number of bits that must be used so that the digital
representation does not suffer a loss in accuracy depends on the accuracy of the measurement method.
Common A/D converters used 8, 12 or 16 bits. Exceptional cases may require more bits. No conversion can
represent a value with greater accuracy than ±1/2 the value of the least significant bit. For eight bits this
accuracy is 1/256 or ±0.2% of the conversion range. In practice it is preferable for the conversion to be
much more accurate than the measurement itself.

The number of bits in the conversion sets a limit on the analog-digital conversion accuracy. Other
errors may creep into the conversion process as illustrated in the following figure.

Possible Conversion Errors in analog-digital Conversion

60 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 7

The time scale of conversion is another consideration. Any input signal my contain a range of
frequency components. The upper limit of the conversion frequency is limited by Nyquist’s theorem which
states that the sampling rate should be at least twice the highest frequency present in the input. Higher
frequeies will be distorted after digitization. High frequencies sampled at too low a rate are “aliased” too
lower frequencies, i.e., they appear to be a lower frequency in the reconstructed waveform. Thus the
sampling rate set an upper limit to the freqnency which can be digitized and higher frequencies must be
removed before digitization by using a preconditioning filter.

An active low-pass filter works better than a passive RC filter to eliminate unwanted high
frequencies. Remember, if the critical frequency of a passive low-pass filter is st at 10,000 Hz, for example,
there still remains after filtering about 10% of any component around 100,000 Hz and 50% at 20,000 Hz.
An active filter, such as the Butterworth filter, has much better stop-band attenuation. The two-pole
Butterworth design attenuates 40dB (99%) at f = 10fc and 12 dB (75%) at f = 2fc . Better stop-band
response can be with more poles and other designs, such as the Chebyshev. Better stop-band attenuation is
usually achieved at the expense of flat frequency response in the pass band.

Design of a two-pole low-pass filter. For the Butterworth design choose R1 = R2 and C1 = C2, Fc
= 1/2πRC and K=1.586.

Another issue of concern is variation of the input signal during the conversion process. A rapidly
varying input can confound a successive-approximation converter. Other methods, such as dual-slope or
voltage-frequency conversion may not be bothered by rapidly varying input voltages. A sample-and-hold
circuit keeps the voltage on the A/D input constant until conversion is finished. The sample-and-hold
circuit relies on charging a capacitor up to the sample voltage and discharging after digitization is complete.

Lecture 7 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 61

Sample and Hold circuits

Horowitz and Hill, The Art of Electronics, sections 9.15-9.26, p 612 ff
For a good time, read Ciarcia's Circuit Cellar articles on A/D and D/A convertors:

BYTE, September 1977, p30, (reprinted in Ciarcia's Circuit Cellar, Vol. I)
BYTE, January 1982, p. 72, (reprinted in Ciarcia's Circuit Cellar Vol VI)
BYTE, January 1986, p. 105.

Lecture 8 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 63

Lecture 8

Motion

Two common devices used to move things with computers are servo-motors and stepping motors.
Servo-motors are called closed-loop devices. There must be some method to measure the position of the
motor and feed this position back to the computer. The computer can quickly control the position by
reading the current position back to the computer. The computer can quickly control the motor by reading
its current position and then sending the motor signals necessary to bring its position to that desired. The
other method, stepping motors, move in discrete increments. These can be used in an open-loop fashion
where one relies on the motor stepping according to the computer's command.

Stepping Motors

Stepping motors advance a fixed amount for each impulse sent from the computer. Motors are
available which have step sizes of 1.8°, 2°, 2.5°, 5°, 7.5° 15°,18°, and 30°. The smallest step size, 1.8°,
gives 200 steps per revolution. The mechanism of stepping motors is illustrated for a simplified case below

Stepping Sequence of a Stepping Motor

N

S

S S

N N

NS

S

S

N

N

on

off

on

on on

on

on

on on

off

off

off

off off

off

off

S

S

S

S

N

N

N

N N

N

S

SS

S

S

S

N

N

N

a) b)

c) d)

N

The rotor is magnetized axially with two gear-like hubs at each end. In the case shown the north
end has three teeth which are staggered with respect to those of the south end. The rotor is surrounded by a
stationary hoop, the stator. The stator has a different number of teeth from the rotor and is not permanently
magnetized. The teeth of the stator are magnetized by current-carrying windings so that their polarity can
be switched or they can be turned off altogether. By energizing the windings of the stator sequentially, the
rotor can be pulled around step by step. a) Two poles of the stator are first magnetized with opposite
polarity and the other two are not energized. The rotor aligns itself with the magnetized stator teeth: north
rotor aligned with south stator and south rotor aligned with north stator. b) To advance to the next position,
the other two stator teeth are magnetized while the originally energized windings are turned off. The
polarity of these teeth determine whether the motor advances clockwise or counter-clockwise. c) Now the
originally magnetized teeth are reenergized with polarity opposite that in (a) and the other two teeth are not
magnetized. Thus the rotor has moved 90° in two steps. The smaller step sizes usually available are
achieved by putting more teeth on the rotor hubs and on the stator.

Unifilar and Bifilar Stepping Motor and their Drives

The unifilar motor has one winding on each stator tooth as illustrated above. The bifilar motor
puts two windings on each tooth, wound in opposite directions. The main advantage of the bifilar design is

64 Physics 430–Digital Electronics and Computer Interfacing(revised 9/7/01) Lecture 8

that there is no need to reverse the current direction through the windings as in the unifilar design. In the
unifilar design either a dual polarity power supply is necessary, or four switching transistors must be
connected in an H-bridge. The unifilar motor is sometimes called bipolar and the bifilar is called unipolar.
The drive circuit for unifilar and bifilar motors is shown below with switches.

Stepping Sequence for a Unifilar Stepping Motor

+V

–V

Switch
1

Switch
2

phase
1

phase
2

step Switch 1 Switch 2

clockwise counterclockwise

Switch 1 Switch 2
1

2

3

4

off

+

–

off

–

off

+

off

off

–

off

+

–

off

+

off

Bipolar (unifilar)
Stepping Sequence

+ – + –

Stepping Sequence for a Bifilar Stepping Motor

+V
Switch

1
Switch

2

phase
1

phase
2

1 453

1

3

5

4

2

R

step Switch 1 Switch 2

clockwise counterclockwise

Switch 1 Switch 2
1

2

3

4

1

1

3

3

Unipolar (bifilar)
Stepping Sequence

5

4

5

4

5

5

4

4

1

3

1

3

Of course nobody really drives stepping motors with little switches. Instead transistor circuits can
close the contacts. In order to avoid a dual polarity power supply, the H-bridge can be used with a unipolar
power supply to drive a bipolar, unifilar motor.

Lecture 8 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 65

H-Drive Circuit for One Winding of a Unifilar Motor

drop
resistor

motor
winding

switch
pair A

switch
pair B

switch
pair B

switch
pair A

+V

When using the H-drive circuit, care must be taken not to short circuit the power supply by turning
on the wrong two transistors at once. The drop resistor may be necessary to limit the maximum current and
increase the response time for energizing the winding. If you want to avoid the power loss through the
resistor, there are other methods of increasing the response time using more complicated switching circuits
(see Giacomo, BYTE, Feb. 1979, p90).

A bifilar motor requires a much simpler drive circuit.

Simplified Drive for One-Half of a Bifilar Motor

drop
resistor

motor
phase 2

switch B switch A

motor
phase 1

+V

The on-off sequence of the transistors for each of these drive systems is illustrated in the diagram
on the next page. Beside the normal sequence, a one-half step sequence is shown. This half-step mode
gives greater position resolution, but my experience has been that the torques for alternate steps are not
equal and can result in uneven steps. The wave-drive sequence only requires one winding to be powered at
once, but delivers less torque and less step position accuracy.

The four signals needed for sequencing the transistors can be derived from four bits of an output
port. If one uses the normal full step sequence, only two bits need be put out, with the other two being
inverses the first two. The rotation can be controlled in software by successive OUT instructions. An eight-
bit byte can control up to four stepping motors. This software approach has the disadvantage of occupying
the computer while moving the motors. Furthermore the speed is limited by the loop time of the program
which can be very slow in interpreted Basic. However, if a small dedicated microprocessor is being used
for the task, and the program compiled or speed isn't important, this is a reasonable method.

66 Physics 430–Digital Electronics and Computer Interfacing(revised 9/7/01) Lecture 8

Schematic Bipolar (Unifilar) and Unipolar (Bifilar) Switching Sequence.

Unipolar Q1 Q2. Q3 Q4

Bipolar Q1-Q4 Q2-Q3 Q5-Q8 Q6-Q7

step

1 ON OFF ON OFF

2 ON OFF OFF ON

3 OFF ON OFF ON

4 OFF ON ON OFF

1 ON OFF ON OFF

Unipolar Q1 Q2. Q3 Q4

Bipolar Q1-Q4 Q2-Q3 Q5-Q8 Q6-Q7

step

1 ON OFF ON OFF

2 ON OFF OFF OFF

3 ON OFF OFF ON

4 OFF OFF OFF ON

5 OFF ON OFF ON

6 OFF ON OFF OFF

7 OFF ON ON OFF

8 OFF OFF ON OFF

1 ON OFF ON OFF

+V

Q1

Q3

Q2

Q4

+V

Q5

Q7

Q6

Q8

RED. GRY YEL BLK

Q1 Q2

RED BLK

YELGRY

Q3 Q4

RED BLK

YELGRY

BIPOLAR UNIPOLAR

+V

Unipolar Q1 Q2. Q3 Q4

Bipolar Q1-Q4 Q2-Q3 Q5-Q8 Q6-Q7

step

1 O N OFF OFF OFF

2 OFF OFF OFF O N

3 OFF O N OFF OFF

4 OFF OFF O N OFF

1 O N OFF OFF OFF

Normal 4-step sequence 1/2 Step 8 Step Sequence

Wave Drive 4 Step Sequence

Clockwise Rotation
(Read Down)

Counter Clockwise
Rotation (Read Up) Direction of

rotation viewed
from shaft end.

or Unifilar or Bifilar

Lecture 8 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 67

 Intersil supplies a chip, originally made by North American Philips (Airpax), to simplify (a little)
the control of stepping motors. The SAA1027 takes a trigger input which steps the motor on a high-low-
high transition. The direction input determines the direction: high gives counter-clockwise and low,
clockwise. The four outputs can directly drive low power stepping motor windings or can be fed to high
power transistors, or Darlington pairs, for heavier applications. Of course there is no need to have the
computer put out the trigger pulses. A counter could be programmed to pulse the motor and one bit of an
output latch could set the direction. This way the computer could be free to do other tasks until the motor is
moved into position.

The SAA1027 Stepping Motor Controller Chip

SAA 1027

T

S

R

Q4
Q3
Q2
Q1

B D
11
9

8
6

4

3

2

1

4’

3’

2’

1’

Isystem

0.1µF

Rv=100Ω RB, Bias Resistor

14 4 13

15

2

3

stepper
motor5 12

Trigger

Set

Rotation

Rs

Rs

Vs

Timing Diagram of SAA 1027 Signals

clockwisecounter clockwise

T

S

R

Q1

Q2

Q3

Q4

Ramping, Damping and Vibration

Depending on the motor, stepping rates of several thousand steps per second are possible.
However, if one tries to immediately drive the motor at a high speed, it is likely just to sit there and buzz.
For high stepping rates, it is necessary to begin the motor at a relatively slow speed and then increase its
speed gradually. This "ramping" is probably best done by trial and error to determine how fast the motor
can be accelerated in each particular application. It should also be noted what stepping rates produce
resonance vibrations and these stepping rates avoided.

Each single step of the motor may vibrate depending on the power, inertia and friction. If this
vibration causes problems, mechanical dampers such as slip pads or a fluid-coupled flywheel can be

68 Physics 430–Digital Electronics and Computer Interfacing(revised 9/7/01) Lecture 8

inserted but these result in loss of torque. Another method involves applying a time delay, a reverse pulse
and then a second time delay and a forward pulse to each step, or to the last step of each movement. Just
delaying the final pulse of a movement can also lessen vibrations. Applying more gradually varying wave
forms than square waves to the windings is also purported to smooth the motor's operation.

Transients and Their Suppression

The inductance of the motor windings can cause large transient voltages when the current is
abruptly switched on or off. The diagrams below illustrate the problem and suggest several remedies. If
current is flowing through the winding when the switching transistor is turned off, the inductance of the
winding will maintain this current by inducing a large positive voltage on the collector.

Stepping Motor Transient Problem

+V

Vswitch

Switching
Transistor

Motor

Vswitch

TimeT1

Imotor

TimeT1

+V

One solution is to place a diode across the winding. This diode will dump any voltage which builds up on
the collector that is over 0.6 V above the supply voltage. Putting a resistor or Zener diode in series with the
diode will accelerate the current decay which may be needed for faster stepping rates.

Suppression Circuits for Stepping Motor Transients

+V

Vswitch
Switching
Transistor

Motor

Vswitch

TimeT1

Imotor

TimeT1

+V

Lecture 8 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 69

+V

Vswitch
Switching
Transistor

Motor

Vswitch

TimeT1

Imotor

TimeT1

+V

+V

Vswitch
Switching
Transistor

Motor

Vswitch

TimeT1

Imotor

TimeT1

+V

Vzener +

Vsupply

References

For Stepping Motors
“A Stepping Motor Primer,” Paul Giacomo, BYTE, February 1979, p 90 and March 1979 , p 142
Stepper Motor Handbook, Airpax, North American Phillips.

For D.C. Motors
“DC Motor Controls: Build a Motorized Platform,” S. Ciarcia, BYTE, May 1981, p 66.
“Controlling DC Motors,” R.L. Walton, BYTE, July 1978, p 72.

Lecture 9 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 71

Lecture 9

Hardware Interrupts

A computer is a terrible thing to waste. It's a shame to spend your whole working day watching a
simple signal, waiting for just one chance to act. Similarly, to have a computer continually reading from a
port just to see if there is some new data needlessly ties up the CPU. If several devices are sending data to
or requesting data from the computer, the program must loop around, polling each port in turn: “Can I help
you, device 1?” …, “Anything new this time around, device 5?” …“Hi, device 17, how’s it going, any thing
I can do for you?” Obviously, a waste of talent.

A better way is to let the computer do some other tasks (sorting paper clips, filing its fingernails,
etc.) and arrange to interrupt these tasks temporarily only when a device really needs attention. This method
is called hardware interrupt processing. The 8088 microprocessor has input pins for two interrupt signals.
The most urgent interrupt signals shouldn’t be ignored. Such interrupts use the Non-Maskable Interrupt
(NMI). The NMI cannot be disabled in software, whereas the other interrupt, the Maskable Interrupt, can be
turned on and off by machine instructions. In the IBM PC, the NMI is used for RAM parity check, I/O
channel check request or auxiliary processor (8087) interrupt request. These NMI interrupts can, in fact, be
turned off because all these signals are ANDed with a bit of one of the PC’s output ports. To set the NMI
mask bit from software requires writing 80h to port A0h. To clear the mask, write 00 to A0h. This is
usually done only at power-up time.

Interrupt System Block Diagram

Noncatastrophic interrupts can be handled by the maskable interrupt input. Any nontrivial
computer system needs more than one maskable interrupt line. Furthermore, a priority system must be
established to determine which device gets serviced first in case two devices make a simultaneous request.

72 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) Lecture 9

The single maskable interrupt input of the 8088 is connected to the output of the 8259A interrupt controller
chip which allows eight interrupt inputs. The degree of equality of the interrupt inputs is programmable,
and the established order in the PC is from 0 to 7 with 0 having the highest priority.

Interrupt Priority Table

The interrupt request is processed by a six-step procedure:

1. The peripheral device activates an interrupt request on the system bus, IRQ0…IRQ7.
2. The 8259A interrupt controller prioritizes this request with others which may be coming in or pending.
3. If the request is the only one, or is the next highest level pending at the end of a higher-level service, an

interrupt request is sent to the 8088 processor.
4. The 8088 next sends to INTA response pulses to the 8259A interrupt controller. The first freezes the

priority and sets the levels in the service latch, The second INTA requests an eight-bit pointer value.
5. The 8259A then sends the pointer value to the 8088. It is used to index into a low memory table, which

contains the IP (offset) and the code segment values of the interrupt-service routine for the specific
level that is veing serviced.

6. Next, the 8088 microprocessor fetches the IP and code segment value and pushes its present IP, code
segment and flags onto the system stack and then branches to the interrupt service routine. The
interrupt service routine now begins execution.

The pointer values which the 8259A sends out on the second INTA bus cycle are programmed by
the system when it boots up. In the IBM PC, this “interrupt controller vector table” starts at 20 hex. Each
pointer takes two 16-bit words. Because memory locations 0 to 1F are used for other system pointer values,
the first hardware interrupt pointer is the eighth in the memory. Thus the highest priority hardware
interrupt, from the system timer counter, is called a “Type 8” interrupt. The complete interrupt vector table
is shown below.

The main part of a user’s program that is to use hardware interrupts must first set the pointer
values of the interrupt service routine for the interrupt levels that are going to be needed. The following
Pascal code illustrates a procedure for doing this:

Procedure Set–IVT(entry : integer)

var
offset, segment, first_word, second_word : integer;

begin
offset := Ofs(Interrupt_Service_Routine) + 7
segment := Cseg;
first_word := (entry + 8)*4;
second_word := first_word + 2;
memW[$0000:first_word] := offset;
memW[$0000:second_word] :=segment;

end;

Lecture 9 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 73

Interrupt Signal Processing Flow

The Interrupt Vector Table used in the IBM PC

74 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) Lecture 9

The Interrupt Service Routine, which in this case is called “Interrupt_Service_Routine,” must be
compiled first, in a simple one-pass compiler, if the Ofs(Interrupt_Service_Routine) statement is to return
the correct offset address. Seven bytes are added to the offset to account for overhead of the compiler when
using Turbo Pascal.

Another initialization step is enabling the interrupt, the procedure Enable_IRQx enables the 8259
to pass on an interrupt of a specific level, IRQ, to the 8088’s INTR pin if no other higher interrupt is
pending.

Procedure Enable_IRQx(IRQ : byte);

var
imr, mask : byte

begin
mask := not (1 shl IRQ);
imr := port($21); { get Interrupt Mask Register from 8259
}
imr := imr and mask; { clear mask bit
}
port[$21] := imr; { and return to controller
}

end;

The main Interrupt Service Routine will be called everytime there is an interrupt. It must first save
all the microprocessor’s registers because the routine being interrupted will want to continue unaltered after
the ISR has finished. The easiest way to save them is to PUSH each one on the system stack. Then at the
end of the program, they can be restored by POPing them in the exact reverse order. One other option, is to
enable further interrupts of equal or higher priority while your ISR is operating. Interrupts are usually
masked inside the ISR unless an STI (SeT Interrupts) instruction is given. This is useful if you want, for
example, the keyboard to operate normally. But if you’re unsure of how further interrupts will affect you
routine, then it’s usually safer to leave out STI at least until version beta 0 is working.

At then end of the ISR you must restore the registers, send and End of Interrupt (EOI) to the 8259
interrupt controller, and return using the special IRET (Interrupt RETurn) instruction. The following shell
illustrates an ISR.

Procedure Interrupt_Service_Routine;

begin
inline($FB/ { STI enable further interrupts }

$1E/ { PUSH DS }
$50/ { PUSH AX }
$53/ { PUSH BX }
$51/ { PUSH CX }
$52/ { PUSH DX }
$57/ { PUSH DI }
$56/ { PUSH SI }
$06); { PUSH ES }

INLINE($8C/$C8/ { MOV AX,CS restore data segment }
$8E/$D8/ { MOV DS,AX }
$A1/dsave/ { MOV AX,dsave }
$8E/$D8); { MOV DS,AX }
.
.

{ much nice Pascal Code for Servicing the Interrupt }

.

Lecture 9 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 75

.
port[$0020] := $20 { nonspecific EOI to 8259 PIC }
inline($07/ { POP ES }

$5E/ { POP SI }
$5F/ { POP DI }
$5A/ { POP DX }
$59/ { POP CX }
$5B/ { POP BX }
$58/ { POP AX }
$1F/ { POP DS }
$CF); { IRET }

end

In Turbo pascal, the machine language instructions for PUSHing and POPing the registers, etc, can
be inserted using the ”inline” instruction.

Another piece of housekeeping is to insure that the Data Segment Register is correct. When the
interrupt occurs, the CPU may be processing routines in the BIOS or anywhere and the Data Segment
Register may be incorrect for the ISR. The ISR must restore this value from the variable dsave, which has
been carefully initialized at the beginning of the user program. Note that dsave is given an absolute address
in the Code Segment which is known to be free in Turbo Pascal.

Program Test(input,output)

var
dsave : integer absolute Cseg:$0006; { $0006 is ok to use
}
.
.
{ Procedure definitions etc. }
.
.

begin
dsave := Dseg; { saves the data segment register
}
.
.

end.

Interrupt Circuit

The circuit shown below can be used to drive the I/O interrupt request line. A low-to-high
transition from a device sets the 7474 flip-flop latch. Ther interrupt lines are not open collector. The output
of this latch is buffered by the 74125 tri-state buffer whose output goes directly to the system bus. The clear
on the latch and the tristate buffer enable are controlled by bits on an output port. The latch holds the
request active so that is available for the second INTA pulse from the 8088 processor. This latch can then
be reset by an OUT instruction from the interrupt service routine. The programmable I/O port bit on the D-
latch “clear” can also be used to inhibit an interrupt request from occurring without using the mask register
in the 8259A interrupt controller. The tri-state buffer and its I/O port bit allow the source to be enabled or
disabled from the bus interface. Then the interrupt request line on the bus can be used for other purposes.

76 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) Lecture 9

Interrupt Request Circuit

References
Eggebrecht, Interfacing to the IBM Personal Computer, Chapter 9
Sargent and Shoemaker, The IBM PC from the Inside Out, Chapter 7
“IBM PC Interrupt Service Routines,” Paul M Dunphy, BYTE, Fall 1985 (special IBM PC issue),

p223
“What Is an Interrupt?” R.T. Atkins, BYTE, March 1979, p 230

Lecture 10 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 77

Lecture 10

Direct Memory Access

Sometimes you have to get data from a device to memory or vice-versa in a hurry. For example,
digitized audio signals or data from a mass storage device may require massive transfers of data which
would take a long time using the microprocessor to address the port and transfer data to and from memory
using its internal registers. The fastest transfer rate under control of the 8088 microprocessor is obtained by
assembly language. Transferring one byte of data takes more than 26 clock cycles per byte under program
control. The following assembly language code will transfer data at 11.5 µs per byte in the 4.77 MHz PC.

START: MOV DX,PORT ; Load DX register with port address
MOV BX,BUFFER ; Load BX register with buffer address
MOV CX,COUNT ; Load CX register with loop count

LOOP: MOV AL,[BX] ; Load AL register with data from buffer
OUTB DX ; Write AL register byte to port
INC BX ; Increment buffer address
DEC CX ; Decrement loop count
JNZ LOOP ; Loop if count is not equal to zero
.
.

Direct memory access (DMA) can transfer one byte in five clock cycles—more than five times
faster. In the special block transfer mode, the DMA can transfer each byte in only two clock cycles. During
the DMA process the 8088 microprocessor is replaced with another special-purpose chip, the 8237 DMA
controller chip. This is essentially a microprocessor that is optimized for transferring data. It completely
takes over the data, address and control lines from the 8088 during the transfer. The relationship among the
8088 MPU, the 8237 DMA controller, PC memory, I/O interface and the bus lines is shown in the next
figure.

The 8237 has four channels for four different I/O devices, but on the IBM PC design, one of them
is used to refresh the memory and only three channels are accessible from the bus. There are three Direct
memory access ReQuest lines on the bus: DRQ1, DRQ2 and DRQ3. These are inputs to the 8237 which the
peripheral device must activate when it needs to use DMA. The Direct Memory Access follows the
following steps:

1. A device activates one of the DRQn lines.

2. Once the 8237 gets a DRQ, it will send out a HRQ (Hold ReQuest) to the 8088 wait state generator
causing the MPU to wait and detach itself from the bus.

3. When the bus is free, the 8088 sends a HOLDA (HOLD Acknowledge) back to the 8237 DMA
controller.

4. The 8237 lowers the –DACKn line corresponding to the DRQn that it received in step 2. This activates
the chip select of the I/O device and allows its data onto the system bus. The interface device drops its
DRQn line.

5. The 8237 puts the correct memory address onto the bus and activates the corresponding control lines.
If the transfer is from memory to the device –MEMR and –IOW are active, i.e., low. Similarly, if the
transfer is from the I/O device to memory, –MEMW and –IOR are active.

6. The HRQ and HOLDA signals also revert to their inactive states.

This process is repeated each time the DRQn line makes a positive transition until the 8237's
terminal count has been reached. The terminal count is the total number of bytes to be transferred and is
sent out to the 8237 by the user program.

78 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 10

Data Flow During Direct Memory Access

The interface circuit shown next can be used for transfers from the device to the system's memory.

The D-type flip-flop latches a DRQ onto the bus when a write request is received. In this design, an output
port is used to mask the DRQ signal from the peripheral. This mask allows one DRQ line to be shared by
several devices. When the –DACK reply is received from the DMA controller it resets this latch. The
device mask bit, –DACK, and –IOR all have to be active in order for the data to be transmitted to the data
bus. Because the controller has set the address lines for the memory, these data are immediately transferred
to memory when they hit the bus.

Lecture 10 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 79

DMA Circuit for Transfer from a Device to Memory

For transfer from memory to a device, a very similar circuit is used. The main difference between
this circuit and the previous device-to-memory circuit is that the tri-state buffer (74374) is directed from the
data lines to the interface device and is selected by –IOW instead of –IOR.

DMA Circuit for Transfer from Memory to an Output Device

80 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 10

You will notice that because –IOW and –IOR are used in the DMA operation as well as the 8088
port I/O instructions, conventional I/O ports must monitor AEN in order to determine if the read or write is
coming from the microprocessor's IN or OUT instruction, or from a direct memory access.

DMA, the Software Side

The 8237 has eight control registers which can be written to by the microprocessor when direct
memory access is not in progress. There are also two registers which can be read to obtain status
information. The following table shows the addresses these occupy on the IBM PC.

8237 DMA Controller Control and Status Register Ports

I/O Port Read Function Write Function
0008 Status register Command register
0009 not used Request register
000A not used Single-mask bit register
000B not used Mode Register
000C not used Clear byte flip-flop
000D Temporary Register Master clear
000E not used Clear mask register
000F not used Write all mask registers

Many of these registers are preprogrammed by BIOS at boot-up time and you don't have to worry
about them in your own program. The mode register is important. Bits 3,2 of the mode register specify read
(10), or write (01) transfers and bits 7,6 specify the transfer mode: Demand=00, Single=01, Block=10 or
Cascade=11. Usually only single mode transfers are used in the PC design because the others may interfere
with the memory refresh which is done through DMA channel 0. Bit 5 determines whether the data are to
be loaded into successively higher or lower addresses. Bits 1,0 choose the DMA channel.

Mode Register Bit Definitions

In addition to the control and status registers, each DMA channel has four sixteen-bit registers: the
current memory address and count, and base address and base count. At the start of a DMA transfer, the
current memory address has the same value as the base register and the current count register is the same as
the base count. During the transfer the memory address is either incremented or decremented and the count
is decremented. The corresponding base registers maintain the initial values of the memory address and
count so they can be reloaded at completion. The automatic reload occurs if bit 5 of the Mode register is 1.
The addresses of the current and base registers are given below.

Lecture 10 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 81

8237 DMA Controller Address and Count Register Ports

Address Channel Read Register Write Register
0000 0 Base Address Current Address
0001 0 Base Count Current Count
0002 1 Base Address Current Address
0003 1 Base Count Current Count
0004 2 Base Address Current Address
0005 2 Base Count Current Count
0006 3 Base Address Current Address
0007 3 Base Count Current Count

The 8237 really only has a 64 k address space. To allow it to address 1 megabyte of memory, the
PC maintains a DMA page register which holds the high four bits of the address. A 74670 is used for a 4-
by-4 register for each of the four DMA channels. The four bits are appended externally to the address the
8237 sends out to provide a 20-bit address. The DMA controller really doesn't know there are any more
than 64 k in the computer's memory. Therefore transfers cannot be done continuously accross a 64 k page
boundary. The page registers' I/O port addresses are as follows:

DMA Page Register I/O Ports

Channel Address
1 83h
2 81h
3 82h

The 8237 has sixteen-bit registers but only eight bits are transferred at a time. There is a byte-
pointer flip-flop which indicates whether the next read or write goes to the high or low byte of the register.
Writing to port 000Ch clears this flip-flop so it points to the low-order byte for the next transfer. It doesn't
matter what data are written; any write operation clears the flip-flop.

Carefully reading the Intel data sheet for the 8237 may clear up some confusion about this DMA
controller. Its practical use doesn't require knowing everything about it. Here is a simple assembly language
program which shows how to transfer data to a 12-bit D/A converter directly from memory. Such a process
might be needed for sound synthesis. Here DACK3 has been connected to the DAC's chip select. A clock is
wired up to DREQ3 so that a new byte is requested at every clock tick. A table of 16-bit values that define
the waveform is stored in the memory area called WAVE in the program. The program below sets up DMA
channel 3 to put out the contents of WAVE to the D/A converter.

DMA EQU 0 ; 0 is the DMA port origin on the PC
DMAPAGE EQU 80H ; the DMA page register is at 80 hex
DWAVCNT EQU 2000H ; there 4096 words in the waveform

DMAWAV: MOV AL,5BH ; set DMA channel 3 to single mode,
read

OUT DMA+11,AL ; and autoinitialize
OUT DMA+12,AL ; reset first/last flip-flop
MOV AX,CX ; calculate high order 4 bits of buffer
MOV CL,4 ; put 4 in lower byte of C register
ROL AX,CL ; rotate AX left by four bits
OUT DMAPAGE+2,AL ; set up the 64k DMA page for channel 3
AND AL,0F0H
ADD AX,OFFSET WAVE ; get page offset
OUT DMA+6,AL ; output the start addr of the waveform
MOV AL,AH
OUT DMA+6,AL
MOV AX,DWAVCNT
MOV WAVCNT,AX ; output DMA byte count

82 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 10

OUT DMA+7,AL
MOV AL,AH
OUT DMA+7,AL
MOV AL,3
OUT DMA+10,AL ; unmask DMA channel 3 (let 'er rip)
RET

WAVCNT DW DWAVCNT ; waveform byte count
BFRPTR DW 0 ; waveform buffer pointer

EVEN ; start at an even address
WAVE DW ? ; values for waveform stored starting
here

References

Eggebrecht, Interfacing to the IBM Personal Computer, pp188-191 and Ch 10.
Sargent and Shoemaker, The IBM PC from the Inside Out, pp242-247.

Lecture 10 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 83

Lecture 11

The IEEE-488 Instrumentation Bus

The IBM PC bus has several disadvantages for general-purpose interfacing to laboratory
equipment. The most obvious problem is that the interface must be completely redone if another type of
computer is to be used. Also, it is difficult to extend this bus more than a meter from the computer, and
even then, the lines must be well buffered.

Hewlett-Packard developed a bus for laboratory instruments in the 1960's which could be
generally used no matter what computer system was controlling it. Originally this bus was call the HP-IB
(Hewlett-Packard Interface Bus). It proved to be such a hit that it was developed into a standard yclept
IEEE-488. Other common names for it are GPIB (General Purpose Interface Bus) or IEC Standard 625-1.
With such a standard bus, any computer system can be connected to a network of instruments. All that is
necessary is an interface between the specific computer's bus and the IEEE-488 bus. Some of the features
of the 488 system are as follows.

• Up to 15 instruments or instrument clusters
• 20 m maximum bus length, 4 m maximum device separation, 2 m average device separation
• 1 Mbyte/s data transmission rate, up to 4 Mbyte/s in synchronous mode
• Open-collector signal lines
• TTL negative logic: True is ≤0.8 V, False is ≥2.0 V
• HP patented three-wire data handshake
• 16 signal lines (8 data, 3 handshake and 5 control), 7 ground lines, and 1 shield.
• Stackable connectors for either linear or star configurations

The stackable connectors together with the open collector signal lines allow various configurations
for connecting several instruments together. Two configurations, the linear (or daisy chain) and star are
illustrated below.

The Linear Configuration and the Star Configurations for the IEEE-488 Bus

The signals of the IEEE-488 24-pin connector are shown in the following figure. Note that pin 1 is
on the cable side of the connector. One caveat is that the IEC-625 standard is slightly different. Although
the same signals are present only the data lines are on the same pins and the IEC connector has 25 pins.
Siemens makes an adapter between IEEE-488 and IEC-625.

84 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 11

The IEEE-488 24-pin Connector

It is a peculiarity of the labelling that the lowest data line is labelled DIO1 instead of DIO0 and the
highest DIO8 instead of DIO7. Furthermore, even though all signals are negative logic, no indication is
given in the mnemonics, e.g., DAV would be more conventionally labelled –DAV etc.

The Talker, The Listeners and the Controller

The instruments connected to a 488 bus are classed as talkers, listeners or controllers. At any one
time there may be only one controller and one talker on the bus, but there may be any number of listeners.
A controller can simultaneously be a talker (controller/talker) or a listener (controller/listener). Any
particular device could potentially be programmable as either a talker or listener, but it may not be a talker
if there is another talker already designated. Similarly, if two devices are on the bus which could be
controllers, only one can act as a controller. A digital multimeter, for example, can be a talker when it is
sending out measurements, but it can also listen when it is receiving its setup information such as function
(Voltmeter/Ammeter/Ohmmeter) and scale.

Each device is identified by a number between 0 and 30 and these numbers should be unique.
Usually an instrument which is IEEE-488 compatible has some switches on it for setting up its device
number. The diagram below shows four instruments and their connections to the bus.

Lecture 11 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 85

Example of Instruments Connected to an IEEE-488 Bus

Choosing Talkers and Listeners

The first task of the controller upon power-up is to designate which device is a talker, and which
are listeners. The controller does this by sending control bytes down the data bus. The fact that the bus is
carrying control information and not data signified by the ATN line being active, i.e., grounded. The
instruments are designed to be on the look-out for control information as long as ATN is low. Each byte of
control information contains bits indicating for which device it is destined. The control information only
tells the device whether it should be a talker, listener or inactive, it doesn't set up the specific settings for its
operation such as voltage, time or current scale settings. These settings are conferred latter as data while the
device is a listener.

The use of the bits in the control byte is illustrated in the table below.

Information type DIO 8 7 6 5 4 3 2 1
Bus Command x 0 0 C C C C C
Listen Address x 0 1 L L L L L
Talk Address x 1 0 T T T T T
Secondary Address x 1 1 S S S S S

Notes: x = don' care
CCCCC = Bus Command
LLLLLL = Listener Address
TTTTTT = Talker Address
SSSSSS = Secondary Address

The highest order bit is not used for control commands. When bits DIO7,DIO6 = 01, then low
order bits contain the address of a device which is to be a listener. If DIO&,DIO6 = 10, the low five bits

86 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 11

designate a talker. To guarantee only one talker on the bus, any talker ceases to be a talker if it sees another
device being chosen as talker.

Provision is made for a group of devices to be attached to a single ID number through the
secondary device designation when DIO7,DIO6 = 11. Thus subunits within an instrument cluster may be
addressed.

Various bus commands such as “Trigger Talker” or “Serial Poll“ can be sent when DIO7,DIO6 =
00.

The special address 11111 (31 decimal) is reserved to tell all devices to cease being listeners or
talkers. That is, x0111111 is the global UNLISTEN command and x1011111 is the UNTALK command.

The Three Wire Handshake

In order to transfer data reliably to a wide variety of instruments, a robust handshaking protocol
has been developed and patented (still?) by Hewlett-Packard. This involves three signal lines DAV, NRFD
and NDAC. The DAV (DAta Available) line is controlled by the talker and the NRFD (Not Ready For
Data) and NDAC (Not Data ACcepted) lines are controlled by the listeners. The handshake for either
control bytes or data proceeds as follows:

Flowchart of the IEEE-488 three-wire handshake

Lecture 11 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 87

1. Initially DAV is high signifying no data are on the lines. When the talker has data available it first
checks that NFRD is high signifying that the that all listeners are ready. Because this is an open
collector line, it stays low if any listener is Not Ready. After NRFD goes high the talker puts the data
on the DIO lines (if it isn’t already) and lowers the DAV signal indicating that data are available.

2. The listeners accept the data as each one raises the NDAC line and lowers its NRFD. When all
listeners have accepted the data, NDAC goes high.

3. Upon receiving confirmation of data acceptance from the NDAC line the talker raises DAV.

4. Upon sensing DAV high, the listeners pull NDAC low in preparation for more data.

5. The handshaking repeats until all data have been transferred. If the talker has been transferring control
information it raises the ATN line again. On the other hand, if it has been transferring data it lowers the
EOI (End Of Information) signal.

Timing Diagram of the Three-wire Handshake

DIO1—
DIO8

valid

DAV

not available

available

invalid

NRFD

ready

not ready

not accepted
NDAC

accepted

high

low

high

low

high

low

high

low

The transfer is effected by the active talker and listeners. The controller takes no part in the
transfer (unless the controller is itself also a talker or listener).

Other Control Lines

The IFC (Interface Clear) signal can be asserted by the controller to abort all data transfers or other
bus activity and put the bus in a known state. It’s usually used when something has gone wrong.

The REN (Remote ENable) is sent to a listener to indicate whether is should heed the setup
information sent to it by a talker. Otherwise it uses the setup on the front panel controls.

The SRQ (Service ReQuest) allows a device to get the attention of the controller. If and when the
controller acknowledges the SRQ it must determine which device sent it out. It can do this by either a serial
poll or a parallel poll.

The serial poll is done by sending each device in turn a serial-poll enable command. This is one of
the bus control commands the controller can send when ATN is active. When the devices gets the serial
poll command it replies with 8 bits of status information one of which indicates whether that device was
requesting service. The controller then sends a serial-poll disable commands and the devices reverts to data
mode.

88 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 11

The parallel poll is faster but cannot get as much information from the devices. A parallel poll is
requested by the controller by articulating both ATN and EOI lines. Up to eight devices can respond, each
having one bit on the data line. If a device has requested service, it drops its data line after perceiving the
ATN and EOI signals from the controller.

You Didn’t Really Have to Know…

Most of the time laboratory instruments will be supplied with IEEE-488 interfaces and an interface
card will be purchased for the particular computer in use. An exact knowledge of the protocol is not really
necessary for use. What you need to know are the commands to set up the instruments and the format in
which these instruments will send the data out while it is a talker. For example, the setup data for an HP
3455A multimeter for “high resolution”, “auto calibration off”, “10-volt range”, and “DC volts function” is
“F1R3A0H1.” These codes are particular to each instrument and are not part of the 488 standard. As an
illustration the table below shows the setup codes for the various functions of this multimeter

IEEE-488 Program Codes for an HP 3455A Multimeter

The syntax used to communicate with instruments have been standardized to a certain extend with
the IEEE 488.2 standard. For example the command

*RST;:Freq 100,10,0;:Measure:Voltage?<NL>

Illustratrates the use of the asterisk (*) for command flag, the semicolon (;) for a compound message
separator, the comma (,) for a data separator, the colon (:) for a command separator the question mark (?)
for a query and <NL> for the terminator. Further standardization of the commands used to control specific

Lecture 11 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 89

types of instruments is being attempted with SCPI (Standard Instrument Control Command Set). FOr
example to set a multimeter to DC volts the SCPI command would be "MEAS:VOLTS" for all types of
multimeters, whereas before SCPI would use different commands for different brands such as F0 or FUNC
DC or MD VOLTS for the same function.

On the computer side, the company that sells you the interface board usually gives or sells a set of
subroutines for using the bus. Hewlet Packard's original method of interfacing to existing programming
languages was a "Universal Language Interface" (ULI) which consisted of software loaded with the
operating system at startup. These allowed any programming language to access the GPIB card through the
language's file input or output routines. The ULI software would associate two file names with GPIB input
and GPIB output respectively and reads and writes to these files would interact with the GPIB system
instead of the file system. This system has the advantage of being applicable to any programming language
and being easy to use, but it is rather slow compared to direct subroutine calls. Because of its ease of use we
use the ULI system in our Physics 430 GPIB lab.

Most manufacturers of cards supply language interace routines for the most popular programming
languages and interpreters. These must be integrated with the language programming system being used
and then accessed by calling the subroutines or functions from within the language. Here is an example of
the NI-488.2 subroutines from National Instruments as used with the C language.

Call Syntax Description

AllSpoll (board,addresslist,resultlist) Serial poll all devices
DevClear (board,address) Clear a single device
DevClearList (board,addresslist) Clear multiple devices
EnableLocal (board,addresslist) Enable operations from the front of a device
EnableRemote (board,addresslist) Enable remote GPIB programming of devices
FindLstn (board,addresslist,resultlist,limit) Find all Listeners
FindRQS (board,addresslist,result) Determine which device is requesting service
GenerateREQF (board, addr) Cancel service request
GenerateREQT (board, addr) Request service
GotoMultAddr (board, type,addrfunc,spollfunc) Enable multiple primary or secondary address

support
PassControl (board,address) Pass control to another device with Controller

capability
PPoll (board,result) Perform a parallel poll
PPollConfig (board,address,dataline,sense) Configure a device for parallel polls
PPollUnconfig (board,addresslist) Unconfigure devices for parallel polls
RcvRespMsg(board,data,termination) Read data bytes from already addressed device
ReadStatusByte (board,address,result) Serial poll a single device to get its status byte
Receive (board,address,count,termination) Read data bytes from a GPIB device
ReceiveSetup (board,address) Prepare a particular device to send data bytes

and prepare the GPIB board to read them
ResetSys (board,addresslist) Initialize a GPIB system on three levels
Send (board,address,data,eotmode) Send data bytes to a single GPIB device
SendCmds (board,commands,count) Send GPIB command bytes
SendDataBytes (board,data,count,eotmode) Send data bytes to already addressed devices
SendIFC (board) Clear the GPIB interface functions with IFC
SendList (board,addresslist,data,count,eotmode) Send data bytes to multiple GPIB devices
SendLLO (board) Send the local lockout message to all devices
SendSetUp (board,addresslist) Prepare particular devices to receive data bytes
SetRWLS (board,addresslist) Place particular devices in the Remote with

Lockout state
TestSRQ (board,result) Determine the current state of the SRQ line
TestSys (board,addresslist,resultlist) Cause devices to conduct self-tests

90 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 11

Trigger (board,address) Trigger a single device
Triggerlist (board,addresslist) Trigger multiple devices
WaitSRQ (board,result) Wait until a device asserts service Request

The hc.c program is used in our lab to download screen images from our Tektronix digital oscilloscopes to
the computer. It was written by a former Physics 430 student (Cameron Dale, 1999) for his project. By
reading it you can get a flavour of programming using this system. Here is one subroutine from that
program which checks that the scope is available.at the desired address.

void check_scope(void) {
 /* Initialize the GPIB interface for IEEE488.2 communication */
 SendIFC(0);
 if (ibsta & ERR) report_error("Could not send IFC");

 /* Send the identification query to the specified address. */
 Send(0, scope, "*IDN?", 5L, NLend);
 if (ibsta & ERR) report_error("Could not find anything at specified address");

 /* Read the name identification response returned from the device. */
 Receive(0, scope, buffer, 150L, STOPend);
 if (ibsta & ERR) report_error("Could not read anything from specified address");
 for(j=0; (j<ibcntl) && (buffer[j] != '\n'); j++); /* find the end */
 buffer[j] = '\0'; /* terminate the string */

 /* Check to see if this address is that of a scope. */
 if (strncmp(buffer, "TEKTRONIX,TDS", 13) == 0)
 fprintf(stderr, "Found the %s at address %d\n", buffer, scope);
 else report_error("Could not find the Tektronix TDS oscilloscope at specified
address");
 /* Clear the GPIB interface from IEEE488.2 mode so that IEEE488 commands can be
used */
 ibonl(0,0);
}

Another technique in common use is a graphical system originally developed by National Instruments for
use with the Macintosh and now available for Windows, Unix and Linux systems. This system, called
LabView, allows the user to design a using interface containing dials, graphs readouts, buttons, controllers
which imitates an actuatl instrument's front panel. Then these readouts and controllers are programmed
using a graphical programming system. The advantages are that it is fairly easy to create a convenient user
interface and the system can be reconfigured fairly easily, once the graphical programming system has been
mastered. The disadvantages are the cost and the necessity of obtaining drivers for all the devices which
one wishes to use. Hewlett Packard also has a similar graphical system available.

LabView used for a Simple Temperature Monitor

But If You’re Really Stuck
It’s useful to know that you can run a 488 bus through the 8255 PPI chip using a couple of smart

open-collector buffers 75160 and 75161. The correct protocol can then be supplied in software.

Lecture 11 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 91

•Use the 75160 bidirectional buffer to buffer the DIO1–DIO8
•Use the 75161 to buffer the control lines
•Feed the data lines through Port A of the 8255
•Monitor EOI and SRQ through Port B in mode 0
•Use a nybble of port C to output ATN, REN, IFC and to enable the bus buffers for listening purposes.

The old Commodore Pet computer used 6520 PIAs and a 6522 VIA along with an MC3446
buffer/terminator chip to implement a 488 bus as shown below.

IEEE-488 Interface Using 65xx Stuff

92 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 11

Typical Interface Between the 488 bus and a Device

References
Sargent and Shoemaker, The IBM PC from the Inside Out, pp 389–395
S. Leibson, “The Input/Output Primer, Part 3: The Parallel and HPIB (IEEE 488) Interfaces,”

BYTE April 1982, p186
E. Fisher and C.W. Jensen, PET and the IEEE 488 Interface, Osborn/Mcgraw Hill (1980).
H.S. Stone, Microcomputer Interfacing, pp 215–227

Lecture 11 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 93

Appendix: Listing of hc.c

/* Program for reading hardcopy output from oscilloscopes */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "decl.h"

/* Function prototypes */
void report_error(char *errmsg);
void initialize_inputs(int argc, char** argv);
void initialize_output(void);
void check_scope(void);
void find_scope(void);
void setup_scope(void);
void hardcopy(void);
void terminate(void);

char filename[13]; /* The name of the output file */
FILE* ofp; /* The output file pointer */
int usage, /* Binary: to display the proper usage */
 extension, /* Binary: to force the extension */
 layout, /* Binary: output in portrait (1) or landscape (0)
*/
 screen; /* Binary: to print to screen (stdout) */
char format; /* The format of the output */
char buffer[1001]; /* Data received queries */
int i, j, n, /* Loop counter variables */
 num_listeners; /* Number of listeners on GPIB */
unsigned long bytes; /* The number of bytes transferred */
unsigned int instruments[32], /* Array of primary addresses */
 result[31], /* Array of listen addresses */
 ascope[31], /* Array of oscilloscope addresses */
 scope; /* The oscilloscope address to use */

/* Prints errors to standard error output and exits the program */
void report_error(char *errmsg) {
 fprintf(stderr, "Error %d,%d: %s\n", ibsta, iberr, errmsg);
 ibonl(0,0); /* take all GPIB devices offline */
 exit(1); /* abort the program */
}

void initialize_inputs(int argc, char** argv) {
 /* Set the defaults */
 usage = 0; /* do not dislay the usage */
 extension = 0; /* don't force the file extension */
 layout = 1; /* layout in portrait */
 format = 'x'; /* output in pcx file format */
 screen = 1; /* output to screen */
 scope = 0; /* the GPIB board address (invalid) */
 strcpy(filename, ""); /* no file unless specified */

 /* Test proper usage of inputs */
 if (argc == 1) usage = 1;
 for (i=1; i<argc; i++) {
 if (argv[i][0] == '-') { /* if this is an option */
 if (strlen(argv[i]) > 2) usage = 1; /* it should have a length of 2 */
 if (isdigit(argv[i][1])) scope = argv[i][1] - '0'; /* read the specified
address */
 else switch(tolower(argv[i][1])) {
 case 'p': layout = 1; break; /* set the layout to portrait
*/

94 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 11

 case 'l': layout = 0; break; /* set the layout to landscape
*/
 case 'x': format = 'x'; break; /* set the format to pcx
*/
 case 'b': format = 'b'; break; /* set the format to bitmap
*/
 case 'd': format = 'd'; break; /* set the format to deskjet
printer */
 case 'j': format = 'j'; break; /* set the format to laserjet
printer */
 case 'e': extension = 1; break; /* force the file extension
*/
 case 'n': extension = 0; break; /* don't force the file extension
*/
 default : usage = 1; /* else display the proper usage
*/
 }
 }
 else { /* if not an option, then it should be the filename */
 if ((i == argc-1) && (strlen(argv[i]) < 13)) {
 /* the filename should always come last and be 12 characters or less */
 strcpy(filename, argv[i]);
 screen = 0; /* don't print to screen */
 }
 else usage = 1;
 }
 }

 /* if the input was improperly used, display the proper usage */
 if (usage) {
 fprintf(stderr, "Oscilloscope Hardcopy Program, Version 1.1, Written By Cameron
Dale\n");
 fprintf(stderr, " for use with the IEEE488 GPIB interface\n");
 fprintf(stderr, "\n");
 fprintf(stderr, " Usage: %s [options] [filename]\n", argv[0]);
 fprintf(stderr, " where filename is an acceptable DOS filename:
????????[.???]\n");
 fprintf(stderr, " (if one is not specified, the default is to use the
standard output)\n");
 fprintf(stderr, " and options are some of the choices below (* indicates the
default).\n");
 fprintf(stderr, "\n");
 fprintf(stderr, " * -p set layout to portrait\n");
 fprintf(stderr, " -l set layout to landscape\n");
 fprintf(stderr, "\n");
 fprintf(stderr, " * -x output in pcx format (.pcx)\n");
 fprintf(stderr, " -b output in bitmap format (.bmp)\n");
 fprintf(stderr, " -d output in deskjet printer format (.dkj)\n");
 fprintf(stderr, " -j output in laserjet printer format (.lsj)\n");
 fprintf(stderr, "\n");
 fprintf(stderr, " * -n don't force the extension\n");
 fprintf(stderr, " -e force the correct extension\n");
 fprintf(stderr, "\n");
 fprintf(stderr, " * -0 search for connected scopes to output to\n");
 fprintf(stderr, " -# force the ouput to the scope at address # (integer
from 1 to 9)\n");
 exit(0); /* and then exit the program */
 }
}

void initialize_output(void) {
 /* Initialize the output file */
 if (extension) { /* if the extension is to be forced */
 /* find the start of the extension */

Lecture 11 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 95

 for (i=0; i < strlen(filename); i++) if (filename[i] == '.') break;
 filename[i] = '\0'; /* end the string there */
 switch(format) { /* append the proper extension */
 case 'x': strcat(filename, ".pcx"); break;
 case 'b': strcat(filename, ".bmp"); break;
 case 'd': strcat(filename, ".dkj"); break;
 case 'j': strcat(filename, ".lsj"); break;
 default : report_error("Invalid format type.");
 }
 }
 ofp = fopen(filename, "wb"); /* open the file for binary write and assign the
file pointer */
 if (ofp == NULL) { /* check to make sure the file was opened */
 fprintf(stderr, "Make sure the filename is a valid DOS name ????????[.???]\n");
 report_error("Could not open output file.");
 }
}

void check_scope(void) {
 /* Initialize the GPIB interface for IEEE488.2 communication */
 SendIFC(0);
 if (ibsta & ERR) report_error("Could not send IFC");

 /* Send the identification query to the specified address. */
 Send(0, scope, "*IDN?", 5L, NLend);
 if (ibsta & ERR) report_error("Could not find anything at specified address");

 /* Read the name identification response returned from the device. */
 Receive(0, scope, buffer, 150L, STOPend);
 if (ibsta & ERR) report_error("Could not read anything from specified address");
 for(j=0; (j<ibcntl) && (buffer[j] != '\n'); j++); /* find the end */
 buffer[j] = '\0'; /* terminate the string */

 /* Check to see if this address is that of a scope. */
 if (strncmp(buffer, "TEKTRONIX,TDS", 13) == 0)
 fprintf(stderr, "Found the %s at address %d\n", buffer, scope);
 else report_error("Could not find the Tektronix TDS oscilloscope at specified
address");

 /* Clear the GPIB interface from IEEE488.2 mode so that IEEE488 commands can be
used */
 ibonl(0,0);
}

void find_scope(void) {
 /* Initialize the GPIB interface for IEEE488.2 communication */
 SendIFC(0);
 if (ibsta & ERR) report_error("Could not send IFC");

 /* Create an array containing all valid GPIB primary addresses except 0.
 The constant NOADDR, defined in DECL.H, signifies the end of the array. */
 for (i = 1; i <= 30; i++) instruments[i] = i;
 instruments[31] = NOADDR;

 /* Find all of the listeners on the bus. Store the listen addresses in the array
RESULT. */
 fprintf(stderr, "Finding all listeners on the bus...\n");
 FindLstn(0, instruments, result, 30);
 if (ibsta & ERR) report_error("Could not find listeners");

 /* Loop for each address found except the GPIB interface (0) */
 num_listeners = ibcnt - 1;
 n = 0; /* initialize the number of scopes found to 0 */
 for (i = 1; i <= num_listeners; i++) {

96 Physics 430–Digital Electronics and Computer Interfacing, (revised 9/7/01) Lecture 11

 /* Send the identification query to all addresses in the array RESULT. */
 Send(0, result[i], "*IDN?", 5L, NLend);
 if (ibsta & ERR) continue; /* on error go to next device */

 /* Read the name identification response returned from each device. */
 Receive(0, result[i], buffer, 150L, STOPend);
 if (ibsta & ERR) continue; /* on error go to next device */
 for(j=0; (j<ibcntl) && (buffer[j] != '\n'); j++); /* find the end */
 buffer[j] = '\0'; /* terminate the string */

 /* Check to see if this address is that of the scope. */
 if (strncmp(buffer, "TEKTRONIX,TDS", 13) == 0) {
 fprintf(stderr, "%d) Found the %s at address %d\n", n+1, buffer, result[i]);
 ascope[n] = result[i]; /* save the scope address in the array */
 n = n + 1; /* increment the number of scopes found */
 }
 }
 if (n == 0) report_error("Did not find any Tektronix Oscilloscopes");
 if (n == 1) scope = ascope[0]; /* then the scope is the only one found */
 else { /* if multiple scopes were found */
 /* ask the user which scope to use */
 do { fprintf(stderr, "Enter the number of the scope you would like to use: "); }
 while ((scanf("%d", &scope) != 1) || (scope > n) || (scope <= 0));
 scope = ascope[scope-1]; /* translate number to scope address */
 }

 /* Clear the GPIB interface from IEEE488.2 mode so that IEEE488 commands can be
used */
 ibonl(0,0);
}

void setup_scope(void) {
 /* Initialize the GPIB device for IEEE488 commands */
 scope = ibdev(0, scope, 0, T10s, 1, 0);
 if (ibsta & ERR) report_error("Could not open oscilloscope.");

 /* Set the device to assert the SRQ line when ready */
 ibwrt(scope, "*SRE 16", 7L);
 if (ibsta & ERR) report_error("Could not set SRQ.");

 /* Set the scope's hardcopy port to GPIB */
 ibwrt(scope, "HARDCOPY:PORT GPIB", 17L);
 if (ibsta & ERR) report_error("Could not set hardcopy port.");

 /* Set the scope's output layout */
 if (layout) ibwrt(scope, "HARDCOPY:LAYOUT PORTRAIT", 24L);
 else ibwrt(scope, "HARDCOPY:LAYOUT LANDSCAPE", 25L);
 if (ibsta & ERR) report_error("Could not set hardcopy layout.");

 /* Set the scope's output format type */
 switch(format) {
 case 'x': ibwrt(scope, "HARDCOPY:FORMAT PCX", 19L); break;
 case 'b': ibwrt(scope, "HARDCOPY:FORMAT BMP", 19L); break;
 case 'd': ibwrt(scope, "HARDCOPY:FORMAT DESKJET", 23L); break;
 case 'j': ibwrt(scope, "HARDCOPY:FORMAT LASERJET", 24L); break;
 default : report_error("Invalid format type.");
 }
 if (ibsta & ERR) report_error("Could not set hardcopy format.");
}

void hardcopy(void) {
 /* Start the hardcopy output */
 ibwrt(scope, "HARDCOPY START", 14L);
 if (ibsta & ERR) report_error("Could not start hardcopy.");

Lecture 11 Physics 430–Digital Electronics and Computer Interfacing (revised 9/7/01) 97

 /* Wait for the scope to be ready */
 ibwait(scope, TIMO | RQS);
 if (ibsta & (ERR | TIMO)) report_error("Waiting for SRQ");

 bytes = 0;
 if (screen) { /* if the output is to the standard output */
 fprintf(stderr, "Beginning output ...\n");

 /* read each character from the device and print it to standard output */
 do {
 /* read 1000 bytes from scope into the character array buffer */
 ibrd(scope, buffer, 1000L);
 if (ibsta & ERR) report_error("Input of bytes failed");

 /* output each byte to the standard output */
 for (i=0; i<ibcntl; i++) putc(buffer[i], stdout);
 bytes = bytes + ibcntl;
 } while (!(ibsta & END)); /* until there are no more to read */
 }
 else { /* if the output is to a file */
 fprintf(stderr, "Beginning output to file %s ...\n", filename);

 /* ibrdf sends the ouput from scope to the file specified by filename */
 ibrdf(scope, filename);
 if (ibsta & ERR) report_error("Output to file failed");

 bytes = bytes + ibcntl;
 }

 /* indicate successful completion */
 fprintf(stderr, "Output completed, %lu bytes transferred.\n", bytes);
}

void terminate(void) {
 if (!screen) fclose(ofp); /* close the file */
 ibonl(scope, 0); /* close the GPIB device connection */
}

void main(int argc, char *argv[]) {

 initialize_inputs(argc, argv);

 /* If the output is not to go to the standard output */
 if (!screen) initialize_output();

 /* If the scope address was specified, check to make sure it's right */
 if (scope) check_scope();
 else find_scope(); /* else find the addresses of the scopes */

 setup_scope();

 hardcopy();

 terminate();
}

Problems Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00)

Assignment 1

1. Draw two alternative circuits for the three-condition lunch decision box on p. 4 of the lecure notes.

2. Design a one-bit adder with carry input and carry output that can be cascaded to make a multiple-
bit adder. (Lecture notes p. 9)

3. Verify the logic identity on p. 9 of the lecture notes using a truth table:

(–A)(–B)(–C) + (–A)BC + A(–B)(–C) = –(B+C) + (–A)BC = Q

Draw a circuit of logic gates with three inputs, A, B, C and one output, Q, to perform this
operation.

4. Draw up a circuit using NANDs and NORs for a four-input function which gives a 1 as output if
the sum of the inputs is odd, and gives 0 if the sum is even. This is a parity generator. (Lab 1
assignment question)

5. Using four JK flip-flops and whatever ANDs, ORs, NANDs and NORs you need, design a four-bit
up-down counter with both clock and control inputs which counts up when a control input is
HIGH and counts down when the control input is LOW. (Lab 1 Assignment question)

6. What addresses do outputs Y1 through Y7 decode in the circuit of Lab 2?

 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Problems

Assignment 2

1. The three-nand gate circuit used to provide the load signal of the input buffer is sometimes called a
“steering network”. Show how one could use steering networks to construct a four-bit up/down counter.
When UP is high the counter counts 1-2-3-.... When UP goes low it counts down 3-2-1-0...

2. Extend the synchronous counter in Fig. 2.2 of the lab script to five bits. Draw the circuit diagram
and the timing diagrams.

3. The figure shows a 1-of-16 decoder. The
signals coming out of the decoder are labelled
LDA, ADD, SUB and so on. The word formed by
the 4 leftmost register bits is called the “OP
CODE.” As an equation OPCODE = I15I14I13I12

a) If OPR is high what does OPCODE
equal?

b) If JIM is high what does OPCODE
equal?

c) Which output signal is high if OPCODE
= 0000?

d) Which output signal is high if OPCODE
= 0001?

3. Fig. 3.35 below shows a control matrix. The inputs T1 through T6 are timing signals. They are

Problems Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00)

usually driven by one ring counter and only one is high at a time. T1 goes high first, then T2 and so forth.
The signals control the rate and sequence of computer instructions. The lower set of inputs, LDA, ADD,
SUB and OUT are computer instructions; only one of them is high at a time. The outputs Cp, Ep Lm, …,
Lo control different registers. Which are the high outputs for each of the following conditions?:

a) T1 high
b) T2 high
c) T3 high
d) T4 and LDA high
e) T5 and LDA high
f) T4 and ADD high

g) T5 and ADD high
h) T6 and ADD high
i) T4 and SUB high
j) T5 and SUB highj
k) T6 and SUB high
l) T6 and OUT high

 Physics 430–Digital Electronics and Computer Interfacing. (revised 9/3/00) Problems

Design problems:
•Include a brief description of the operation.
•Label chips with number and function if it’s not obvious from the symbol.
•Provide enough detail that somebody unfamiliar with your thought processes could build it.

Assignment 3

1. Design a 4-bit binary adding machine with 4 toggle switches and two push buttons for input and 4
leds for output. The 4 toggle switches are the binary number input. One pushbutton loads the accumulator
register with the value set by the switchs and the second pushbutton adds the current switch settings to the
accumulator. The output of the addition is displayed on the leds. Use bus architecture with the registers
connected to the bus by three-state buffers. You may design for either TTL or CMOS but try not to mix
families if that’s not necessary.

adder outputinput bits

load
accumulator

add

Fantastic Adder

2. You have a device which was designed to interface to a 68008 microprocessor with signals
including –AS, –DS, R/–W and –DTACK as well as the data bits and a chip select input. Describe and
draw the circuit needed to allow these signals to interface to the IBM PC bus.

Problems Physics 430–Digital Electronics and Computer Interfacing (revised 9/3/00)

Assignment 4

1. Design a one-channel I/O port to reproduce some of the features of the 8255 chip in Mode 1. The
computer-side signals should include eight data bits, chip select, and I/O select signals. Use a high on the
I/O line for input (to CPU) and 0 for output. The peripheral-side signals should include eight data bits. In
addition, provide for the appropriate handshaking signals, but don’t include the interrupt option. Use chips
described in the Lab Manual.

2 a) Use an 8253 and as few extra parts as possible to build a frequency meter. Use one counter,
counting the 1 kHz clock, to set up a gate of variable width, controllable from a program. Let the maximum
gate width be about 65 seconds. The other two counters should be cascaded to allow a 32-bit count of an
external signal during the gate period.

b) Write a program which asks for the gate width in seconds, and then types out the unknown
frequency in Hz.

