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Roadmap
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What will we learn 
from GW tests of GR?

How do we use GWs to 
test GR?

How do GW tests 
differ from other 

tests?
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1. Extreme Gravity:

[Baker, et al, Psaltis LRR]

How do GW tests Differ from Other Tests?

Sources: Compact Object Coalescence 
 Supernova, deformed NSs, etc. 
(excluding pulsar timing in this talk)

Phases: Late Inspiral, Merger, Ringdown.

2. Clean:

Processes: Generation and Propagation of metric perturbation.

Absorption is negligible, lensing unimportant at low z, accretion 
disk and magnetic fields unimportant during inspiral. 
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4. Constraint Maps:

How do GW tests Differ from Other Tests?

If large # of sources detected.  
eg. preferred position tests.

5. Very Local Universe: z < 0.07 or D < 300 Mpc for NS/NS inspiral.

3. Localized: Distinct point sources in spacetime (not a background)
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[C. Hanna, PSU]

signal-to-
noise ratio 

(SNR)

detector noise 
(spectral noise 

density)

data

template (projection of GW 
metric perturbation)

template param that 
characterize system

Matched Filtering:

⇢2 ⇠
Z

s̃(f)h̃(f,�µ)

Sn(f)
df

How do use GWs to test GR? Matched Filtering

• Create template “filters”

• Cross-correlate filters & data

• Find filter that maximizes 
the cross-correlation.
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How do use GWs to test GR? Source Modeling

Inspiral: thousands of cycles, most 
SNR at low masses.

Approximations: PN + PM

Accuracy: 3.5 PN (“3 loop” order)

Template:
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How do use GWs to test GR?

Top-Down (test specific theory) vs. Bottom-Up (search for deviations). 
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[Yunes & Pretorius, PRD 2009, Mirshekari, 
Yunes & Will, PRD 2012, Chatziioannou, 
Yunes & Cornish, PRD 2012]
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Templates/
Theories GR ppE

GR Business as usual
Quantify the statistical significance that 

the detected event is within GR. 
Anomalies? 

Not GR
Quantify fundamental bias 

introduced by filtering non-GR 
events with GR templates

Can we measure deviations from GR 
characterized by non-GR signals? 

Model Evidence.

[Yunes & Pretorius, PRD 2009,  
Chatziioannou, Yunes & Cornish, PRD 2012]

What will we learn from GW tests of GR?

Search for Generic Deviations: Parameterize post-Einsteinian (ppE)
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What will we learn from GW tests of GR?

1. Gravitational   
    Lorentz Violation: Primarily from propagation speed w/coincident EM

2. Graviton Mass: Primarily from modification of dispersion relation.

3. Dipolar Emission: From activation of scalar or vectorial modes.

[Nishizawa & Nakamura, 2014, 
Jacobson, 2004,  
Yagi, Blas, Barausse, Yunes, PRD 2013, 
Hansen, Yunes, Yagi, 2014]

[Will, PRD 1994, 
Yagi, et al PRL 2013,  
Hansen, Yunes, Yagi 2014]

[Finn & Sutton PRD 2002, 
Baskaran, et al, PRD 2008,  
Will, PRD 1998,  
Will & Yunes, CQG 2004,  
Berti, Buonanno & Will, CQG 2005]
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What will we learn from GW tests of GR?

4. Higher Curvature Action: Effective theories (EDGB, CS) 

5. Screening Strong-Field Mechanism: Scalarization

6. No-Hair Theorem: From binary black hole ringdown. 
(more difficult, requires high SNR)

[Damour & Esposito-Farese, CQG, 1992,  
Freire et al, MNRAS 2012, 
Sampson et al, PRD 2014]

[Alexander & Yunes, Phys. Rept, 2009 
Yagi, PRD 2012, 
Yagi, et al, PRD 2012]

[Dreyer, et al, CQG, 2004,  
Berti et al, PRD 2006, 
Gossan et al, PRD 2012]
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GW tests will constrain a variety of phenomena:  
Lorentz violation, graviton mass, dipole emission, higher curvature 

action, screening mechanisms, no-hair theorem.  

GW tests of GR differ from other tests in a variety of ways:  
probe extreme gravity, clean, localized, constraint maps, present day.

Doveryai, no proveryai

What does it all mean?
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What will we learn from GW tests of GR?
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Nico’s (GW-Biased) GW  
Modified Theory Classification:

Nico’s (GW-Biased) Cosmological 
Modified Theory Classification: 

Screened Unscreened

Late-time expansion, DE
Eg, chameleon, Vainshtein, etc.

Early-time cosmology, inflation
Eg, Chern-Simons, Gauss-Bonnet, etc.

“Weak Field” Strong-Field

Well-constrained by binary 
pulsars, so need screening
Eg, Scalar-Tensor theories

Constrainable with GW observations,  
natural suppression without screening 
Eg, Chern-Simons, Gauss-Bonnet, etc.
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Screening in Cosmology ≉ Screening in GWs
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Weak Field, 
Low Energy

In Cosmology

Strong Field, 
High Energy

Solar  
System

Binary  
Black Hole 

Mergers

Galactic 
Dynamics

GRNot GR

In Gravitational Wave Physics

Solar  
System

Binary  
Black Hole 

Mergers
Not GRGR
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Weak Field Theories
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Example: Scalar Tensor Theories
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Definition:

Main Effect:

Dominant 
Observables:

Spontaneous 
Scalarization

Stars acquire 
scalar charge +

Grav. and Inertial 
center of mass  
do not coincide

Faster Orbital 
Decay

Damour+Esposito-Farese, PRD 54 (’96) 
Palenzuela, et al, PRD 97 (’13), 89 (’14). 

Screened Dipole 
Gravitational Wave 

Emission

Effective 
Coupling 
to Matter:
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Constraints on Weak Field Theories
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Scalarizable Scalar-Tensor:

(similar constraints for TeVeS 
and for massive Brans-Dicke) Freire, et al, MRAS 18 (’12). 

Alsing, et al, PRD 85, (’12).
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Strong Field Theories



GW Probes of Extreme Gravity Yunes

Example: Quadratic Gravity
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Definition:

Main Effects:

Dominant 
Observables:

Chirping of Gravitational 
Wave Phase

Alexander & Yunes, Phys. Rept 480 (’09) 
Yunes & Stein, PRD 83 (’11)

certain choices of couplings lead to Einstein-Dilaton-Gauss-
Bonnet theory or dynamical Chern-Simons gravity.

dCS. Gravitational Parity Violation, inverse no-hair theorem.

Requires observation of 
late inspiral & merger
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Constraints on Strong Field Theories
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Extremely weak  
from Solar System (GPB)

dCS

Projected GW 
constraints

Yagi, Yunes & Tanaka, PRL 109 (’12)

Current 
constraints

Constraint 
Contours on  

in km.
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Parametrized Post-Einsteinian
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Strong 
FieldWeak Field

GR Signal/ppE Templates, 3-sigma constraints, SNR = 20

Yunes & Hughes, 2010, 
Cornish, Sampson, Yunes & Pretorius, 2011 
Sampson, Cornish, Yunes 2013.

Newt 1PN 1.5 2 2.5 3 3.5

aLIGO 
projected 
bounds

Double 
Binary 
Pulsar 
bounds

Projected Gravitational Wave Constraints 

h̃(f) = h̃GR(f) (1 + ↵fa) ei�f
b
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At our doorstep...

•                      is the Pontryagin density.

•    is either a dynamical field that evolves.
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Non GR injection, extracted with GR templates (blue) and ppE templates (red). 
GR template extraction is “wrong” by much more than the systematic 

(statistical) error. “Fundamental Bias” 

Non-GR Signal/GR Templates, SNR = 20
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FIG. 14: The scaling of the parameter estimation error in
the ppE parameter β for an aLIGO simulation with ppE pa-
rameters (a,α, b,β) = (0, 0,−1.25, 0.1). The parameter errors
follow the usual 1/SNR scaling.
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FIG. 15: The log Bayes factors and (1 − FF) plotted as a
function of β for a ppE injection with parameters (a,α, b,β) =
(0, 0,−1.25,β). The predicted link between the fitting factor
and Bayes factor is clearly apparent.

the log Bayes factor is equal to

logB = χ2
min/2 + ∆ logO

= (1− FF2)
SNR2

2
+ ∆ logO . (25)

Thus, up to the difference in the log Occam factors,
∆ logO, the log Bayes factor should scale as 1−FF when
FF ∼ 1. This link is confirmed in Figure 15.

E. Parameter Biases

If we assume that nature is described by GR, but in
truth another theory is correct, this will result in the
recovery of the wrong parameters for the systems we are
studying. For instance, when looking at a signal that
has non-zero ppE phase parameters, a search using GR
templates will return the incorrect mass parameters, as
illustrated below.

 2.8  2.82  2.84  2.86  2.88  2.9  2.92  2.94
ln(M)

BF = 0.3
β = 1
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ln(M)

BF = 3300
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FIG. 16: Histograms showing the recovered log total mass
for GR and ppE searches on ppE signals. As the source gets
further from GR, the value for total mass recovered by the
GR search moves away from the actual value.

Perhaps the most interesting point to be made with
this study is that the GR templates return values of the
total mass that are completely outside the error range
of the (correct) parameters returned by the ppE search,
even before the signal is clearly discernible from GR. We
refer to this parameter biasing as ‘stealth bias’, as it is
not an effect that would be easy to detect, even if one
were looking for it.

This ‘stealth bias’ is also apparent when the ppE α
parameter is non-zero. As one would expect, when a GR
template is used to search on a ppE signal that has non-
zero amplitude corrections, the parameter that is most
affected is the luminosity distance. We again see the bias
of the recovered parameter becoming more apparent as
the signal differs more from GR. In this study, because
we held the injected luminosity distance constant instead
of the injected SNR, the uncertainty in the recovered lu-
minosity distance changes considerably between the dif-
ferent systems. In both cases shown, however, the re-
covered posterior distribution from the search using GR
templates has zero weight at the correct value of lumi-
nosity distance, even though the Bayes factor does not
favor the ppE model over GR.

V. CONCLUSION

The two main results of this study are that the ppE
waveforms can constrain higher order deviations from GR
(terms involving higher powers of the orbital velocity)
much more tightly than pulsar observations, and that
the parameters recovered from using GR templates to
recover the signals from an alternative theory of gravity
can be significantly biased, even in cases where it is not
obvious that GR is not the correct theory of gravity. We
also see that the detection efficiency of GR templates can
be seriously compromised if they are used to characterize
data that is not described by GR.
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FIG. 17: Histograms showing the recovered values for lumi-
nosity distance from GR and ppE searches on a LISA binary
at redshift z = 7. Both signals have a = 0.5, and were in-
jected with a luminosity distance of 70.5 Gpc. The top plot
has α = 3.0 and the bottom has α = 2.5. As the Bayes factor
favors the ppE model more strongly, the bias in the recov-
ered luminosity distance from the GR search becomes more
pronounced.

The current study makes several simplifying assump-
tions about the waveforms: we consider only the inspi-
ral stage for non-spinning black holes on circular orbits,
and include just the leading order ppE corrections to the
waveforms. In future work we plan to include a marginal-
ization over these higher order corrections. Including this
marginalization will be more realistic, as the ppE for-
malism allows for many higher order corrections to the
waveform. Marginalizing over the higher order terms will
weaken the bounds on the leading order ppE parame-
ters, though probably not by that much since they are
sub-dominant terms.

Another subject that we will examine in the future
is the affect on our analysis of multiple detections. Si-
multaneously characterizing several systems with differ-
ent mass ratios should allow us to constrain all six ppE
parameters and not just the four we used in this study.
Looking at several systems simultaneously should also al-
low us to detect deviations from GR that are smaller than

those we could confidently infer with a single detection,
as the evidence for the ppE hypothesis will accumulate
with the additional data.

We also plan to perform a study similar to that done
by Arun et al. [24–26], in which the exponents ai, bi are
fixed at the values found in the PN expansion of GR, and
compare their Fisher matrix based bounds to those from
Bayesian inference.

Finally, we will look at LISA observations of galactic
white-dwarf binaries to see if the brighter systems, which
may have SNRs in the hundreds, may allow us to beat
the pulsar bounds across the entire ppE parameter space.
The brightest white-dwarf systems will have u ∼ 10−8 →
10−7 (for comparison the ‘golden’ double pulsar system,
PSR J0737-3039A has u = 3.94× 10−9), and these small
values for u make the ppE effects, which scale as ua and
ub, much larger than for black hole inspirals when a, b <
0.

The chance to test the validity of Einstein’s theory
of gravity is one of the most exciting opportunities that
gravitational wave astronomy will afford to the scientific
community. Without the appropriate tools, however, our
ability to perform these tests is sharply curtailed. This
analysis has shown that the ppE template family could
be an effective means of detecting and characterizing de-
viations from GR, and also that assuming that our GR
waveforms are correct could lead to lessened detection
efficiency and biased parameter estimates if gravity is
described by and alternative theory. We have identified
several areas of future investigation, and will continue to
study this area in depth.
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Fundamental Bias



YunesGW Probes of Extreme Gravity 26

Sampson, 2013 

Ignoring Fundamental Bias...
injection=(not-
ruled out) ppE template=GR

Fitting Factor 
Deteriorates

Physical Parameters 
Completely Biased
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Stealth Bias

Fundamental Bias that we can’t detect!
SNR needed to detect a 

GR deviation
SNR needed for fundamental bias error 

to be larger than  systematic error

Overt BiasNegligible Bias

Stealth Bias
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Sampson, Cornish & Yunes, 2013 

Bayes Factor between a 1-parameter ppE template and a GR template (red) and 
between a 2-parameter ppE template and a GR template (blue), given a non-GR 

injection with 3 phase deformations, as a function of the magnitude of the leading-
order phase deformation.

Simple ppE Performance
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The Need for Accuracy

• “C-tensor”: 

29
Quantum Noise  (Amelino-Camelia)
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Gravitational Wave Detectors

•                      is the Pontryagin density.

•    is either a dynamical field that evolves.

30

Bounce light off mirrors and look for 
interference pattern when the light 

recombines. 

LHO

LLO Virgo/AdV

GEO

KAGRA

Ligo-India

Detectors
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Yunes & Pretorius, PRD 2009 
Mirshekari, Yunes & Will, PRD 2012 
Chatziioannou, Yunes & Cornish, PRD 2012

I. Parametrically deform the Hamiltonian.

II. Parametrically deform the RR force.

III. Deform waveform generation.

IV. Parametrically deform g propagation.

h̃ = h̃GR (1 + �fa) ei�fb

Result: To leading PN order and leading GR deformation

Parameterized post-Einsteinian Framework

A = AGR + �A
�AH,RR = ↵̄H,RRv

āH,RR

h = F+h+ + F⇥h⇥ + Fshs + . . .

E2
g = p2gc

4 + ↵̃p↵̃g

h̃(f) = h̃GR(f) (1 + ↵fa) ei�f
b


