

CONSTRAINTS AND TENSIONS IN MG PARAMETERS FROM PLANCK, CFHTLENS AND OTHER DATA SETS INCLUDING INTRINSIC ALIGNMENTS SYSTEMATICS

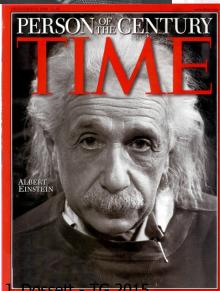
arXiv:1501.03119

Mustapha Ishak
The University of Texas at Dallas

Jason Dossett

INAF – Osservatorio Astronomico di Brera, Italy

2015 IS THE 100TH ANNIVERSARY OF EINSTEIN'S GENERAL RELATIVITY


844 Sitzung der physikalisch-mathematischen Klasse vom 25. November 1915

Die Feldgleichungen der Gravitation.

Von A. EINSTEIN.

In zwei vor kurzem erschienenen Mitteilungen¹ habe ich gezeigt, wie man zu Feldgleichungen der Gravitation gelangen kann, die dem Postulat allgemeiner Relativität entsprechen, d. h. die in ihrer allgemeinen Fassung beliebigen Substitutionen der Raumzeitvariabeln gegenüber kovariant sind.

M. Ishak &

Modified Growth Equations

Flat Perturbed FLRW Metric.

$$ds^{2} = a(\tau)^{2} [-(1+2\Psi)d\tau^{2} + (1-2\Phi)dx^{i}dx_{i}]$$

Modified Growth Equations

$$k^2\Phi = -4\pi Ga^2 \sum_i \rho_i \Delta_i Q(k,a)$$

$$k^{2}(\Psi - R(k, a) \Phi) = -12\pi G a^{2} \sum_{i} \rho_{i} (1 + w_{i}) \sigma_{i} Q(k, a).$$

$$k^{2}(\Psi + \Phi) = -8\pi G a^{2} \sum_{i} \rho_{i} \Delta_{i} \Sigma(k, a) - 12\pi G a^{2} \sum_{i} \rho_{i} (1 + w_{i}) \sigma_{i} Q(k, a)$$

$$\Sigma = rac{Q(1+R)}{2}$$
 $G_{matter}^{eff} = \mu = QR$ or D $\eta = \gamma = rac{1}{R}$

We saw some review talks by Koyama, Bean, and Silvestri.

M. Ishak & J. Dossett - TG 2015

EVOLVING THE MODIFIED GRAVITY PARAMETERS: BINNING METHODS

• 2 scale-dependent parameterizations that binned in redshift:

$$X(k,z) = \frac{1 + X_{z_1}(k)}{2} + \frac{X_{z_2}(k) - X_{z_1}(k)}{2} \tanh \frac{z - z_{div}}{z_{tw}} + \frac{1 - X_{z_2}(k)}{2} \tanh \frac{z - z_{TGR}}{z_{tw}},$$

• P1 is binned in scale as:

$$X_{z_1}(k) = \begin{cases} X_1 & \text{if } k < k_c \\ X_2 & \text{if } k \ge k_c, \end{cases}$$
$$X_{z_2}(k) = \begin{cases} X_3 & \text{if } k < k_c \\ X_4 & \text{if } k \ge k_c. \end{cases}$$

	Redshift bins		
Scale bins	$0.0 < z \le 1$	$1 < z \le 2$	
$0.0 < k \le 0.01$	Q_1,Σ_1	Q_3, Σ_3	
$0.01 < k < \infty$	Q_2,Σ_2	Q_4, Σ_4	

• **P2** evolves monotonically in scale:

$$X_{z_1}(k) = X_1 e^{-k/k_c} + X_2 (1 - e^{-k/k_c})$$

$$X_{z_2}(k) = X_3 e^{-k/k_c} + X_4 (1 - e^{-k/k_c}),$$

• P3 is scale independent and evolves in redshift only as:

$$X(a) = (X_0 - 1) a^s + 1$$

ISITGR: Integrated Software in Testing General Relativity

Version 1.1

Developed by Jason Dossett, Mustapha Ishak, and Jacob Moldenhauer.

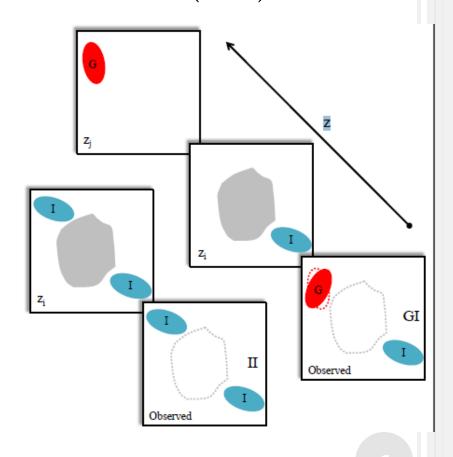
What is ISiTGR?

ISITGR is an integrated set of modified modules for the software package COSMOMC for use in testing whether observational data is consistent with general relativity on cosmological scales. This latest version of the code has been updated to allow for the consideration of non-flat universes. It incorporates modifications to the codes: CAMB, COSMOMC, the ISW-galaxy cross correlation likelihood code of Ho et al, and our own weak lensing likelihood code for the refined COSMOS 3D weak lensing tomography of Schrabback et al to test general relativity.

A detailed explanation of the modifications made to these codes allowing one to test general relativity are described in our papers: <u>arXiv:1109.4583</u> and <u>arXiv:1109.4583</u> and <u>arXiv:1205.2422</u>.

How to get ISiTGR

Two versions of ISitgr are available. The normal version of ISitgr uses a functional form to evolve the parameters used to test general relativity and is available here. ISitgr BIN, on the other hand, gives you two options to evovle the parameters used to test general relativity. The first option is to bin the parameters in two redshift and two scale bins, alternatively one can use the hybrid evolution method, as seen in our paper, where scale dependence evolves monotonically, but redshift dependence is binned. That code can be downloaded here.

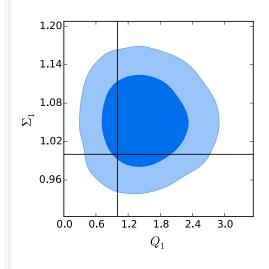

Downoad Here: <u>ISiTGR</u> <u>ISiTGR BIN</u>

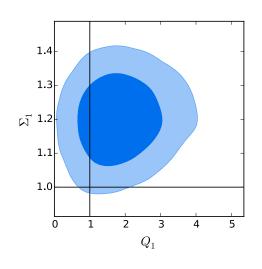
The original (flat only) verison of ISiTGR as well as builds for other versions of CosmoMC are available here (this Version is for CosmoMC 01/2012).

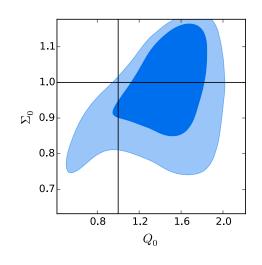
http://isit.gr

GALAXY INTRINSIC ALIGNMENTS (IA) AS A CONTAMINANT TO WEAK LENSING (WL) SIGNAL

- Contaminates WL signal by up to 15-20%.
- 2 pt. IA biases cosmological parameters from WL at the 10%-50% level
- Measured correlation function is sum of GG, GI and II signals.
- \circ Used a model for IA with amplitude parameter $A_{CFHTLenS}$

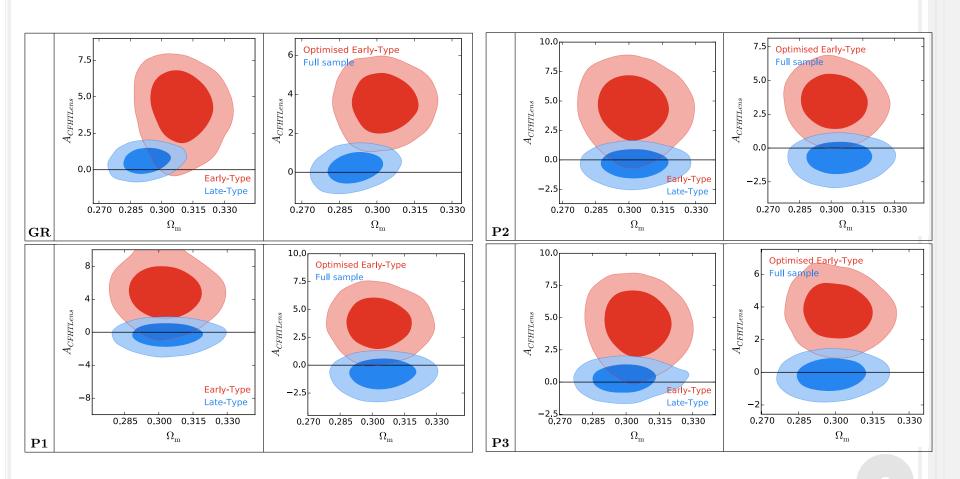



DATA SETS USED


- CMB temperature anisotropy power-spectrum from Planck 2013
- Low-*l* WMAP Polarization data
- Weak lensing tomography shear-shear cross correlations from the CFHTLenS
- Galaxy power spectrum from the WiggleZ survey
- ISW-galaxy cross correlations
- o BAO data from 6dF, SDSS DR7, and BOSS DR9

RESULTS OVERVIEW

- We find a 40-50% improvement on figure of merit (FoM) for the MG parameters over previous results.
- GR is consistent with the data at the 95% CL when considering 2D contours.
- With current data, only 1-5% change in the FoM for the MG parameters when $A_{CFHTLenS}$ fixed to zero.


P1

P2

P3

M. Ishak & J. Dossett - TG 2015

RESULTS: IA AND DIFFERENT LENSING DATASETS.

• The contours in the GR case are in agreement with Heymans et al. 2013

RESULTS CONT'D

o P1

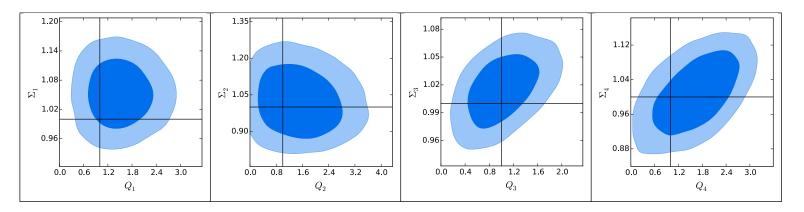


FIG. 1: 68% and 95% 2-D confidence contours for the parameters Q_i and Σ_i from parameterization **P1** for redshift and scale dependence of the MG parameters. All of the constraints for this evolution method are fully consistent with GR at the 68% level.

95% confidence limits on MG parameters				
evolved using form P1				
$\mathbf{Q_1}$	[0.49, 2.56]	Σ_1	[0.97, 1.14]	
$\mathbf{Q_2}$	[0.05, 3.08]	Σ_2	[0.84, 1.22]	
$\mathbf{Q_3}$	[0.30, 1.78]	Σ_3	[0.97, 1.06]	
$\mathbf{Q_4}$	[0.28, 2.88]	Σ_4	[0.90, 1.12]	

RESULTS CONT'D

o **P2**

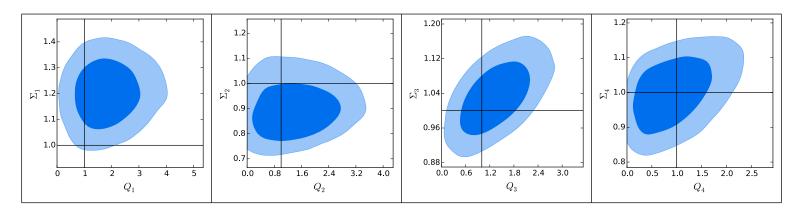


FIG. 2: 68% and 95% 2-D confidence contours for the parameters Q_i and Σ_i from parameterization **P2** for redshift and scale dependence of the MG parameters. As you can see in the first bin, there a tension with the GR value of 1. However, contrary to the marginalized 1-D constraints given in Table III the GR point is still within the 95% confidence region.

95% confidence limits on MG parameters				
evolved using form $P2$				
$\mathbf{Q_1}$	[0.38, 3.43]	Σ_1	[1.03, 1.37]	
$\mathbf{Q_2}$	[0.00, 2.86]	$\boldsymbol{\Sigma_2}$	[0.75, 1.07]	
Q_3	[0.28, 2.46]	Σ_3	[0.93, 1.14]	
$\mathbf{Q_4}$	[0.05, 1.99]	Σ_4	[0.86, 1.14]	

RESULTS CONT'D

o P3

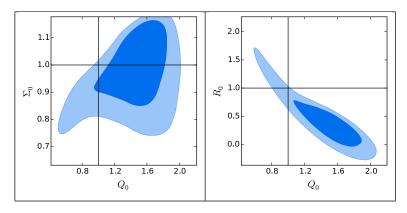
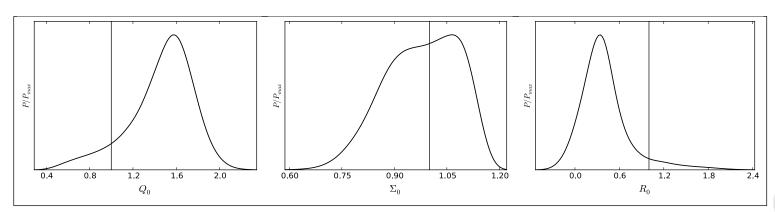
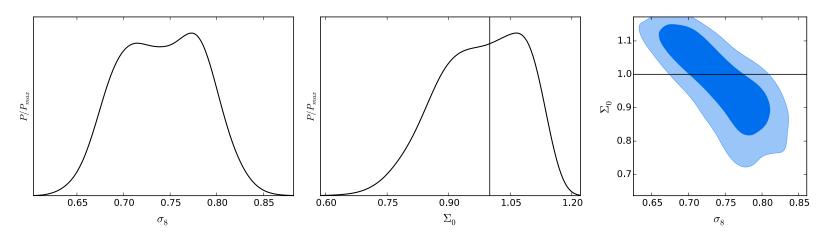



FIG. 3: 68% and 95% 2-D confidence contours for the parameters Q_0 , Σ_0 , and R_0 from the scale independent parameterization, **P3**, for the MG parameters. These constraints are consistent with GR a the 95% level, but a tension is evident. The tension is evident when viewing these plots is not easily seen using the 1-D constraints given in Table V. This is due to the non-Gaussianity of the probability distribution for these parameters as further Fig. 4.



95% confidence limits on MG parameters evolved using form $\bf P3$ ${\bf Q_0} \hspace{0.2in} \begin{bmatrix} 0.77,1.99 \end{bmatrix} \hspace{0.2in} {\bf \Sigma_0} \hspace{0.2in} \begin{bmatrix} 0.79,1.16 \end{bmatrix} \hspace{0.2in} {\bf R_0} \hspace{0.2in} \begin{bmatrix} -0.23,1.18 \end{bmatrix}$

12

TENSIONS BETWEEN THE DATA SETS

- We have seen indications of tensions in the MG parameter space for P2 and P3.
- Known tension between CMB and weak lensing, notably in constraints on σ_8 .

• For P3 we get a bimodal σ_8 , hinting the tension in MG parameter space is likely related to known tension between the data sets.

13

RESULTS: CORRELATIONS WITH MG PARAMETERS

- We find only weak to moderate correlations between MG parameters and the IA parameter.
 - With current data, only 1-5% change in the FoM for the MG parameters when $A_{\rm CFHTLenS}$ fixed to zero.
 - Both scale dependent parameterizations show most correlation in low-z, high-k bins (bin probed most by lensing data).

Correlation table								
	Binning parameterization $(\mathbf{P1})$							
	Q_1	Q_2	Q_3	Q_4	Σ_1	Σ_2	Σ_3	Σ_4
$A_{CFHTLenS}$	-0.021162	-0.29209	0.015916	0.0056355	-0.0014863	0.083586	0.015755	0.066954
σ_8	-0.012168	-0.53048	0.044293	-0.43088	0.045781	-0.61952	0.048845	-0.29894
Ω_m	-0.0012586	-0.072645	-0.051569	0.11762	-0.08057	-0.085185	-0.033916	-0.17292
Hybrid parameterization $(\mathbf{P2})$								
$A_{CFHTLenS}$	0.058535	-0.29535	-0.052588	0.095984	-0.14858	0.20636	-0.086038	0.10421
σ_8	0.2655	-0.70809	0.12172	-0.33026	0.32713	-0.59009	0.1362	-0.20504
Ω_m	0.027229	-0.065934	-0.028016	0.0803	0.01565	-0.15645	0.14932	-0.26513

Correlation table				
Functional parameterization (P3)				
	Q_0	Σ_0		
$A_{CFHTLenS}$	-0.023164	0.10624		
σ_8	-0.66775	-0.75738		
Ω_m	-0.072171	0.052317		

SUMMARY

- We find a 40-50% improvement on figure of merit for the MG parameters over previous results.
- The intrinsic alignment amplitude shows weak to moderate correlation with the MG parameters ($Q_2 \& \Sigma_2$ most correlated).
- GR & P3 show a clear IA signal for the optimized early-type galaxy sample
- GR is consistent with the data at the 95% CL when considering 2D contours.
- \circ A clear tension is present in the parameter Σ apparently related to the known tension between CMB and weak lensing.