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= Black holes and no hair
= Screened scalars
= Chameleon hair

= Observational prospects




BLACK HOLE THEOREMS

Black holes in 4D obey a set of theorems: We know they are
spherical, that they obey laws of thermodynamics, and that
they are characterized by relatively few “numlbers” — or
“Black Holes Have No Hair”.

l.e. electrovac solutions are
uniquely specified by 3
parameters: M, Q, and J




The essence of “no hair” is that the scalar field must have
finite energy, and fall off at infinity. Integrating the equation of
motion gives a simple relation, only satisfied for g=¢’ =0
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NO-NO HAIR!
But this is highly idealised:

e Static

e \Jacuum

» Potential must be convex

And no hair has come to mean the much stronger “no field
profiles”.



The screening arises because the scalar couples to matter
via a metric term — typically due to a conformal rescaling.
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The effective potential for the chameleon is a sum of two
terms and looks different at different densities

V(g) = M6 = Voo™ A(g) = MM
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Useful to sum up bounds in terms of Compton wavelengths:

Environment Density Compton wavelength upper bound
n=1 n large

Earth o ~ 10%° peosm 10" m 10°m

Accretion disc 10~ 8pg 10 m 0.1m

Galaxy 10° peosm 10?2 m 10" m




The “no-hair” theorem does not apply because dV/dr is not
monotonic — the density profile may jump.

Demonstrate explicitly within the rules of the no-hair game:
static, spherically symmetric black hole, but with density

profile
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Always important to develop analytic understanding where
possible. Analyse in regions |, Il with small and large
Compton wavelength in probe limit.
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For long Compton wavelength expect a small perturbation to
the scalar, so model perturbatively.
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important, but trickier to get analytic approximation more
than indicative
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Scalar forces are roughly of the form:
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Probe limit scalar does not back-react strongly on geometry
— also means geometry dominates local motion. Instead




Best case scenario: infall of solar mass object to SMBH
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In reality black holes
rotate, and the accretion
disc is localized near the
equatorial plane. Model
this by a uniform matter
shell extending from
Risco to ~100GM, and
solve perturbatively for ¢,
roughly massless away




» No hair not applicable — screened scalars have nontrivial
profiles even in static spherically symmetric black hole
environments.

» Analytic tools are quite accurate predictors of actual profiles.

= General picture similar (nontrivial profiles sourced by varying
density) with more realistic accretion disc model, though profile
different.

» Unfortunately it seems these will not give observable effects.




