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A Little History

I At the turn of the 20th century, the laws of electrodynamics
and mechanics contradicted each other.

I Galiean mechanics contained no reference to the speed of
light, but Maxwells equations and experiments said that light
goes at the speed of light no matter how fast you are going.

I To deal with this people argued that there should be new rules
to add velocities and that the results of measuring an objects
mass or length as it approaches the speed of light would defy
ones expectations.
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Enter Einstein (1)

I Einstein argued that the constancy of the speed of light was a
property of space(time) itself.

I The Newtonian picture was that everyone shared the same
view of space and time marched in lockstep for everybody.

I So people would agree on the length of objects and the
duration of time between events

dl2 = dx2 + dy2 + dz2, dt

.
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Enter Einstein (2)

I Einstein argued that spacetime was the important concept
and that the interval between events was what everyone could
agree on.

ds2 = c2dt2 − dx2 − dy2 − dz2

.

I This simple idea explained all of the nuttiness that
experiments with light uncovered but it also cast the die for
the downfall of Newtonian gravity.

Jeremy S. Heyl GR



Outline
Why GR?

What is GR?
How to use GR?

Spacetime
Contradiction
Solutions?

Exit Newton (1)

I Newtonian gravity was action at a distance (Newton himself
wasnt happy about this). This means that if you move a mass,
its gravitational field will change everywhere instantaneously.

I In special relativity this leads to contradictions.
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Exit Newton (2)

I At the event marked by the
circle, a mass is shaken, the
gravitational field will
change instantly along green
line.

I Someone moving relative to
the mass will find that the
field changes before the
mass is moved.

I This is bad, bad, bad.
x

t

x ′

t ′
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Einstein Again

I Instead of trashing the brand-new special theory of relativity,
Einstein decided to rework the venerable theory of gravity. He
came upon the general theory of relativity.

I Newtonian gravity looks a lot like electrostatics:

∇2φ = 4πGρ

.
I Lets generalize it as a relativistic scalar field:

∇2φ− c2
d2φ

dt2
= 4πGρ

.
I What is ρ? The mass (or energy) density that one measures

depends on velocity but the L.H.S. does not, so this equation
is not Lorentz invariant.
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A First Try (1)

I The relativistic generalization of the mass or energy density is
the energy-momentum tensor. For a perfect fluid you have,

Tαβ =
(
ρ+

p

c2

)
uαuβ + pgαβ

where
gαβ = diag (1,−1,−1, 1)

is the metric tensor.
I We can get a scalar by taking

T = gαβT
αβ = ρc2 − 3p

so

∇2φ− c2
d2φ

dt2
= 4π

G

c2
T

.
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A First Try (2)

I The energy-momentum tensor of an electromagnetic field is
traceless so T = 0.

I This means that photons or the energy in a electric field does
not generate gravity.

I This is bad, bad, bad.

I If photons feel gravity, momentum is not conserved.

I If photons dont feel gravity, energy is not conserved.

Jeremy S. Heyl GR



Outline
Why GR?

What is GR?
How to use GR?

Spacetime
Contradiction
Solutions?

What to do?

I The next obvious step would be a vector field like
electromagnetism, but it isnt obvious how to make a vector
from the energy-momentum tensor.

I How about a tensor field? So

�2hαβ = 4π
G

c2
Tαβ

I But we would like gravitational energy to gravitate, so h
should be on both sides.

I One can develop a theory equivalent to GR like this.
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Einstein’s Solution

I Einstein assumed that all objects follow the same paths in a
gravitational field regardless of their mass or internal
composition (strong equivalence principle),

I He suggested that gravity is the curvature of spacetime.

I Objects follow extremal paths in the spacetime (geodesics).

I Therefore, the metric itself (gαβ) contains the hallmarks of
gravity.
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The Geodesic Equation (1)

I Let’s make some definitions:

uα =
dxα

ds
, uα = gαβu

β, gαβ,γ =
dgαβ
dxγ

I Using the definition of the metric

δ
(
ds2
)

= 2dsδ (ds) = δ
(
gαβdx

αdxβ
)

= dxαdxβgαβ,γδx
γ + 2gαβdx

αd
(
δxβ
)

I Solving for δ(ds) and integrating by parts yields

δs =

∫
δ(ds) =

∫ [
1

2
uαuβgαβ,γδx

γ + gαγu
α dδx

γ

ds

]
ds

=

∫ [
1

2
uαuβgαβ,γδx

γ − d

ds
(gαγu

α) δxγ
]
ds
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The Geodesic Equation (2)

I Because the variation is arbitrary we can set its coefficient
equal to zero

duγ
ds
− 1

2
uαuβgαβ,γ

1

2
uαuβgαβ,γ −

d

ds
(gαγu

α) = 0

1

2
uαuβgαβ,γ − gαγ

duα

ds
− uαuβgαγ,β = 0

gαγ
duα

ds
+

1

2
uαuβ (gγα,β + gγβ,α − gαβ,γ) = 0
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The Geodesic Equation (3)

I After rearranging we can write

gαγ
duα

ds
+ Γγ,αβu

αuβ = 0

where the connection coefficient or Christoffel symbol is given
by

Γγ,αβ =
1

2
(gγα,β + gγβ,α − gαβ,γ) .
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Tensors

I The quantities like Tαβ that we have been manipulating are
called tensors, and they have special properties.

I Specifically they transform simply under coordinate
transformations.

Tαβ =
∂x ′γ

∂xα
∂x ′δ

∂xβ
T ′γδ,T

αβ =
∂xα

∂x ′γ
∂xβ

∂x ′δ
T ′γδ,

I Also if metric isn’t constant you would expect derivatives to
depend on how the coordinates change as you move too.
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Tensors (2)

I We want a derivative that transforms like a tensor (this is also
called the connection).

I The derivative of a scalar quality should be simple; it does not
refer to any directions, so we define the covariant derivative to
be φ;α = φ,α.

I Let’s assume that the chain and product rules work for the
covariant derivative like the normal one that we are familiar
with (also linearity).

I Let’s prove a result about the metric, the tensor that raises
and lowers indices.

Aβ;α = (gβγA
γ);α = gβγ;αA

γ + gβγA
γ
;α = gβγ;αA

γ + Aβ;α =

so because the vector field Aβ is arbitrary, gβγ;α = 0.
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Tensors (3)

I Let’s define the covariant derivative of a tensor that is
compatible with our requirements.

Aαβ;γ = Aαβ,γ − AδβΓδαγ − AαδΓ
δ
βγ .

I Let’s apply this to the metric itself to get

gαβ;γ = gαβ,γ − gδβΓδαγ − gαδΓ
δ
βγ .

I The left-hand side is zero. Furthermore, if we also assume
that the derivative is symmetric (torsion-free), then Γδβγ is
symmetric in its lower indices.
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Tensors (4)

I We can use the symmetry of the metric and the connection to
get the following three relations.

0 = gαβ,γ − gδβΓδαγ − gαδΓ
δ
βγ

0 = gγβ,α − gδβΓδαγ − gγδΓ
δ
βα

0 = gαγ,β − gδγΓδαβ − gαδΓ
δ
βγ

I To get the second expression, we swapped α and γ. To get
the third expression, we swapped β and γ.

I Now let’s add the first two and subtract the third, cancelling
terms that are equal by symmetry.

0 = gαβ,γ + gγβ,α − gαγ,β − 2gδβΓδαγ

Γδαγ =
1

2
g δβ (gαβ,γ + gγβ,α − gαγ,β)
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The Derivative of a Tensor

I How the components of a tensor vary reflect both the change
in the coordinates and the physical variance.

I We can remove the coordinate part and focus on the physics.

Aα;β = Aα,β + ΓαγβA
γ

Aα;β = Aα,β − ΓγαβAγ

Aαβ;γ = Aαβ,γ + ΓαδγA
δβ + ΓβδγA

αδ

where

Γδαβ =
1

2
g δγ (gγα,β + gγβ,α − gαβ,γ)
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Some Important Tensors (1)

I First, we measure scalar quantities the length of one vector
along the direction of another. These scalars do not depend
on the coordinate system.

I Coordinate vectors - dxα

I Four velocity and four momentum - uα and pα.

I Killing vectors (εα) hold the key to the symmetry of the
spacetime. The value of εαpα is constant along a geodesic.

I I am moving with four-velocity uα and I detect a particle with
four-momentum pα. I would measure an energy of gαβu

αpβ.

I Of course, gαβ is the most important tensor of all. Without it
we could not construct scalars and measure anything.
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Christoffels

I The Christoffel symbols are not a tensor.

I From the rule for tensor transformation if a tensor is zero in
one coordinate system it will be zero in all others.

I If I use the geodesics themselves, I can set up a coordinate
system locallly in which the Christoffels vanish.

I However, if the geodesics diverge the Christoffels won’t be
zero everywhere. The separation (vµ) of two nearby geodesics
evolves as

d2vµ

ds2
= uνuαvβRµναβ

Rµναβ = Γµνβ,α + Γµνα,β + ΓµσαΓσνβ + ΓµσβΓσνα
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Poisson Equation to Einstein Equation

I We can finally make contact through the Riemman tensor
(Rµναβ) to the source of gravity. According to Newton, the
paths of two nearby objects diverge due to gravity as

d2vµ

ds2
= vβfµ,β = −vνφ,µ,β.

so φ,β,β = 4πGρ is related to the Ricci tensor, Rνα = Rβναβ .

I We can write the following equation with R = Rαα

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν

where the first two terms comprise the Einstein tensor Gµν . It
is important to note that Gµν;ν = 0.
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How to solve the equation?

I For an analytic solution, you need a high degree of symmetry
and a simple expression for the energy-momemtum tensor:

I Static spherically symmetric: vacuum, perfect fluid, electric
field, scalar field

I Homogeneous: perfect fluid
I Stationary Axisymmetric: vacuum, electric field

I Numerical solutions are also difficult because the equations
are non-linear.
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Spherically symmetric vacuum (1)

I Let’s try to find a spherically symmetric solution without
matter. It starts with a trial metric:

ds2 = eνc2dt2 − r2(dθ2 + sin2θdφ2)− eλdr2

I This equation means ds2 = gαβdx
αdxβ so it is a compact way

to write out the metric components.

I The functions ν and λ depend on t and r .

I There could also be a term proportional to drdt, but we can
eliminated by a coordinate transformation.
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Spherically symmetric vacuum (2)

I With Maple we can quickly get the non-zero components of
the Einstein tensor and apply the Einstein equation:

8πG

c4
T 0
0 = −e−λ

(
1

r2
− λ′

r

)
+

1

r2

8πG

c4
T 0
1 = −e−λ λ̇

r
8πG

c4
T 1
1 = −e−λ

(
ν ′

r
+

1

r2

)
+

1

r2

8πG

c4
T 2
2 =

8πG

c4
T 3
3 = UGLY

where we have used the prime for differentiation with respect
to radius and the dot for time.
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Spherically symmetric vacuum (3)

I The left-hand sides equal zero, so the second equation tells us
λ is just a function of radius.

I The difference of the first and third equations tell us that,
λ′ + ν ′ = 0 so λ+ ν = f (t). We can redefine the time
coordinate such that f (t) = 0 so the metric is static (it is not
a function of time).

I And the first equation yields

e−λ = eν = 1 +
constant

r
.

I We can find the value of the constant by insisting that
Newtonian gravity hold as r →∞. It is −2GM/c2.
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Geodesics around stars (1)

I Many of the tests of the general relativity involve the motion
of objects near spherically symmetric bodies where the metric
is given by (taking G = c = 1)

ds2 =

(
1− 2M

r

)
dt2−

(
1− 2M

r

)−1
dr2−r2 cos2 θdφ2−r2dθ2.

I The metric does not depend on time or the angle φ so along a
geodesic the values of ut and uφ are constant (dt and dφ are
Killing vectors).

I We would also like to understand massless particles for which
the four-velocity does not make sense, so we will use the
four-momentum, so we have E = pt and L = pφ as constants
of the motion.
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Geodesics around stars (2)

I Let’s calculate p2 using the metric to give

m2 = E 2

(
1− 2M

r

)−1
− (pr )2

(
1− 2M

r

)−1
− L2

r2

I And solve for pr in terms of the constants of motion

(pr )2 = E 2 −
(
m2 +

L2

r2

)(
1− 2M

r

)
.

I Furthermore, we know that
(
pφ
)2

= L2

r4

I Combining these results yields,(
dφ

dr

)2

=
1

r2

[
r2

b2
− 1 +

2M

r

(
1 +

m2r2

L2

)]−1
where b2 = L2/(E 2 −m2).
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Geodesics around stars (3)

I The quantity in the brackets will vanish at the turning points
of the path, the minimum radius (and the maximum radius if
there is one).

I We can write b2 in terms of the minimum radius as

1

b2
=

1

r20
− 2M

r0

(
1

r20
+

m2

L2

)
.

I This yields an equation for the orbit in terms of the angular
momentum and the distance of closest approach.(
dφ

dr

)2

=
1

r2

[
r2

r20
− 1− 2Mr2

r0

(
1

r20
+

m2

L2

)
+

2M

r

(
1 +

m2r2

L2

)]−1
.

I Homework: Find the angle of deflection of a particle that
travels from infinity and back out in the small deflection limit
in terms of r0 and the velocity (v) at r0.
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Geodesics around stars (4)

I Furthermore, we can define L in terms of the maximum radius
(r1) by solving for the zero of the bracketed expression

1

L2
=

r1r0 (r1 + r0)− 2M
(
r21 + r20 + r1r0

)
2m2Mr21 r

2
0

.

I This yields(
dφ

dr

)2

=
1

r2
r1r0

(r1 − r) (r − r0)

[
1− 2M

(
1

r0
+

1

r1
+

1

r

)]−1
.

I Homework: Use the equation above to find the perihelion
advance of Mercury. The advance of perihelion over a given
orbit is given by

∆φ = 2

∫ r1

r0

dφ

dr
dr − 2π.
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Beyond the Classical Tests

I Classical: gravitational redshift of light, gravitational lensing,
perihelion advance.

I Post-classical:
I Shapiro delay: light takes longer to travel through the

gravitational well of an object
I Gravitational waves: changes in the field travel at the speed of

light
I Frame dragging: spinning massive objects change the

kinematics of spinning objects nearby
I Orbital decay: orbital energy decreases due to the emission of

gravitaional waves
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Testing the Assumptions

I General relativity seems to appear out of whole cloth as “the
relativistic theory of gravity,” so how to quantify the
deviations if any. What to they mean?

I There are alternatives:
I Gauge gravity: Einstein-Cartan-Kibble theory, GTG (except for

torision, these are operationally equivalent to GR)
I Scalar-Tensor gravity: Brans-Dicke, f (R) (these have fifth

forces and break the weak equivalence principle)
I Bimetric theories: one for gravity and one for kinematics
I Quantum gravity: string theory
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Quantifying the Differences (1)

I Strong equivalence principle: gravitational energy acts the
same as other types in a gravitational field.

I Weak equivalence principle: all non-gravitational energy acts
the same in a gravitational field.

I Is space curved? γ − 1

I Non-linearity: β − 1

I Preferred Frames: α1, α2, α3

I Failure of energy, momentum and angular momentum
conservation: ζ1, ζ2, ζ3, ζ4, α3

I Radial vs. Transverse Stress: ξ
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Quantifying the Differences (2)

g00 = −1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ)Φ1

+ 2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3

+ 2(3γ + 3ζ4 − 2ξ)Φ4 − (ζ1 − 2ξ)A

− (α1 − α2 − α3)w2U − α2w
iw jUij

+ (2α3 − α1)w iVi + O(ε3)

g0i = −1
2(4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi

− 1
2(1 + α2 − ζ1 + 2ξ)Wi − 1

2(α1 − 2α2)w iU

− α2w
jUij + O(ε

5
2 )

gij = (1 + 2γU)δij + O(ε2)
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