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Introduction

« Searches for new short range forces can probe a variety of models of new
physics that are difficult to test with other techniques

» Typically parameterize resulting non-Newtonian potential with Yukawa

form:

V(r)=— Gmam; (1 + ae_r/k)
T
Current experimental constraints on non-Newtonian forces:
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at large distance

For short length scales,
constraints are much
weaker: o < 10 for

A=1pm

May be possible to
significantly improve
sensitivity at micron length
scales
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Optical levitation

» Previous measurements at short distance have used mechanical springs
as force sensors (e.g. torsion pendulums, micromachined cantilevers)

« Suspending test mass with an “optical spring” offers several advantages:

« Thermal and vibrational noise from

mechanical support minimized Schematic of optical levitation technique:
« At high vacuum, test mass can be l
isolated from surroundings and cooled -

optically (without cryogenics)

« Test mass position can be controlled and SiO, Au
measured precisely with optics

» Control of optical potential and motion in
all 3 DOF allows powerful differential
measurements

» Dielectric spheres with a wide range of
sizes (~10 nm — 10 um) can be used

« Extremely low dissipation is possible:
Q~10'2 at 109 mbar

Geraci et al., PRL 105, 101101 (2010)
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Experimental setup

o Ph h of trapped microsphere:
« Developed setup capable of levitating hotograph of trappec microspnere

SiO, microspheres with r=0.5-5 um

* Microspheres are levitated in UHV
chamber with A = 1064 nm, ~few mW
trapping laser

« Imaged by additional A = 650 nm beams

* Have stably trapped a single microsphere
at ~107 mbar for >100 hrs

Experimental setup: Simplified optical schematic:
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Microsphere cooling

« Below ~1 mbar, active feedback cooling is needed to maintain stable
trapping

« Monitor position of microsphere and apply feedback by modulating
amplitude and pointing of the trapping beam (using FPGA and AOD)

* (Can cool center of mass motion to <50 mK in all 3 DOF

Microsphere position spectrum with cooling:
Mechanism for laser heating:
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Microsphere neutralization

Electromagnetic backgrounds can overwhelm

signal from new short-range forces

Microsphere can be discharged by flashing with

UV light from Xe flash lamp

single e precision

more than 5 x 10° s

Have demonstrated controlled discharging with

Once neutral, microspheres have not
spontaneously charged in total integration time of

Example of discharging process:

Electrode configuration:
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Force sensitivity

« (Can also use observed single e steps to perform absolute calibration of
force sensitivity for each microsphere in situ

« At high pressure, sensitivity

limited by residual gas damping

 Below 103 mbar, force
sensitivity limited to
Or=5x10" N Hz 2

« Current sensitivity limited
by non-fundamental
sources of noise (imaging

and laser jitter)

 Significant improvement
possible — pressure
limited sensitivity at 10°
mbar ~ 1020 N Hz1/2
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Calibration of force sensitivity:
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Search for millicharged particles

» As a first application of this force sensing technique, we have performed a
search for millicharged particles (Igl << 1e) bound in the microspheres

« Sensitive to single fractional charges as smallas 5 x 10° ¢

« Current sensitivity (<1 aN) limited by residual response due to
microsphere inhomogeneities that couple to E-field gradients

Measured residual response:
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Limits on abundance of millicharged particles:
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Attractor design

Images of preliminary fabrication tests:

« Short-range force measurements
require gravitational attractor that
can be positioned near microsphere

 Attractor with spatially varying
density allows reduction of many
backgrounds

« Have begun
fabrication of Au

and Si test - Side view:
mass arrays -
* Au shielding

layer screens §_ P
electromagnetic g =
backgrounds > o
that vary with & Y
composition $~0.2-5um

t=05-3um

¥y r,=5um
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Microsphere positioning

The position of the microsphere can be precisely controlled via the optical
potential

Acousto-optic deflector (AOD) is used to position microsphere with ~um
separations from attractor mass

Microsphere can be moved along the attractor face to produce an
oscillation in density near the microsphere at up to ~200 Hz

Side view of microsphere near attractor: Top view of microsphere near attractor:

Attractor
cantilever Microsphere

N 4
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Expected backgrounds (Casimir)

 |f unscreened, differential Casimir force between Au and Si can present
dominant background

» Coating attractor with Au shield layer (0.5 to 3 um thick) can sufficiently

suppress this background
Calculation of differential Casimir force:
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Expected backgrounds (Patch potentials)

« Deposited metal films typically have potential variations ~10-100 mV over
10 nm—1 um surface regions due to crystalline grains or impurities

« Such “patch potentials” have been studied extensively since they provide a
significant background in Casimir force experiments

« Estimated background using recent patch measurements of Au films (only
small component will be at same spatial frequency as attractor mass)
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Expected sensitivity
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Have calculated expected sensitivity to Yukawa strength parameter, q, as a

function of length scale, A

Assume face-to-face separation of s = 0.2 um (dashed) or 2 um (solid)

Plot sensitivity for
demonstrated o = 5x107" N
Hz /2 (blue) and for pressure
limited o at 10° mbar (red)

Assume Au shielding layer of
sufficient thickness to make

Casimir background negligible

Improvement in sensitivity by =

several orders of magnitude
over existing limits at
0.5-10 pum is possible

Hatched regions, lines show
selection of theoretical models
from PRD 68 124021 (2003)

Projected sensitivity to non-Newtonian forces:
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Summary

« Have developed apparatus to optically levitate micron sized dielectric
spheres in vacuum

« Force sensitivity << 1018 N and our ability to precisely manipulate the
microspheres near the attractor surface can enable unprecedented
sensitivity to non-Newtonian forces at micron distances

« Have demonstrated force sensing technique in search for millicharged
particles bound in the microspheres (sensitive to g > 5 x 107 ¢)

« Currently fabricating spatially varying attractor masses that are needed for
searches for short-range forces

« Sensitivity projections indicate that several orders of magnitude
iImprovement is possible over existing constraints at 0.5-10 um
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