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Black Hole Theorems	


Black holes in 4D obey a set of theorems: We know they are 
spherical, that they obey laws of thermodynamics, and that 
they are characterized by relatively few “numbers” – or 
“Black Holes Have No Hair”.


i.e. electrovac solutions are 
uniquely specified by 3 
parameters: M, Q, and J




No Scalar Hair	


The essence of “no hair” is that the scalar field must have 
finite energy, and fall off at infinity. Integrating the equation of 
motion gives a simple relation, only satisfied for 


€ 

ϕ, ʹ′ ϕ →0

€ 

ϕ, ʹ′ ϕ finite
€ 

ϕ= ʹ′ ϕ ≡ 0

essence of their argument is to take the scalar equation of motion (shown here for
the Schwarzschild background), to multiply by V,φ(φ)

√
g and integrate:

� ∞

2GM

�
r2V 2

,φ + r(r − 2GM)φ� d

dr
(V,φ)

�
= [V,φr(r − 2GM)φ�]∞2GM = 0. (2.2)

Clearly, if V,φφ ≥ 0, as is the case with a wide range of physically relevant potentials,
then the only possibility is that the integrand on the LHS is identically zero, i.e.,
φ� ≡ 0, φ = φmin. Although at first sight the potentials we are considering appear to
satisfy this constraint, we must be careful, as it is the effective potential that is the
relevant quantity, and we are looking at a non-uniform environment where the matter
density, ρ, jumps from being roughly zero to the ambient galactic or local accretion
disc value. Thus, although r2V 2

,φ is positive definite, the derivative of V,φ with respect
to r contains a delta function, coming from the derivative of ρ. Combining this with
the intuition that φ, if nontrivial, will tend to roll towards large values near the
black hole horizon, we see that the second term in the integrand can potentially be
very large and negative, thus ruling out a simple “no-hair” proof, and opening the
possibility of a nontrivial scalar profile.

Turning now to the case of the black hole, our setup is motivated by a physical
picture of an astrophysical black hole, typically located within some larger distribu-
tion of matter. Although astrophysical black holes will be rotating, for the purpose
of establishing whether or not a nontrivial scalar profile is possible, it will suffice to
consider a purely monopole spherically symmetric set-up, in which the black hole is
descibed by the Schwarzschild metric:

ds2 = −
�
1− Rs

r

�
dt2 +

�
1− Rs

r

�−1
dr2 + r2dΩ2 , (2.3)

(denoting Rs = 2GM for clarity), and the density profile by

ρ(r) ≡
�
0 Rs < r < R0 (Region I)

ρ� r > R0 (Region II)
(2.4)

The motivation for this profile is that the larger distribution of matter in which the
black hole sits will be characterised by a density ρ� (taken to be constant in (2.4)),
which is assumed to vary slowly on length scales comparable to the size of the black
hole. Very close to the black hole however, we expect an approximately empty inner
region, motivated by the fact that all black holes have an innermost stable circular
orbit (ISCO – e.g. at 3Rs for the Schwarzschild black hole), inside of which all massive
particles fall into the black hole on a relatively short time-scale. We therefore treat
the density inside some inner radius, R0 as being roughly zero. Our matter profile
(2.4) can thus be viewed as a crude model of either an accretion disk or a galactic
halo where the matter inside R0 has fallen into the black hole.
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No-No Hair!	


But this is highly idealised:


•  Static


•  Vacuum


•  Potential must be convex


And no hair has come to mean the much stronger “no field 
profiles”.




The screening arises because the scalar couples to matter 
via a metric term – typically due to a conformal rescaling.


When calculating the e.o.m. a ρ dependent term appears.


Screened Scalars 
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1. Introduction

These mechanisms can be modelled generically with the Einstein frame action

S =

�
d4x

√
−g

�
M2

p

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

�
+ Sm

�
Ψi, A

2(φ)gµν
�
. (1.1)

A(φ) = eφβ(φ)/Mp ≈ 1 + φ
β(φ)

Mp
(1.2)

As we are always in the low energy regime, we take φ � Mp.
The modified ‘Einstein’ equation is then written as

Gµν =
1

M2
p

�
T µν
m + T µν

φ

�
(1.3)

where

T µν
m = 2

δSm

δgµν
,

T µν
φ = ∇µφ∇νφ− gµν

�
1

2
gαβ∇αφ∇βφ+ V (φ)

�
.

(1.4)

Using Tm ≡ gµνT µν
m , the scalar field equation is

�φ ≡ gαβ∇α∇βφ =
∂V

∂φ
− ∂ lnA

∂φ
Tm. (1.5)

Note that in the Einstein frame, the matter stress-energy tensor is not covariantly
conserved, rather, we have

∇µT
µν
m = −∇µT

µν
φ = Tm

∂ lnA

∂φ
gµν∂µφ. (1.6)
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This can be interpreted as a ‘fifth force’ on matter due to its interaction with the
scalar field. For a non-relativistic particle, this takes the form

ẍ = −
∂ lnA

∂φ
∇φ . (1.7)

�φ =
∂

∂φ
[V (φ) + (A(φ)− 1)ρ] ≡

∂Veff(φ, ρ)

∂φ
. (1.8)

The coupling function is therefore taken to be

A(φ) = e
βφ/Mp . (1.9)

A typical chameleon potential is

V (φ) = M
4+n

φ
−n = V0φ

−n
, (1.10)

where n ≥ 1 is an integer of order one, and we define V0 ≡ M
4+n to simplify

notation. Keeping only the leading order term from the coupling function, we see
that the effective potential is

Veff(φ, ρ) ≈
V0

φn
+

ρβφ

Mp
, (1.11)

which is minimised at

φ
n+1
min =

nV0Mp

ρβ
. (1.12)

The mass of small fluctuations of the field around this minimum is

m
2(ρ) = Veff(φ, ρ),φφ |φmin

≈
ρβ

Mp

�
(n+ 1)

�
ρβ

nV0Mp

� 1
n+1

+
β

Mp

�
(1.13)

which, as required, increases monotonically with ρ.
Current constraints on chameleon models come from laboratory, cosmological,

and astrophysical tests. Fifth force constraints from Eöt-Wash torsion-balance exper-
iments [?] give the boundM � 10−3 eV, assuming β and n are of order one [?, ?, ?, ?].
Demanding that the Milky Way be screened gives a lower bound for the mass of the
chameleon at cosmological densities, mcosm � 103H0 or equivalently, m−1

cosm � 1Mpc,
[?, ?]. Laboratory constraints restrict the mass at terrestrial densities to be m

−1
⊕ �

50µm [?].
We can use (1.13) to translate constraints on the chameleon’s cosmological or

terrestrial mass to an estimate in regions with arbitrary density. Assuming β ∼ O(1),
we note that if we set V0 by the dark energy scale, M ∼ 10−3 eV, as indicated by the
limits, then the first term inside of the square brackets in (1.13) will always dominate

– 2 –



The effective potential for the chameleon is a sum of two 
terms and looks different at different densities


Chameleon 

This can be interpreted as a ‘fifth force’ on matter due to its interaction with the
scalar field. For a non-relativistic particle, this takes the form

ẍ = −
∂ lnA

∂φ
∇φ . (1.7)

�φ =
∂

∂φ
[V (φ) + (A(φ)− 1)ρ] ≡

∂Veff(φ, ρ)

∂φ
. (1.8)

The coupling function is therefore taken to be

A(φ) = e
βφ/Mp . (1.9)

A typical chameleon potential is

V (φ) = M
4+n

φ
−n = V0φ

−n
, (1.10)

where n ≥ 1 is an integer of order one, and we define V0 ≡ M
4+n to simplify

notation. Keeping only the leading order term from the coupling function, we see
that the effective potential is

Veff(φ, ρ) ≈
V0

φn
+

ρβφ

Mp
, (1.11)

which is minimised at

φ
n+1
min =

nV0Mp

ρβ
. (1.12)

The mass of small fluctuations of the field around this minimum is

m
2(ρ) = Veff(φ, ρ),φφ |φmin

≈
ρβ

Mp

�
(n+ 1)

�
ρβ

nV0Mp

� 1
n+1

+
β

Mp

�
(1.13)

which, as required, increases monotonically with ρ.
Current constraints on chameleon models come from laboratory, cosmological,

and astrophysical tests. Fifth force constraints from Eöt-Wash torsion-balance exper-
iments [?] give the boundM � 10−3 eV, assuming β and n are of order one [?, ?, ?, ?].
Demanding that the Milky Way be screened gives a lower bound for the mass of the
chameleon at cosmological densities, mcosm � 103H0 or equivalently, m−1

cosm � 1Mpc,
[?, ?]. Laboratory constraints restrict the mass at terrestrial densities to be m

−1
⊕ �

50µm [?].
We can use (1.13) to translate constraints on the chameleon’s cosmological or

terrestrial mass to an estimate in regions with arbitrary density. Assuming β ∼ O(1),
we note that if we set V0 by the dark energy scale, M ∼ 10−3 eV, as indicated by the
limits, then the first term inside of the square brackets in (1.13) will always dominate
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Useful to sum up bounds in terms of Compton wavelengths:


So for a stellar size black hole with an accretion disc, λc 
small, but for a SMBH in ambient galactic density λc more 
comparable.


Chameleon 



The “no-hair” theorem does not apply because dV/dr is not 
monotonic – the density profile may jump.


Demonstrate explicitly within the rules of the no-hair game: 
static, spherically symmetric black hole, but with density 
profile


Chameleon Hair 

One objection that might be raised to this approach is that the “no hair” the-
orems preclude any nontrivial scalar profile. The relevant no-hair theorem was ex-
plored by Sotiriou and Faraoni, [?], for the case of static and vacuum solutions. The
essence of their argument is to take the scalar equation of motion (shown here for
the Schwarzschild background), to multiply by V,φ(φ)

√
g and integrate:

� ∞

2GM

�
r2V 2

,φ + r(r − 2GM)φ� d

dr
(V,φ)

�
= [V,φr(r − 2GM)φ�]∞2GM = 0. (2.2)

Clearly, if V,φφ ≥ 0, as is the case with a wide range of physically relevant potentials,
then the only possibility is that the integrand on the LHS is identically zero, i.e.,
φ� ≡ 0, φ = φmin. Although at first sight the potentials we are considering appear to
satisfy this constraint, we must be careful, as it is the effective potential that is the
relevant quantity, and we are looking at a non-uniform environment where the matter
density, ρ, jumps from being roughly zero to the ambient galactic or local accretion
disc value. Thus, although r2V 2

,φ is positive definite, the derivative of V,φ with respect
to r contains a delta function, coming from the derivative of ρ. Combining this with
the intuition that φ, if nontrivial, will tend to roll towards large values near the
black hole horizon, we see that the second term in the integrand can potentially be
very large and negative, thus ruling out a simple “no-hair” proof, and opening the
possibility of a nontrivial scalar profile.

Turning now to the case of the black hole, our setup is motivated by a physical
picture of an astrophysical black hole, typically located within some larger distribu-
tion of matter. Although astrophysical black holes will be rotating, for the purpose
of establishing whether or not a nontrivial scalar profile is possible, it will suffice to
consider a purely monopole spherically symmetric set-up, in which the black hole is
descibed by the Schwarzschild metric:

ds2 = −
�
1− Rs

r

�
dt2 +

�
1− Rs

r

�−1
dr2 + r2dΩ2 , (2.3)

(denoting Rs = 2GM for clarity), and the density profile by

ρ(r) ≡
�
0 Rs < r < R0 (Region I)

ρ� r > R0 (Region II)
(2.4)

The motivation for this profile is that the larger distribution of matter in which the
black hole sits will be characterised by a density ρ� (taken to be constant in (2.4)),
which is assumed to vary slowly on length scales comparable to the size of the black
hole. Very close to the black hole however, we expect an approximately empty inner
region, motivated by the fact that all black holes have an innermost stable circular
orbit (ISCO – e.g. at 3Rs for the Schwarzschild black hole), inside of which all massive
particles fall into the black hole on a relatively short time-scale. We therefore treat
the density inside some inner radius, R0 as being roughly zero. Our matter profile
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Analytic Approximations 
Always important to develop analytic understanding where 
possible. Analyse in regions I, II with small and large 
Compton wavelength in probe limit.


(2.4) can thus be viewed as a crude model of either an accretion disk or a galactic

halo where the matter inside R0 has fallen into the black hole.

Using this model, and taking φ = φ(r), the scalar field equation becomes an

ordinary differential equation:

�φ =
1

r2
d

dr

�
r2

�
1− RS

r

�
dφ

dr

�
=

∂Veff(φ, ρ)

∂φ
. (2.5)

The external matter distribution sets the asymptotic boundary condition φ → φ�,

where Veff(φ, ρ�),φ |φ�
= 0. Note that we typically expect φ(r) to approach this

minimum over a length scale characterised by m−1

� , where m� ≡ Veff(φ, ρ�),φφ |φ�
.

We now solve this scalar equation of motion for chameleons §2.1, dilatons §??,
and symmetrons §??, respectively. Note that although we expect R0 � RISCO = 3Rs

for the Schwarzschild black hole, to make our analytic calculations tractable we will

often use the approximation Rs/R0 � 1. While the actual value of 1/3 means there

will be quantitative inaccuracy to the analytic expressions, we nonetheless expect

that the qualitative picture emerging from our analytic results will be correct.

2.1 Chameleon profile

Here we show that the presence of a non-uniform matter density sources variations

in the chameleon field, endowing the black hole with a scalar profile. We first derive

an analytic approximation to the scalar profile, and derive the horizon value of the

chameleon in two limits: where the scalar Compton wavelength is either very large or

very small compared to the size of the black hole. As we saw in Section ??, if we take
ρ� to be the density of an accretion disk, m�R0 will always be large (� 1). If ρ� is the
density of a galactic halo the chameleon will have m�R0 � 1 for stellar mass black

holes, and m�R0 � 1 for supermassive black holes. Thus, both limits will potentially

be relevant for chameleons. We then present numerical solutions for a range of

chameleon model data, comparing them to the derived analytic approximations.

2.1.1 Analytic analysis

In order to both explore analytic approximations and perform numerical integrations,

we rewrite the chameleon equation of motion in terms of dimensionless variables:

φ̂ =
φ

φ�
, x =

r

Rs
, m̂2

= m2

∗R
2

s = (n+ 1)
ρ∗βR2

s

Mpφ∗
(2.6)

giving

φ̂��
+

2x− 1

x(x− 1)
φ̂�

=
x

(x− 1)

m̂2

(n+ 1)

�
Θ[x− x0]−

1

φ̂n+1

�
(2.7)

The physical set-up is that we have a dense extended region (II) in which the

chameleon will be held essentially constant at φ∗. Nearer to the black hole, we have a

region of vacuum (region I) in which the chameleon is allowed to roll freely and is only
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Large Compton 
For long Compton wavelength expect a small perturbation to 
the scalar, so model perturbatively. 


restricted by the dimension of region I. For a low mass chameleon (large Compton
wavelength with respect to the black hole) we do not expect the chameleon to change
much from its asymptotic value, hence we can perform an analytic approximation
assuming a small change in φ̂. For large mass chameleons however, we do expect
a rather sharp and rapid response to the vacuum region, and for the chameleon to
have something analogous to a thin shell, however, with a power law behaviour,
commensurate with the rolling of the vacuum potential. Thus, for our analytic
approximation we also use a different expression in region I for large masses. In both
cases in region II however, the field will fall off to its asymptotic value, and we expect
φ̂ � 1 + δφ̂, where

δφ̂ � C
e−m̂(x−x0)

x1+m̂/2
(2.8)

for some constant C.

• m̂x0 � 1

For a long range chameleon field, we expect that φ̂ will not vary much, and
assume the change in φ̂ in region I is dominated by the geometry, i.e.

�
x(x− 1)φ̂�

��
= −

m̂2x2

(n+ 1)φ̂n+1
h

�
1 +O(δφ̂/φ̂h)

�
, (2.9)

which gives the solution:

φ̂ = φ̂h −
m̂2

6(n+ 1)φ̂n+1
h

[x2 + 2x+ 2 ln x− 3] . (2.10)

Matching the solutions at x0 with the asymptotic form (2.8) gives

φ̂h = 1 +
m̂2

6(n+ 1)φ̂n+1
h

�
x2
0 + 2x0 + 2 ln x0 − 3 +

4x2
0 + 4x0 + 4

2m̂x0 + 2 + m̂

�

C =
m̂2

3(n+ 1)φ̂n+1
h

x1+m̂/2
0 (x2

0 + x0 + 1)

m̂x0 + 1 + m̂/2
.

(2.11)

Writing φ̂ = 1 + δφ̂, and expanding to leading order gives:

φ̂ � 1 +

�
m̂2

6(n+1)

�
3x2

0 − x2 + 4x0 − 2x+ 2 + 2 ln x0
x

�
x < x0

m̂2

3(n+1) (x
2
0 + x0 + 1) x0

x e
−m̂(x−x0) x > x0

(2.12)

We are mainly interested in the horizon value of the chameleon field, and how
this differs from the asymptotic value, as this indicates the impact of the black hole
on the local scalar profile, and we can read this off to leading order in m̂x0 as:

φ̂h ≈ 1 +
m̂2x2

0

2(n+ 1)
, (2.13)
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or,

δφh ≈ ρ�βR2
0

2Mp
. (2.14)

Here we see that δφh increases with the coupling function β, and also as we increase

the density of the local environment, as well as the range in which the chameleon

can roll (R0).

• m̂x0 � 1

In the case that the chameleon is short range, we can use the same simple

approximation presented above, although without expanding (2.11) near φ̂ = 1.

This approximation should give a good order of magnitude estimate for φ̂h, however

for later purposes we want a better approximation to the field profile so we can

estimate φ�
. Since we expect the key feature of the profile to be the rapid roll of the

chameleon near the boundary of the two regions, we focus on the change in φ̂ being

dominated by the potential:

φ̂�� � − m̂2

(n+ 1)

1

φ̂n+1
(2.15)

which is solved by

φ̂ � 1 +

�
m̂2

(n+ 2)
2
(x1 − x)2

2n(n+ 1)

�1/(n+2)

. (2.16)

Meanwhile, matching to (2.8) at x0 gives:

φ̂ � 1 +






�
m̂2(n+2)2

2n(n+1)

� 1
n+2

�
x0 − x+

2
(n+2)m̂

� 2
n+2

x < x0
�

2
n(n+1)

� 1
n+2 �x0

x

�1+m̂/2
e−m̂(x−x0) x > x0

(2.17)

This profile captures a rapid transition to large near horizon values, although

it does not solve the equations of motion at the horizon, as it has been tailored to

the variation near x0. In spite of this, as we will see from the numerical work, it

does indeed capture the essential features of the field profile (see next subsection).

Indeed, both this expression, and the simpler geometry dominated approximation

data (2.11) give the same dependence of the horizon value on x0 and m̂ to leading

order in x0

φ̂h ≈ φ̂c

�
m̂2x2

0

(n+ 1)

� 1
n+2

, (2.18)

where φ̂n+2
c = (n+ 2)

2/(2n) for the potential dominated expression, and 1/6 for the

geometry dominated expression. Re-expressing in terms of the dimensionful variables

gives

φh ∝
�
(n+ 2)

2V0R
2
0

� 1
n+2 . (2.19)

– 7 –

1. 2. 3. 4. 5. 6. 7. 8. 9.
1.000

1.005

1.010

1.015

1.020

r�Rs

Φ
Φ�

m� �0.1



Small Compton 
For low Compton wavelength expect the potential to be more 
important, but trickier to get analytic approximation more 
than indicative
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geometry dominated expression. Re-expressing in terms of the dimensionful variables

gives

φh ∝
�
(n+ 2)

2V0R
2
0

� 1
n+2 . (2.19)
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or,

δφh ≈ ρ�βR2
0

2Mp
. (2.14)

Here we see that δφh increases with the coupling function β, and also as we increase

the density of the local environment, as well as the range in which the chameleon

can roll (R0).

• m̂x0 � 1

In the case that the chameleon is short range, we can use the same simple

approximation presented above, although without expanding (2.11) near φ̂ = 1.

This approximation should give a good order of magnitude estimate for φ̂h, however

for later purposes we want a better approximation to the field profile so we can
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. Since we expect the key feature of the profile to be the rapid roll of the

chameleon near the boundary of the two regions, we focus on the change in φ̂ being
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φ̂�� � − m̂2

(n+ 1)

1

φ̂n+1
(2.15)

which is solved by

φ̂ � 1 +

�
m̂2

(n+ 2)
2
(x1 − x)2

2n(n+ 1)

�1/(n+2)

. (2.16)

Meanwhile, matching to (2.8) at x0 gives:
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




�
m̂2(n+2)2

2n(n+1)

� 1
n+2

�
x0 − x+

2
(n+2)m̂

� 2
n+2

x < x0
�

2
n(n+1)

� 1
n+2 �x0

x

�1+m̂/2
e−m̂(x−x0) x > x0

(2.17)

This profile captures a rapid transition to large near horizon values, although

it does not solve the equations of motion at the horizon, as it has been tailored to

the variation near x0. In spite of this, as we will see from the numerical work, it

does indeed capture the essential features of the field profile (see next subsection).

Indeed, both this expression, and the simpler geometry dominated approximation

data (2.11) give the same dependence of the horizon value on x0 and m̂ to leading

order in x0

φ̂h ≈ φ̂c

�
m̂2x2

0

(n+ 1)

� 1
n+2

, (2.18)

where φ̂n+2
c = (n+ 2)

2/(2n) for the potential dominated expression, and 1/6 for the

geometry dominated expression. Re-expressing in terms of the dimensionful variables

gives

φh ∝
�
(n+ 2)

2V0R
2
0

� 1
n+2 . (2.19)
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Observation 

Scalar forces are roughly of the form:


Probe limit scalar does not back-react strongly on geometry 
– also means geometry dominates local motion. Instead 
compare energy loss from scalar to gravitational radiation.


This can be interpreted as a ‘fifth force’ on matter due to its interaction with the
scalar field. For a non-relativistic particle, this takes the form

ẍ = −∂ lnA

∂φ
∇φ (1.7)

aφ � −βφ�

Mp
� β

Mp

�
φh − φ∗

∆R

�
(1.8)

∆R ∼ Min{R0, R
2/(n+2)
0 m−n/(n+2)

∗ } (1.9)

�φ =
∂

∂φ
[V (φ) + (A(φ)− 1)ρ] ≡ ∂Veff(φ, ρ)

∂φ
. (1.10)

The coupling function is therefore taken to be

A(φ) = eβφ/Mp . (1.11)

A typical chameleon potential is

V (φ) = M4+nφ−n = V0φ
−n, (1.12)

where n ≥ 1 is an integer of order one, and we define V0 ≡ M4+n to simplify
notation. Keeping only the leading order term from the coupling function, we see
that the effective potential is

Veff(φ, ρ) ≈
V0

φn
+

ρβφ

Mp
, (1.13)

∂

∂φ
Veff(φ, ρ) ≈

ρβ

Mp
− nV0

φn+1
(1.14)

which is minimised at

φn+1
min =

nV0Mp

ρβ
. (1.15)

The mass of small fluctuations of the field around this minimum is

m2(ρ) = Veff(φ, ρ),φφ |φmin

≈ ρβ

Mp

�
(n+ 1)

�
ρβ

nV0Mp

� 1
n+1

+
β

Mp

�
(1.16)

which, as required, increases monotonically with ρ.
Current constraints on chameleon models come from laboratory, cosmological,

and astrophysical tests. Fifth force constraints from Eöt-Wash torsion-balance exper-
iments [?] give the boundM � 10−3 eV, assuming β and n are of order one [?, ?, ?, ?].
Demanding that the Milky Way be screened gives a lower bound for the mass of the
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where φ̂n+2
c

= (n+ 2)2/(2n) for the potential dominated expression, and 1/6 for the
geometry dominated expression. Re-expressing in terms of the dimensionful variables
gives

φh ∝
�
(n+ 2)2V0R

2
0

� 1
n+2 . (2.19)

�����
Ėφ
ĖGR

����� ∼ β(φ�)

�
R0

Rs

� 9
2
�
φh − φ�

∆R

�
MBH

M3
p

�
MBH

mt

�
. (2.20)

�����
Ėφ
ĖGR

����� ∼ 10−28−60/(n+2) β∗
M2

BH

Mpmt

�
m∗

Mp

� n
n+2

(2.21)

∼ 10−23+ 2(n+3)
(n+1)(n+2)

�
MBH

M⊙

�2

≈ 10−11 − 10−5 (2.22)

�����
Ėφ
ĖGR

����� ∼ β
(φh − φ�)

Mp

MBH

mt

(2.23)

∼ 10−42β2 ρ�
ρcos

�
MBH

M⊙

�3

∼ 10−18 − 10−9 (2.24)
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Estimates 
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ĖGR

����� ∼ 10−28−60/(n+2) β∗
M2

BH

Mpmt

�
m∗

Mp

� n
n+2

(2.21)

∼ 10−23+ 2(n+3)
(n+1)(n+2)

�
MBH

M⊙

�2

≈ 10−11 − 10−5 (2.22)

�����
Ėφ
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Best case scenario: infall of solar mass object to SMBH


Short range:


Long range:
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In Progress: Kerr Accretion Disc 

In reality black holes 
rotate, and the accretion 
disc is localized near the 
equatorial plane. Model 
this by a uniform matter 
shell extending from 
RISCO to ~100GM, and 
solve perturbatively for φ, 
roughly massless away 
from disc.




Summary 

  No hair not applicable – screened scalars have nontrivial 
profiles even in static spherically symmetric black hole 
environments.


  Analytic tools are quite accurate predictors of actual profiles.


  General picture similar (nontrivial profiles sourced by varying 
density) with more realistic accretion disc model, though profile 
different.


  Unfortunately it seems these will not give observable effects.



