Galaxy lensing and modified gravity: digging into non-linear scales

L.Van Waerbeke (UBC/CIfAR)

SFU-UBC ModGrav january 17th 2015

Planck CMB lensing

CFHTLenS mass map

CMB lensing significance: Planck full sky ~25 σ CMB lensing significance: SPT/ACT ~600 sq.deg. ~6 σ CFHTLenS lensing significance: 150 sq.deg. ~30 σ

DES or KiDS lensing significance over 100 σ LSST or Euclid lensing significance over 400 σ

Beyond-Einstein gravity theories $ds^{2} = (1 + 2\Phi)dt^{2} - a^{2}(1 - 2\Psi)dx^{2}$ \uparrow

Gravitational Potential Curvature Potential

Poissons Equation $\nabla^2 \Phi = 4 \pi G a^2 \bar{\rho} \delta$

GR fully tested on solar system scales, so any modification must be length or time dependent

Combining redshift survey and gravitational lensing

Combining redshift space distortion and gravitational lensing

f(R) theories and matter power spectrum

Digging into non-linear scales I: theoretical predictions

Harnois-Deraps and Van Waerbeke 2014, arXiv:1406.0543

Marcel van Daalen, Joop Schaye, Craig Booth & Claudio Dalla Vecchia

Marcel van Daalen, Joop Schaye, Craig Booth & Claudio Dalla Vecchia

Marcel van Daalen, Joop Schaye, Craig Booth & Claudio Dalla Vecchia

Marcel van Daalen, Joop Schaye, Craig Booth & Claudio Dalla Vecchia

Marcel van Daalen, Joop Schaye, Craig Booth & Claudio Dalla Vecchia

Effect of neutrino mass on the mass power spectrum

(Abzajian et al 2014)

Effect of neutrino mass on the mass power spectrum

(Abzajian et al 2014)

Impact of baryons+neutrino on the 3D and 2D power spectra

Main results (Harnois-Deraps et al. arXiv:1407.4301)

M_{ν}	ξ_+ alone				ξ_+ and ξ combined			
	0.0eV	0.2eV	0.4eV	0.6eV	0.0eV	0.2eV	0.4eV	0.6eV
DM-only	0.036	0.158	0.267	0.230	0.037	0.278	0.621	0.760
AGN	0.110	0.222	0.209	0.120	0.168	0.476	0.659	0.675
REF	0.050	0.189	0.289	0.235	0.030	0.234	0.571	0.728
DBLIM	0.092	0.245	0.283	0.191	0.109	0.438	0.695	0.756

Can we constrain baryonic physics accurately?

Hydro simulations with feedback (McCarthy et al)

Lensing maps-SZ cross-correlations (LVW, Hinshaw, Murray, 2014)

Conclusion

-Challenging modified theories of gravity using non-linear scales is possible

-None of the theoretical and technical difficulties are show stopper, but none can be ignored, as they could conspire to mimic LCDM.

Neutrino (k>0.01) Baryonic physics (k>0.1 strong at k>1) Intrinsic alignment, source clustering (all k)

All have specific angular and redshift dependence (i.e. additional information in high order statistics and tomography).