# Disformal invariance of cosmological perturbations in a generalized class of Horndeski theories

### Shinji Tsujikawa (Tokyo University of Science)

De Felice and ST, arXiv: 1411.0736

ST, arXiv: 1412.6210





### **Motivation of going beyond General Relativity**

- Origin of inflation
  - --it comes from some geometric effect or from a scalar field beyond the standard model of particle physics?
- Origin of dark energy (and dark matter)
  - -- the present cosmic acceleration may come from a large-distance modification of gravity?
- Construction of renormalizable theory of gravity
  - --short-distance modification of gravity



#### Horndeski theories

$$S = \int d^4x \sqrt{-g} \, L$$

Horndeski (1974) Deffayet et al (2011) Charmousis et al (2011) Kobayashi et al (2011)



$$L = G_{2}(\phi, X) + G_{3}(\phi, X) \Box \phi + G_{4}(\phi, X)R - 2G_{4,X}(\phi, X) \left[ (\Box \phi)^{2} - \phi^{;\mu\nu}\phi_{;\mu\nu} \right]$$
$$+G_{5}(\phi, X)G_{\mu\nu}\phi^{;\mu\nu} + \frac{1}{3}G_{5,X}(\phi, X)[(\Box \phi)^{3} - 3(\Box \phi)\phi_{;\mu\nu}\phi^{;\mu\nu} + 2\phi_{;\mu\nu}\phi^{;\mu\sigma}\phi^{;\nu}_{;\sigma}]$$

Single scalar field  $\phi$  with  $X = g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi$ 

R and  $G_{\mu\nu}$  are the 4-dimensional Ricci scalar and the Einstein tensors, respectively.

Horndeski theories are of second order, so it is free from the Ostrogradski instability.

- General Relativity corresponds to  $G_4 = M_{\rm pl}^2/2$ .
- Horndeski theories accommodate a wide variety of gravitational theories like Brans-Dicke theory, f(R) gravity, and covariant Galileons.



### Horndeski Lagrangian in terms of the ADM Language

ADM metric: 
$$ds^{2} = -N^{2}dt^{2} + h_{ij} \left( dx^{i} + N^{i}dt \right) \left( dx^{j} + N^{j}dt \right)$$

N: lapse,  $N^i:$  shift  $n^{\mu}:$  unit vector orthogonal to  $\Sigma_t$ 

- lacktriangle Extrinsic curvature:  $K_{\mu\nu} = h^{\lambda}_{\mu} n_{\nu;\lambda}$
- Intrinsic curvature:  $\mathcal{R}_{\mu\nu} = {}^{(3)}R_{\mu\nu}$



Several scalar quantities can be constructed:

$$K \equiv K^{\mu}{}_{\mu}, \quad \mathcal{S} \equiv K_{\mu\nu}K^{\mu\nu}, \quad \mathcal{R} \equiv \mathcal{R}^{\mu}{}_{\mu}, \quad \mathcal{Z} \equiv \mathcal{R}_{\mu\nu}\mathcal{R}^{\mu\nu}, \quad \mathcal{U} \equiv \mathcal{R}_{\mu\nu}K^{\mu\nu}$$

In the unitary gauge where  $\delta \phi = 0$ , the Horndeski Lagrangian on the flat FLRW background is equivalent to

$$L = A_2 + A_3 K + A_4 (K^2 - S) + B_4 R + A_5 K_3 - B_5 (KR/2 - U)$$

$$(K_3 = 3H(2H^2 - 2KH + K^2 - S) + O(3))$$

with two particular relations

$$A_4 = 2XB_{4,X} - B_4, \quad A_5 = -XB_{5,X}/3$$

Gleyzes et al (2013)



#### Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories

Consider the Lagrangian

$$L = A_2 + A_3K + A_4(K^2 - S) + B_4R + A_5K_3 - B_5(KR/2 - U)$$
  
without putting restrictions between  $A_i(N, t)$  and  $B_i(N, t)$ .

(i) The background and perturbation equations are of second order on the flat FLRW background without an extra propagating degree of freedom.

Gleyzes et al, arXiv:1404.6495, 1408.1952; Lin et al, arXiv: 1408.0670.

(ii) The theories with same  $A_i$  but with different  $B_i$  lead to the same background dynamics, but the evolution of cosmological perturbations is different.

Kase and ST, PRD90, 044073 (2014)

(iii) Even in the presence of a small anisotropy on the flat FLRW background, it seems that there is no extra degree of freedom.

De Felice, Kase, Mukohyama, ST, in preparation

# M

#### **Disformal transformation**

The structure of the GLPV action is preserved under the disformal transformation

$$\hat{g}_{\mu\nu} = \Omega^{2}(\phi)g_{\mu\nu} + \Gamma(\phi, X)\nabla_{\mu}\phi\nabla_{\nu}\phi$$
Conformal
transformation
Transformation
Conformation
Transformation

In unitary gauge the GLPV action in the transformed frame reads

$$S = \int d^4x \sqrt{-\hat{g}} \,\hat{L} \qquad \hat{L} = \hat{A}_2(\hat{N}, t) + \hat{A}_3(\hat{N}, t)\hat{K} + \hat{A}_4(\hat{N}, t)(\hat{K}^2 - \hat{S}) + \hat{B}_4(\hat{N}, t)\hat{R} + \hat{A}_5(\hat{N}, t)\hat{K}_3 + \hat{B}_5(\hat{N}, t)\left(\hat{\mathcal{U}} - \hat{K}\hat{\mathcal{R}}/2\right)$$

with the relations among coefficients

where 
$$\hat{A}_2 = \frac{1}{\Omega^3 \alpha} \left( A_2 - \frac{3\omega}{N} A_3 + \frac{6\omega^2}{N^2} A_4 - \frac{6\omega^3}{N^3} A_5 \right),$$

$$\hat{A}_3 = \frac{1}{\Omega^3} \left( A_3 - \frac{4\omega}{N} A_4 + \frac{6\omega^2}{N^2} A_5 \right),$$

$$\hat{A}_4 = \frac{\alpha}{\Omega^3} \left( A_4 - \frac{3\omega}{N} A_5 \right),$$

$$\hat{B}_4 = \frac{1}{\Omega \alpha} \left( B_4 + \frac{\omega}{2N} B_5 \right),$$

$$\hat{A}_5 = \frac{\alpha^2}{\Omega^3} A_5,$$

$$\hat{B}_5 = \frac{1}{\Omega} B_5.$$
where
$$\alpha \equiv \hat{N}/N = \sqrt{\Omega^2 + \Gamma X}$$

$$\omega \equiv \hat{\Omega}/\Omega$$
Gleyzes et al,
arXiv: 1408.1952

## ye.

#### Disformal invariance of cosmological perturbations

Consider the perturbed metric

$$ds^{2} = -N^{2}dt^{2} + h_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$
  
=  $-(1 + 2A)dt^{2} + 2\psi_{|i}dtdx^{i} + a^{2}(t)q_{ij}dx^{i}dx^{j}$ 

where

$$h_{ij} = a^2(t)q_{ij}$$
,  $q_{ij} \equiv (1 + 2\underline{\zeta})\delta_{ij} + \underline{\gamma_{ij}} + 2E_{|ij}$ .

Curvature Gravitational perturbations waves

ST (2014), See also Minamitsuji (2014) for the case  $\Gamma = \Gamma(\phi)$ 

In the unitary gauge ( $\delta \phi = 0$ ), the line element after the disformal transformation  $\hat{g}_{\mu\nu} = \Omega^2(\phi)g_{\mu\nu} + \Gamma(\phi, X)\nabla_{\mu}\phi\nabla_{\nu}\phi$  reads

$$d\hat{s}^{2} = -\hat{N}^{2}dt^{2} + \hat{a}^{2}(t)\hat{q}_{ij}(dx^{i} + N^{i}dt)(dx^{j} + N^{j}dt)$$

where

$$\hat{N} = N\sqrt{\Omega^2 + \Gamma X}, \quad \hat{a}(t) = \Omega(t)a(t), \quad \hat{q}_{ij} = q_{ij}$$

The invariance of  $q_{ij}$  means that

$$\hat{\zeta} = \zeta \,, \qquad \hat{\gamma}_{ij} = \gamma_{ij}$$

# M

#### Gravitational waves in GLPV theories

Expansion of the GLPV action up to second order in tensor perturbations leads to

$$S_2^{(h)} = \int d^4x \mathcal{L}_2^{(h)} \quad \mathcal{L}_2^{(h)} = a^3 q_t \left[ \dot{\gamma}_{ij}^2 - \frac{c_t^2}{a^2} (\partial \gamma_{ij})^2 \right]$$

$$q_t = \frac{L_{,\mathcal{S}}}{4N}, \quad c_t^2 = \frac{N^2 \mathcal{E}}{L_{,\mathcal{S}}} \quad \text{where} \quad \begin{array}{l} \mathcal{E} = L_{,\mathcal{R}} + \frac{\dot{L}_{,\mathcal{U}}}{2N} + \frac{3}{2} H L_{,\mathcal{U}} \\ H = \frac{\dot{a}}{Na} \end{array}$$

Under the disformal transformation the quantities  $L_{,\mathcal{S}}$  and  $\mathcal{E}$  transform as

$$\hat{L}_{,\hat{\mathcal{S}}} = \frac{\alpha}{\Omega^3} L_{,\mathcal{S}} \qquad \hat{\mathcal{E}} = \frac{1}{\Omega \alpha} \mathcal{E} \qquad \text{where} \quad \alpha = \hat{N}/N$$

$$\hat{q}_{t} = \frac{1}{\Omega^3} q_{t}, \qquad \hat{c}_{t}^2 = \Omega^2 c_{t}^2$$

The second-order Lagrangian in the transformed frame is of the same form as that in the original frame:

$$\hat{\mathcal{L}}_{2}^{(h)} = \hat{a}^{3} \hat{q}_{t} \left[ \dot{\gamma}_{ij}^{2} - \frac{\hat{c}_{t}^{2}}{\hat{a}^{2}} (\partial \gamma_{ij})^{2} \right]$$

## ye.

### Inflationary tensor power spectrum in GLPV theories

The tensor equation of motion in the original frame is

$$\frac{d}{dt}(a^3q_t\dot{\gamma}_{ij}) - aq_tc_t^2\partial^2\gamma_{ij} = 0$$

Consider an inflationary background in which the expansion rate

 $h = NH = \dot{a}/a$  is nearly constant, i.e.,

$$\epsilon_h \equiv -\frac{h}{h^2} \ll 1$$

We introduce the following two parameters

$$\epsilon_{
m t} \equiv rac{\dot{q}_{
m t}}{hq_{
m t}}, \qquad s_{
m t} \equiv rac{\dot{c}_{
m t}}{hc_{
m t}}$$

Provided that these terms are much smaller than 1, we obtain the inflationary tensor power spectrum up to next-to-leading order in slow-roll:

$$\mathcal{P}_h(k) = \frac{h^2}{4\pi^2 q_t c_t^3} \left[ 1 - 2(C+1)\epsilon_h - C\epsilon_t - (3C+2)s_t \right] \Big|_{c_t k = ah}$$

De Felice and ST, arXiv: 1411.0736

where 
$$C = \gamma - 2 + \ln 2 = -0.7296...$$



### Transformation to the GR form of the tensor spectrum

In the transformed frame the tensor power spectrum is invariant:

$$\hat{\mathcal{P}}_h(k) = \frac{\hat{N}^2 \hat{H}^2}{4\pi^2 \hat{q}_t \hat{c}_t^3} \left[ 1 - 2(C+1)\hat{\epsilon}_h - C\hat{\epsilon}_t - (3C+2)\hat{s}_t \right] \Big|_{\hat{c}_t k = \hat{a}\hat{h}}$$

Let us consider a frame satisfying the two conditions

$$\hat{q}_{
m t} = rac{M_{
m pl}^2}{8\hat{N}}, \qquad \hat{c}_{
m t} = \hat{N}$$

$$\Omega^2 = rac{8q_{
m t}c_{
m t}}{M_{
m pl}^2}, \qquad \Gamma = rac{8q_{
m t}c_{
m t}}{M_{
m pl}^2} rac{c_{
m t}^2 - N^2}{N^2X}$$

In this case we have

$$\hat{\epsilon}_{
m t} = -\hat{s}_{
m t}, \qquad \hat{\epsilon}_{h} = \hat{\epsilon}_{H} - \hat{s}_{
m t} \qquad ext{where} \qquad \hat{\epsilon}_{H} \equiv -rac{1}{\hat{N}}rac{\hat{H}}{\hat{H}^{2}}$$

Then the tensor power spectrum reads

$$\hat{\mathcal{P}}_h(k) = \frac{2\hat{H}^2}{\pi^2 M_{\rm pl}^2} \left[ 1 - 2(C+1)\hat{\epsilon}_H \right]_{k=\hat{a}\hat{H}}$$
 ST, arXiv: 1412.6210



Same as the GR tensor spectrum (Stewart and Lyth, 1993)

### **Einstein frame**

The choice  $\hat{q}_{\rm t} = M_{\rm pl}^2/(8\hat{N})$  corresponds to  $\hat{L}_{,\hat{S}} = M_{\rm pl}^2/2$ , i.e.,

$$\hat{A}_4 = -M_{\rm pl}^2/2 - 3\hat{H}\hat{A}_5$$

In this case the background equations of motion can be written as the GR form:

$$3M_{\rm pl}^2 \hat{H}^2 = \hat{\rho},$$

$$-2M_{\rm pl}^2 \frac{1}{\hat{N}} \frac{d\hat{H}}{dt} = \hat{\rho} + \hat{P},$$

where

$$\hat{\rho} \equiv -\hat{A}_2 - 6\hat{H}^3\hat{A}_5 - \hat{N}\left(\hat{A}_{2,\hat{N}} + 3\hat{H}\hat{A}_{3,\hat{N}} - 12\hat{H}^3\hat{A}_{5,\hat{N}}\right),$$

$$\hat{P} \equiv \hat{A}_2 + 6\hat{H}^3\hat{A}_5 - \left(\dot{\hat{A}}_3 - 12\hat{H}\dot{\hat{H}}\hat{A}_5 - 6\hat{H}^2\dot{\hat{A}}_5\right)/\hat{N},$$

The spectral index of the leading-order tensor spectrum  $\hat{\mathcal{P}}_h(k) = 2\hat{H}^2/(\pi^2 M_{\rm pl}^2)$  is

$$\hat{n}_{\rm t} = \frac{2}{\hat{N}} \frac{\dot{\hat{H}}}{\hat{H}^2}$$

The tensor spectrum is red-tilted  $(\hat{n}_t < 0)$  for  $\hat{\rho} + \hat{P} > 0$ , i.e.,

$$\hat{\bar{N}}\left(\hat{A}_{2,\hat{N}} + 3\hat{H}\hat{A}_{3,\hat{N}} - 12\hat{H}^3\hat{A}_{5,\hat{N}}\right) + \left(\dot{\hat{A}}_3 - 12\hat{H}\dot{\hat{H}}\hat{A}_5 - 6\hat{H}^2\dot{\hat{A}}_5\right)/\hat{N} < 0$$



### **Scalar perturbations**

The second-order Lagrangian for curvature perturbations  $\zeta$  takes the same form as the tensor's one with more involved coefficients  $q_s$  and  $c_s$ :

$$\mathcal{L}_2^{(s)} = a^3 q_{\rm s} \left[ \dot{\zeta}^2 - \frac{c_{\rm s}^2}{a^2} (\partial \zeta)^2 \right]$$

The disformal invariance of the scalar action also holds with the correspondence

$$\hat{q}_{\rm s} = \frac{1}{\Omega^3} q_{\rm s}, \qquad \hat{c}_{\rm s}^2 = \Omega^2 c_{\rm s}^2$$

The inflationary scalar power spectrum reads

$$\mathcal{P}_{\zeta}(k) = \frac{h^2}{8\pi^2 q_{\rm s} c_{\rm s}^3} \left[ 1 - 2(C+1)\epsilon_h - C\epsilon_{\rm s} - (3C+2)s_{\rm s} \right]_{c_{\rm s}k = ah} \qquad \epsilon_{\rm s} = \dot{q}_{\rm s}/(hq_{\rm s})$$
$$s_{\rm s} = \dot{c}_{\rm s}/(hc_{\rm s})$$

In the Einstein frame the spectrum is the same and it can be expressed as

$$\hat{\mathcal{P}}_{\zeta}(k) = \frac{q_{tk}c_{tk}^3}{q_sc_s^3} \frac{\hat{H}^2}{\pi^2 M_{pl}^2} \left[ 1 - 2(C+1)\hat{\epsilon}_H + 2(C+1)\hat{s}_t - C\hat{\epsilon}_s - (3C+2)\hat{s}_s \right] |_{\hat{c}_s k = \hat{a}\hat{h}}$$

where  $q_{tk}$  and  $c_{tk}$  should be evaluated at  $c_t k = ah$ .



Together with the tensor power spectrum, these general results can be used to put precise constraints on concrete inflationary models.

### 10

### **Summary and outlook**

- 1. The disformal transformation  $\hat{g}_{\mu\nu} = \Omega^2(\phi)g_{\mu\nu} + \Gamma(\phi, X)\nabla_{\mu}\phi\nabla_{\nu}\phi$  preserves the structure of the GLPV action. In Horndeski theories we require that  $\Gamma = \Gamma(\phi)$ .
- 2. The curvature and tensor perturbations are invariant under disformal transformation.
- 3. We computed the scalar and tensor inflationary power spectra up to next-to-leading order in GLPV theories and showed that it is possible to transform to the Einstein frame with the GR form of the tensor spectrum.

$$\mathcal{P}_h^{\text{lead}}(k) = \frac{N^2 H^2}{4\pi^2 q_{\text{t}} c_{\text{t}}^2} \qquad \longrightarrow \qquad \hat{\mathcal{P}}_h^{\text{lead}}(k) = \frac{2\hat{H}^2}{\pi^2 M_{\text{pl}}^2}$$
The disformal transformation

that realizes 
$$\hat{q}_{\mathrm{t}} = M_{\mathrm{pl}}^2/(8\hat{N}), \hat{c}_{\mathrm{t}} = \hat{N}$$

4. In application to dark energy, it will be also interesting to take into account additional matter (specific kinetic couplings arise in GLPV theories).