# Student Seminar

# electronic structure calculations using quantum computing

electronic structure calculations using quantum computing

#### Emma Lathouwers

Dept of Physics, SFU

#### Mar 16, 2018 at 1:30pm in P8445.2

#### Synopsis

As computer power has increased tremendously in the last few decades the simulation of atoms and molecules at a quantum mechanical level has become somewhat tractable. These simulations of molecular energies is promising for advances in the design of new catalysts, pharmaceuticals, and other materials. Unfortunately, they are computationally very costly which limits current calculations. The application of quantum computing might provide relief. Experimental implementations of quantum hardware have so far succeeded in the calculation of the electronic structure of small molecules involving hydrogen, helium, lithium, and beryllium. The hope is that in a few years the use of quantum hardware will be able to tackle electronic structure problems that are intractable for classical computers.

I will go over the challenges in electronic structure calculations, the advantage of quantum hardware over classical calculations, one approach to solve for the ground-state energy of many-body fermionic Hamiltonians: the variational quantum eigensolver, and some recent results.