Impurity Absorption Spectroscopy of the Deep Double Donor Sulfur in Isotopically Enriched Silicon

M. Steger, A. Yang and M. L. W. Thewalt

Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

1Max-Planck-Institut für Festkörperforshung, Stuttgart, Germany
2Institut für Kristallwissenschaft, Berlin, Germany
3Institute of Chemistry of High-Pure Substances of the RAS, Nizhny Novgorod, Russian Federation, 4Science and Technical Center “Centrotech-ECP”, Electrochemical Plant, Saint Petersburg, Russian Federation
5Physikalisch Technische Bundesanstalt, Braunschweig, Germany; 6VITCON Projectconsult GmbH, Iena, Germany; 7UC Berkeley and LLNL, Berkeley, California, USA

Introduction

Isotopically enriched Si opens new spectroscopic possibilities by eliminating inhomogeneous broadening.

- **Si** isotope enrichment [9], 99.991% 28Si
- Sample purity: 2 x 10^-13 cm^-3 P, 5 x 10^-13 cm^-3 B
- Isotope enrichment: 92.2% 28Si + 4.7% 29Si + 1.1% 30Si

Experimental Method

Fourier Transform Spectroscopy

- Benten DAS Fourier-transform spectrometer.
- Resolution: 0.0024 cm^-1 (broad beam), 0.0017 cm^-1 (narrow beam)
- Sample conditions: Glodra, Quartz lamp
- Beam splitters: KBr and CaF2
- Detectors: HgCdTe, InSb

Sample Preparation

- Si plus sulfur sealed in ampule
- Ampule kept in furnace for 20 h at 1100°C
- Quench into methanol, polish and etch.

Deep Double Donor Sulfur

Valley-orbit splitting of 6-fold degenerate 1s ground state together with spin-orbit splitting leads to Γ1'-Γ3' splitting of the 1s(2s) transition.

The 1sA1 → 1sT2 transition is EMT forbidden, symmetry allowed [2, 3].

S + 1s(2s) in Si

- Γ1 Si isotope effect
- Γ2 Si isotope effect
- Γ3 due to changes in the nearest-neighbour LVM energy of the S2i cluster of the substitutional S atom [4].

S + 1s(2s) in 28Si

The LVM satellites are eliminated.

Energy shift between 28Si and 29Si in 28Si is

\[\Delta E(29Si) = \Delta E(30Si) = -0.56 \text{ cm}^{-1} \]

confirms previous result for 32S 1s(2s) [1].

S + 1s(2s) in 28Si

The 1sA1 → 1sT2 transition is the narrowest donor/acceptor absorption line in silicon to date.

- 22 × narrower than in previous S spectra [4]; 2.5 × narrower than in previous P and B spectra [6].

S+ and S-Isotope Shifts

- The 1sA1 → 1sT2 transition for 29Si lies below that of 30Si by 0.56 cm^-1, confirming the unusual isotope shift for this transition first reported by [4].
- Dependence of the binding energy on \(m_i^2 \) and \(m_s^2 \) [7] and Si neighbour-isotope effects causes energy shift

\[\Delta E(28Si) = \Delta E(30Si) = +1.4 \text{ cm}^{-1} \]

confirming the normal sign of the ground state isotope shift [8] also seen for Bi in Si [5, 7].

Unresolved splitting of \(S + 2p_\alpha \) is resolved in 28Si [9].

Acknowledgments

We acknowledge Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support.

References