Slow neutrons and their role to test gravity

Testing Gravity 2015 16.01.2015
Gunther Cronenberg

Dark Matter \& Dark Energy Search

- galaxy rotation problem
- Supernova la
- cosmic microwave background (CMB)
experimental evidence for Dark Matter (DM) and Dark Energy (DE)

After Planck

Neutrons \& Gravity

First experiments:

- COW (I975):
first observation of gravitational shift for neutrons

- Köster (I976):
test equality of inertial and gravitational mass
by scattering length measurements

Ultra/Very Cold Neutrons

UCN

$\mathrm{VCN} \quad \lambda \sim 50 \mathrm{~nm} \quad E_{\text {kin }} \approx(50-300) \mathrm{neV}$

Neutron:

- no electric charge
- small polarisability

$$
\begin{gathered}
(11.6 \pm 1.5) \cdot 10^{-4} \mathrm{fm}^{3} \\
\quad \propto 10^{-19} \alpha_{\text {atom }}
\end{gathered}
$$

- nEDM

$$
\left|d_{n}\right|<2.9 \times 10^{-26} e \mathrm{~cm}
$$

- total reflection for even big angles ($\mathrm{VCN}<1^{\circ}$)
- absorption!

UCN/VCN source: PF2 at ILL

$\lambda \approx 1.5 \mathrm{~nm}-15 \mathrm{~nm}$

UCNs in the gravity field

V.I. Luschikov and A.I. Frank, JETP Lett. 28559 (I978)
V. Nesvizhevsky et al., Nature, 4I5 297 (2002)

UCNs in the gravity field

- Schrödinger eq. with linearized gravity potential

$$
\begin{aligned}
& \left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial z^{2}}+m g z\right) \varphi_{n}(z)=E_{n} \varphi_{n}(z) \\
& \varphi_{n}(z)=a_{n} A i\left(\frac{z}{z_{0}}-\frac{E_{n}}{E_{0}}\right)
\end{aligned}
$$

- bound, discrete states
- Non-equidistant energy levels

state	energy
1	1.41 peV
2	2.46 peV
3	3.32 peV

Quantum Bouncer

P.W. Langhoff, Am. J. Phys. 39, 954 (I97I)
R. Gibbs, American Journ. o. Phys. 4325 (1975)
V.I. Luschikov and A.I. Frank, JETP Lett. 28559 (1978)

H.Wallis et al., Appl. Phys. B, 54407 (I992)
V. Nesvizhevsky et al., Nature, 4I5 297 (2002)
G. Della Valle et al., PRL, I 02 (2009)

qBounce:Timeline

2012
Cronenberg, TJ, HF, MT et al. Full 3-part Rabi like setup

2014
Thalhammer, TJ, TR et al. qBouncer
2009
Jenke et al.
First Gravity Resonance Spectroscopy

H. Filter

Neutron charge

T. Jenke et al., NIM A 6|| 3 I 8 (2009)
H. Abele et. al., Nucl. Phys A827, 593c (2009)
V.I. Luschikov and A.I. Frank, JETP Lett. 28559 (1978)

Quantum Bouncer

step: $60 \mu \mathrm{~m}$

Rabis method

Gravity Resonance Spectroscopy

- Rabi

Gravity Resonance Spectroscopy

- Rabi (20I2)

- First realisation (2009, 2010)

T. Jenke et al.:" "Realization of a gravity-resonance-spectroscopy technique" Nature Physics 7, 468-472

Axions

- spin-mass coupling
- scalar-pseudoscalar coupling

Introduced to solve problem on CP-violation in strong interactions

Candidates for dark matter

$$
V(\vec{r})=\hbar g_{s} g_{p} \frac{\vec{\sigma} \cdot \vec{n}}{8 \pi m c}\left(\frac{1}{\lambda r}+\frac{1}{r^{2}}\right) e^{-r / \lambda}
$$

Also search for Axion-like particles (ALPs)

Search for Axions

Setup is sensitive to axions for

Search for Axions \& ALPs

- Applying magnetic field
- Measuring effect for each spin

Jenke,T., Cronenberg, G., et al. Phys. Rev. Lett., I I 2, I 5 | I 05. (20| 4)

Chameleons

- Dark energy candidate
- mechanism suppresses in vicinity of masses
massless scalar field, hidden at laboratory scales

$$
V_{\mathrm{eff}}(\varphi)=V(\phi)+\frac{\beta}{M_{\mathrm{Pl}}} \varphi \rho
$$

Ratra-Peebles model ($n>0$):

$$
V(\varphi)=\Lambda^{4}+\frac{\Lambda^{4+n}}{\varphi^{n}}
$$

Self interaction

Interaction with matter
leads to screening effects

Khoury, J., \&Weltman, A. (2004). Chameleon cosmology. Physical Review D, 69(4)
P. Brax, G. Pignol, Phys. Rev. Lett. I07, III30I (201 I)

Chameleon fields

Chameleon shifts energy of state:

$$
\delta E_{n}=\left\langle\psi_{n}\right|(z \Lambda)^{\frac{2}{2+n}}\left|\psi_{n}\right\rangle
$$

$V(z)=m g z+\beta \frac{m}{\bar{M}_{\mathrm{Pl}}} \Lambda \hbar c\left(\frac{2+n}{\sqrt{2}} z \Lambda\right)^{\frac{2}{2+n}}$

P. Brax, G. Pignol, Phys. Rev. Lett. 107, 111301 (2011)
A.N. Ivanov et al., (2013). Physical Review D, 87(10), 105013.

Jenke, T., Cronenberg, G., et al. Phys. Rev. Lett., 112, 151105. (2014)

Lloyd interferometer

very cold neutrons $10 \mathrm{~nm}, 40 \mathrm{~m} / \mathrm{s}$ in realization by Filter, Masahiro, Oda et al.

$$
\begin{gathered}
\lambda_{\text {Lloyd }}=\frac{L}{2 a} \lambda_{\text {neutron }} \\
\Phi_{\text {Gesamt }}=\Phi_{\text {Geo }}+\Phi_{\text {Refl }}+\Phi_{\text {Grav }}+\Phi_{\mathrm{Corr}}+\Phi_{?}(y)
\end{gathered}
$$

Slow neutrons

interferometric setup SI 8 at ILL realized by Th. Potocar / T. Jenke \& collaborators
neutrons wavelength

$$
\lambda \approx 3 \AA
$$

- spacial profile measured
- density dependence

(a) H detector

incident beam

TU WIEN

Jason Jung

Martin Thalhammer

Hanno Filter

Tobias Jenke

G. C.

Hartmut Abele

