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Motivation of going beyond General Relativity

m Origin of inflation
--1t comes from some geometric effect or from a scalar field
beyond the standard model of particle physics?

m Origin of dark energy (and dark matter)
--the present cosmic acceleration may come from a

large-distance modification of gravity?

B Construction of renormalizable theory of gravity
--short-distance modification of gravity



Horndeski theories

Horndeski (1974)
Deffayet et al (2011)

S = / d433\/ —q L Charmousis et al (2011) ?
Kobayashi et al (2011) '

L = G2(¢7 X) + G3(¢7 X)Ekb + G4(¢7 X)R o 2G4,X(¢7 X) [(D¢)2 o ¢;MV¢;“V]

. 1 . o L
+G5(0, X)G ™ + 2G5, x (¢, X)[(@9)° = 3(0¢) by O™ + 263 H*7 S

Single scalar field ¢ with X = ¢*”0,,¢0, ¢

R and G, are the 4-dimensional Ricci scalar and the Einstein tensors, respectively.

Horndeski theories are of second order, so it is free from the Ostrogradski instability.

e General Relativity corresponds to G4 = Mgl /2.

e Horndeski theories accommodate a wide variety of gravitational theories

like Brans-Dicke theory, f(R) gravity, and covariant Galileons.



"
Horndeski Lagrangian in terms of the ADM Language

ADM metric: ds®> = —N?dt? —+ hij (dCEZ —+ det> <d£13] -+ det)

N :lapse, N':shift  m*: unit vector orthogonal to X

€ Extrinsic curvature: _

@ Intrinsic curvature: R, = (3) R,

Several scalar quantities can be constructed:

x! xldxd

K = K*

v, S=K, K", R=R',, Z=R,R"Y, U=R, K".

In the unitary gauge where d¢ = 0, the Horndeski Lagrangian on the flat FLRW background

is equivalent to

L = A, +A3K—|—A4(K2 —S) + B4R + A5 K3 — B5(KR/2 —U)

(K3 =3H(2H? —2KH + K*> - S)+ 0(3))
with two particular relations

A4 = 2XB4,X — B4, A5 = _XB5,X/3 Gleyzes et al (2013)
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Gleyzes-Langlois-Piazza-Vernizzi (GLPYV) theories

Consider the Lagrangian

L = A, —|—A3K—|—A4(K2 —S) + B4R + AsK3 — B5(KR/2—U)

(1)

(i1)

(iii)

without putting restrictions between A;(N,t) and B;(N,t).

The background and perturbation equations are of second order on the flat
FLRW background without an extra propagating degree of freedom.

Gleyzes et al, arXiv:1404.6495, 1408.1952; Lin et al, arXiv: 1408.0670.

The theories with same A; but with different B; lead to the same background dynamics,

but the evolution of cosmological perturbations is different.

Kase and ST, PRD90, 044073 (2014)

Even in the presence of a small anisotropy on the flat FLRW background,

it seems that there is no extra degree of freedom.

De Felice, Kase, Mukohyama, ST, 1n preparation




" A
Disformal transformation

The structure of the GLPV action is preserved under the disformal transformation

g,uu — Q2(¢)guu + F((ba X)Vu¢vu¢

Conformal Disformal
transformation transformation

In unitary gauge the GLPV action in the transformed frame reads
:/d4.fl?\/ —gi f’ — AQ(Nvt)+A3(N7t)K+A4(N7t)(K2_‘§)+B4(N7t)7%’
+As(N, 6K + Bs(N, 1) (u _ f(fz/z)

with the relations among coefficients

4 2 3 where

Ay = Qi (AQ - WA?, %’2 Ay %Ag,) ]
a=N/N=vR2Z+TX
N 1 4w 6w )
< Az = e <A3 - WALL WA5> w=0/Q
) , 1
A <A — —A > : By = Bi+ —Bs) ,
T\ NS Qa ( 2N > Gleyzes et al,

. a? 5 L arXiv: 1408.1952
A = @14 Bs = QBS-




Disformal invariance of cosmological perturbations

ST (2014),
Consider the perturbed metric See also
' _ ' ' Minamitsuji (2014)
ds* = —NZ?dt*+ hij(dz’ + N*'dt)(dz? + N7 dt) for the case 1 — ()
= —(1+2A)dt* + 2¢;dtda’ + a*(t)g;;da’da’
where
hij=a*(t)qij,  qij = (142005 + vij + 2E)i; .

Curvature Gravitational
perturbations waves

In the unitary gauge (6¢ = 0), the line element after the disformal transformation

g,ul/ - Qz(¢)guv + F(¢, X)qubqub reads
d5? = —N2dt? + a2(t)Gs;(da’ + Nidt)(daz? + N7 dt)

where

N=NVQR2+TX, alt)=Q0at), G;=qy

The invariance of g;; means that

A

¢=¢, Yij = Vij




" A
Gravitational waves in GLPYV theories

Expansion of the GLPV action up to second order in tensor perturbations leads to

(h) (h) p(h) 3 .2 Cf 2
S5 /d4:c£2 Ly =ag 'Yz'j_?(a’yij)

Ly 3
Ls o N2 £ = LR+—2];’+2HLU
gt = ——, C= where i
4N Ls o
Na

Under the disformal transformation the quantities L s and £ transform as

1

&= QBLS 52@5 where o = N/N

R 1 R
‘ dt = @% Cf — 9203

The second-order Lagrangian in the transformed frame is of the same form as
that in the original frame:
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Inflationary tensor power spectrum in GLPYV theories
The tensor equation of motion in the original frame is
d 3, 282 0
a(a qtYij) — agec; 07vij =

Consider an inflationary background in which the expansion rate

h = NH = a/a is nearly constant, i.e.,

_h
We introduce the following two parameters
= G
b= hqt, b= th

Provided that these terms are much smaller than 1, we obtain the inflationary
tensor power spectrum up to next-to-leading order in slow-roll:

1,2 De Felice
k) = 1-2(C+1)ep, — Cey — (3C + 2 and ST,
Puk) 47r2qtc§’[ (€ + Den = Ce = (30 + 2)s4 P arXiv: 1411.0736

where C=~—-2+1n2=—0.729...
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Transformation to the GR form of the tensor spectrum

In the transformed frame the tensor power spectrum is invariant:

. N2H?
k)= —F—=[1—-2(C+1)e, —Cé — (3C +2)s
P(k) 4m? Gy e} | SR - BOH2) Gek=ah
Let us consider a frame satisfying the two conditions

. 8qic 8qici ¢2 — N?
A pl A 2 OqtC _ 0QCy G

= —= =N ‘ 0° = , =

T M3 M2 N2X

In this case we have

. L h 1 H
€t = —St, €p, — €EH — St where EH:_EFIQ
Then the tensor power spectrum reads
. 2H? ) .
Pr(k) = 5 [1—2(C+ 1)éq] ST, arXiv: 1412.6210
7T2Mpl k=aH

‘ Same as the GR tensor spectrum (Stewart and Lyth, 1993)



" A
Einstein frame

The choice §; = Mgl/(SN) corresponds to IA/ = M2 /2, ie.,

Ay =-M2/2—3HA;
In this case the background equations of motion can be written as
the GR form:
3M2IIA{2 - pA)
1 dH A
—2M 7 — = p+P
Pl p+ L
where

p=—Ay—6IP A5 — N (A, g +3H A,y — 12034, ),
P=A,+6H3As - (213 120 HAs - 61512215) /N,
The spectral index of the leading-order tensor spectrum Py (k) = 2H?/ (7T2M§1) is

Nt
N H?2

A

ny =

The tensor spectrum is red-tilted (7, < 0) for p+ P > 0, i.e.,

N (Ay 5 + 304, 5 —120°4; ) + (As — 120 H A5 — 607 45) /N < 0



"
Scalar perturbations

The second-order Lagrangian for curvature perturbations ¢ takes the same form

as the tensor’s one with more involved coefficients ¢s and cs:

. C2
) = .| - S ey

The disformal invariance of the scalar action also holds with the correspondence

. 1 .
4 = o5 &2 = Q¢

The inflationary scalar power spectrum reads
h2
- 8m2qsc3

€s — q.S/(th>
csk=ah Sg = c's/(hcs)

Pe(k) [1—2(C +1)ep — Ces — (3C + 2)s4]

In the Einstein frame the spectrum is the same and it can be expressed as

Pe(k) = ducy, _H
qsc: WZMSI

[1—2(C+1)ég +2(C +1)8 — Cés — (3C 4+ 2)&] | . _git

where ¢ and ¢y should be evaluated at cik = ah.

Together with the tensor power spectrum, these general results can be used
to put precise constraints on concrete inflationary models.



Summary and outlook

1. The disformal transformation §,,, = Q%(4)g,. + I'(¢, X)V .4V, ¢ preserves the structure
of the GLPV action. In Horndeski theories we require that I' = I'(¢).

2. The curvature and tensor perturbations are invariant under disformal transformation.

3. We computed the scalar and tensor inflationary power spectra up to next-to-leading

order in GLPV theories and showed that it is possible to transform to the Einstein

frame with the GR form of the tensor spectrum.

N2H? Atead 202
lead —

)= ——— e — Y B k) =

Ph ( ) 47r2qtc% h ( ) 2] [gl

The disformal transformation

that realizes ¢, = Mp21 /(8N),é, = N

4. In application to dark energy, it will be also interesting to take into account

additional matter (specific kinetic couplings arise in GLPV theories).




