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Abstract

This paper considers a panel model with heteroskedasticity, where the parameter of in-

terest is the probability density function of the heteroskedasticity. The nonparametric iden-

tification results are established sequentially via a deconvolution argument (in the first step)

and solving a linear Fredholm integral equation of the first kind (in the second step). The

identification results are constructive and give rise to nonparametric estimators. The model

is relevant to the literature on earnings dynamics. Applied to data from the Panel Study of

Income Dynamics (PSID), the method developed in this paper reveals a high degree of unob-

served heterogeneity in earnings risk. In particular, the evolution over time of the quantiles of

the conditional shock variance shows that it is those in the right tail of the distribution who

experience the highest volatilities (particularly during recessions), with lower quantiles expe-

riencing relatively constant volatilities during the business cycle. This type of heterogeneity

may be relevant to the study of the cyclicality of income risk.
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1 Introduction

This paper considers a panel model with heteroskedasticity, where the parameter of interest is the

distribution function of the heteroskedasticity. The model is relevant to the literature on earnings

dynamics. Identifying the distribution of the heteroskedasticity of the shocks at a particular time

period allows the study of the evolution (over the business cycle) of the quantiles of the conditional

variance of both transitory and permanent shocks to earnings. The paper fits within the recent

trend in the earnings dynamics literature that is concerned with distributional characteristics of

the income process, see e.g. Arellano, Blundell, and Bonhomme (2017).

Applied to data from the Panel Study of Income Dynamics (PSID), the method developed

in this paper reveals a high degree of unobserved heterogeneity in earnings risk. In particular,

the evolution over time of the quantiles of the conditional shock variances shows that it is those

in the right tail of the distribution who experience the highest volatilities (particularly during

recessions), with lower quantiles experiencing relatively constant volatilities during the business

cycle. This heterogeneity is neglected when focus is on the average shock volatilities, which is the

current practice in the earnings dynamics literature. The type of heteroskedasticity found may be

relevant to the study of the cyclicality of income risk.

The model considered in this paper is as follows. For individuals j = 1, ..., n, and time periods

t = 1, ..., T , the observed outcome, Yjt, is written as the sum of two latent random variables:

Yjt = τ jt + pjt (1a)

pjt = pjt−1 + πjt (1b)

where τ jt and πjt are independent shocks, and pjt is modeled as a unit root. Letting Ωt− be the

sigma field generated by {τ jt, πjt} for all j up to time t, the special feature considered in this
paper is the following specification of the conditional variances of τ jt and πjt :

var (τ jt|Ωt−) = z2jt, zjt
i.n.i.d.∼ Fzt (2)

var (πjt|Ωt−) = s2jt, sjt
i.n.i.d.∼ Fst (3)

where Fzt and Fst are cumulative distribution functions (CDF) that vary deterministically over

time. All random variables are assumed to be absolutely continuous with respect to the Lebesgue

measure. The parameters of interest are the probability density functions (pdf) fzt and fst .

Without loss of generality, τ jt and πjt can be decomposed as:

τ jt = zjtηjt, ηjt
i.i.d.∼ Fη, E

(
ηjt|zjt

)
= 0, E

(
η2jt|zjt

)
= 1 (4a)

πjt = sjtεjt, εjt
i.i.d.∼ Fε, E (εjt|sjt) = 0, E

(
ε2jt|sjt

)
= 1 (4b)
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where ηjt and εjt are i.i.d. shocks drawn from Fη and Fε, respectively.

The contribution of this paper is the nonparametric identification and estimation of the prob-

ability density functions (fzt , fst , fη, fε). The identification results are established via a sequential

identification strategy. In the first step, (fη, fε) are identified via a deconvolution argument, while

in the second step (fzt , fst) are identified by solving a linear Fredholm integral equation of the

first kind. Identification of these four density functions leads to identification of the distributions

of τ jt and πjt. For example, the CDF of πjt at time t, call it Fπt, is given by:

Fπt (c) = P (πjt ≤ c) =

∫ ∞
0

Fε

(c
s

)
fst (s) ds.

In a similar set-up, Bonhomme and Robin (2010) identify Fπt (and the CDF of τ jt at time t)

under the assumption that the conditional variances
{
z2jt, s

2
jt

}n,T
j=1, t=1

= {z2t , s2t}
T
t=1 are known at

each t.

The model is motivated by the literature on earnings dynamics. In this literature, Yjt represents

(residual) log-income of individual j at time t, which is decomposed into a transitory component,

τ jt, and a permanent component, pjt. When τ jt is assumed to be i.n.i.d., it is referred to as

transitory shock. In the canonical model for the income process, pjt is modeled as a unit root,

with pj0 = 0, and πjt represents the permanent shock. In this paper, the conditional variances z2jt
and s2jt vary in a flexible way across both individuals and time, and are unpredictable with respect

to Ωt− . The main object of interest is the pdf of the conditional variances of each shock, i.e. fzt
and fst .

From an empirical point of view, identifying the distribution functions of the shocks τ jt and

πjt allows for the identification of different features of the distribution of income risk, such as

skewness and kurtosis, symmetry and multimodality —all of which have recently been identified

as important features of the earnings risk distribution, see e.g. Guvenen et. al. (2016), Arellano,

Blundell, and Bonhomme (2017). These results have been derived under the assumption that the

conditional variance of τ jt and πjt at time t is a degenerate random variable. The focus then has

been on the average of the conditional variance at time t with the main finding being that the

averages do not vary over time and, in particular, that they do not vary over the business cycle.

In this paper, I show that although the averages of the volatilites are fairly constant over the

business cycles, the quantiles of the volatilities are not. In fact, when applied to data from the

PSID, higher quantiles of the volatilities move substantially with the business cycle. The results

of this paper then show that focusing on average volatilies ignores the high degree of heterogeneity

that exists in the data. Additionally, the results of this paper may be used to test whether the

volatilities are degenerate random variables (as assumed in most analyses of earnings dynamics)

or whether specific restrictions on the volatilities hold across heterogeneous populations.1

1For similar ideas, see the motivation behind studying the identification of the joint distribution of random
coeffi cient models, e.g. Hoderlein, Klemelä, and Mammen (2010), Breunig and Hoderlein (2016).
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The identification strategy is sequential. First, (fη, fε) are identified via a deconvolution ar-

gument for panel data. Second, (fzt , fst) are identified by solving two resulting linear Fredholm

integral equations of the first kind. The identification strategy is constructive, leading to consis-

tent estimators for (fη, fε) (as in Bonhomme and Robin (2010)), and for (fzt , fst) as solutions to

inverse problems solved by Tikhonov regularization via the method of Darolles, Fan, Florens, and

Renault (2011).

Literature review. Many papers in the earnings dynamics literature have stressed the impor-

tance of allowing the shock variances to vary over individuals and time, see e.g. Meghir and

Windmeijer (1999), Meghir and Pistaferri (2004), Hospido (2012), Jensen and Shore (2011),

Jensen and Shore (2015). Most work specifies the variances as ARCH processes and focuses

on estimating the cross-sectional average of the variances. For example, Meghir and Pistaferri

(2004) specifies the conditional volatility of each shock as an ARCH process, where individual

and time effects enter additively. The parameter of interest is the cross-sectional average of the

conditional variance of each shock. Estimation of the ARCH process parameters relies critically

on the linearity assumption, and the results are biased when the number of periods is small.

More recent work models the shock variances as time-varying functions that depend on lagged

values of the permanent component in order to allow for a particular type of heteroskedasticity,

see Arellano, Blundell, and Bonhomme (2017) and Botosaru and Sasaki (2017). None of these

papers identifies the distributions of the conditional variances.

To the best of my knowledge, Jensen and Shore (2011) is the only other paper that estimates

the distributions of the conditional variances. The authors allow the conditional variance of each

shock to vary over individuals and time in a flexible way, and they assume that each volatility

sequence is drawn from a Dirichlet process prior. The resulting (discrete) posterior distribution

is estimated by Bayesian methods. The normality of the shocks τ and π is one of the many

restrictions the authors impose,2 assumption which is considered problematic in the earnings

dynamics literature, cf. Bonhomme and Robin (2010), Guvenen et. al. (2016). Using data from

the PSID, Jensen and Shore (2015) show that there is considerable latent heterogeneity in the

distribution of the conditional variance. As opposed to Jensen and Shore (2011) and Jensen and

Shore (2015), this paper presents a fully nonparametric analysis of the distribution of conditional

variances. The empirical results parallel those of Jensen and Shore (2015).

Deconvolution techniques have been used in econometrics to deal with unobserved hetero-

geneity and measurement error, see e.g. Li and Vuong (1998), Li (2002), Schennach (2004a),

Schennach (2004b), Bonhomme and Robin (2010), Evdokimov (2010), Botosaru and Sasaki

(2017). Integral equations have been analyzed in many areas of econometrics, particularly in

the literatures on instrumental regression estimation and random coeffi cients, see e.g. Carrasco,

2Other restrictions include: priors on the probability that an individual volatility value will change, on the
number of unique values that an individual will experience during his or her lifetime, and on the number of unique
values in the sample.
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Florens, and Renault (2007), Darolles, Fan, Florens, and Renault (2011), Carrasco and Florens

(2011), and Hoderlein, Nesheim, and Simoni (2016).

Organization. The outline of the paper is as follows: Section 2 presents the identification

results, Section 3 provides the large sample theory, Section 4 presents the small sample properties

of the estimators, Section 5 applies the method proposed to data from the PSID, and Section 6

concludes. All proofs are in the Appendix.

Notation. Let Lp (R) be the space of real-valued functions that are p−integrable with re-
spect to the Lebesgue measure, and endow the space with the standard Lp norm, i.e. ||g||p =(∫
R |g (ξ)|p dξ

)1/p
. Let λ : R → R+ be a non-negative weight function such that

∫
R λ (ξ) dξ < ∞.

Denote by Lpλ (R) the weighted space of real-valued functions that are p-integrable with respect

to λ, i.e.

Lpλ (R) =

{
g : R→ R : ||g||λ,p =

(∫
R
|g (ξ)|p λ (ξ) dξ

)1/p
<∞

}

Each space, (L2 (R) , ||.||2) and
(
L2λ (R) , ||.||λ,2

)
, is a Hilbert space.

LetW be a random variable with supportW and with density function fW ∈ Lp (R) , 1 ≤ p ≤
2. Letting i =

√
−1, define the characteristic function of W as:

φW (ξ) = E
(
eiξW

)
=

∫
W
eiξwfW (w) dw , ξ ∈ R

For every κ ∈ N, define the κth moment of fW as m(κ)
fW
≡ dκ

dξκ
φW (ξ)

∣∣∣
ξ=0

.

In what follows, I supress dependence on the j subscript.

2 Identification

The identification strategy is composed of two main steps. In the first step, I apply Kotlarski’s

lemma to deconvolve the densities of η, ε, τ t = ztη, and πt = stε. In the second step, I show the

existence and uniqueness of the densities of st and zt by showing the injectivity of the integral

operators associated to the resulting linear Fredholm integral equations for the densities of st
and zt. For identification of (fη, fε, fs2 , fz2) three time periods are suffi cient. More generally,

whenever T time periods are available, it is possible to identify T − 2 volatility densities due to

the nonstationarity of the volatility distributions.

Since three time periods are suffi cient for identification, I let T = 3 in what follows. Define:

s ≡ (s1, s2, s3) ∈ R+, z ≡ (z1, z2, z3) ∈ R+, η ≡ (η1, η2, η3) ∈ R, and ε ≡ (ε1, ε2, ε3) ∈ R.

Assumption 1K (Kotlarski)
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(i) s, z, η, and ε are mutually independent; (ii) E (η) = 0, E (ε) = 0; (iii) |φε (ξ)| > 0 and∣∣φη (ξ)
∣∣ > 0 for all ξ ∈ R; (iv) fε, fη ∈ L2 (R).

Assumption 1K is typically made in the deconvolution literature that uses Kotlarski’s lemma.

The independence assumption in 1K(i) is usually made in panel models and factor models, although

it is possible to weaken it, see e.g. Cuhna, Heckman, and Schennach (2010) and Botosaru and

Sasaki (2017). Assumption 1K(ii) pins down the means of η and ε. Without this assumption,

identification would be obtained up to a location shift. Assumption 1K(iii) is usually made in the

deconvolution literature and it excludes e.g. distributions defined on bounded supports, see Hu

and Ridder (2010). It is possible to weaken 1K(iii) to require that the zeros of the characteristic

functions be isolated, see e.g. Carrasco and Florens (2011) and Evdokimov and White (2012).

The integrability assumption in 1K(iv) is stronger than necessary for an application of Kotlarski’s

lemma, which requires only existence of φε and φη. However, this assumption is needed for the

identification of fzt and fst for which square integrability of φε and φη is required.

Assumption 1I (initialization)

s1 = 1 = z1.

Assumption 1I is restrictive, but it can be relaxed to s1 = cs and z1 = cz, where cs, cz are known

positive constants. It is possible to dispense with this assumption at the expense of obtaining

identification of the moments (rather than the densities) of the conditional volatilities. I discuss

the trade-offs in identification assumptions in Appendix A.2.

Assumption 1F (Fredholm)

(i) fst , fzt ∈ L2 (R+) for each t; (ii) fε and fη are strictly positive definite functions on R; (iii)
λ is such that

∫
R
1
ξ
λ (ξ) <∞.

Assumptions 1F(i) and 1F(iii) guarantee the boundedness of the integral operators defined in

the statement of Theorem 1 below. The positive definiteness assumption in 1F(ii) is suffi cient

for the characteristic functions φε and φη to be positive everywhere. This assumption guarantees

that the kernels of the resulting integral operators that have to be solved for fzt and fst are

strictly positive, resulting in the injectivity of the operators. Strictly positive definite functions

are symmetric and attain their maximum value at zero. The standard normal density function is

strictly positive definite, for example.

Theorem 1 Let the distribution of Yt, t = 1, 2, 3 be observed and assume that Yt follows the

model described by (1a), (1b), (4a), and (4b). Let assumptions 1I and 1K hold. Then the density
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functions fη and fε are identified and given by:

fη (ξ) =
1

2π

∫
R

exp (−iξw)φη (w) dw, ξ ∈ R, (5)

fε (ξ) =
1

2π

∫
R

exp (−iξw)φε (w) dw, ξ ∈ R. (6)

Further, letting U, Ũ : L2 (R+) → L2λ (R) be linear integral operators and letting assumption

1F hold, the density functions fs2 and fz2 are identified and given as the unique solutions to the

following integral equations:

(Ufs2) (ξ) =

∫
R+
φε (ξw) fs2 (w) dw, ξ ∈ R, (7)(

Ũfz2

)
(ξ) =

∫
R+
φη (ξw) fz2 (w) dw, ξ ∈ R. (8)

Proof. The proof is divided in two parts. In the first part, I apply Kotlarski’s lemma twice.
Kotlarski’s lemma applied to the first two periods obtains identification of φε and φη. By the

inverse Fourier transform, this identifies fε and fη. Kotlarski’s lemma applied to the second and

third time periods obtains identification of φπ2 and φτ2 . Applying the law of iterated expectations

to these latter two characteristic functions obtains integral equations (7) and (8), where fs2 and fz2
are the unknowns. Each equation can be solved uniquely by showing that the associated integral

operator is injective with a dense range. The proof is in Appendix A.1.

3 Estimation

Following the identification strategy, I first estimate fη, fε, φπ2 , and φτ2 . The estimators of

the characteristic functions become the kernels of two linear Fredholm equations for fs2 and fz2 .

The integral operators are solved by Tikhonov regularization. The large sample theory for the

deconvolution step follows closely Bonhomme and Robin (2010), where I compute upper bounds

for the uniform rate of convergence of the estimators for fη and fε, while the second step follows

Darolles, Fan, Florens, and Renault (2011), where I compute L2 rates of convergence for the

estimators of fs2 and fz2 .

3.1 Estimators for the Characteristic functions

For ξ ∈ R, define

δ̂t (ξ) ≡
∫ ξ

0

∑n
j=1 iYj,t exp (iwYj,t+1)∑n
j=1 exp (iwYj,t+1)

dw
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The sample analogues of the characteristic functions of η, ε, π2, and τ 2 are given by, respectively:

φ̂ε (ξ) =
1

T − 1

T−1∑
t=1

exp
(
δ̂t (ξ)

)
(9)

φ̂η (ξ) =
1

φ̂ε (ξ)

[
1

n (T − 1)

T−1∑
t=1

n∑
j=1

exp (iξYjt)

]
(10)

φ̂π2 (ξ) =
1

φ̂ε (ξ)

[
1

T − 1

T−1∑
t=1

exp
(
δ̂t+1 (ξ)

)]
(11)

φ̂τ2 (ξ) =
1∑T−1

t=1 exp
(
δ̂t+1 (ξ)

) [ 1

n

n∑
j=1

T−1∑
t=1

exp (iξYjt+2)

]
(12)

3.2 Estimators of Density Functions

The density functions of η and ε can be obtained by inverting their corresponding Fourier trans-

forms, as in (5) and (6). However replacing directly φη and φε by their respective sample analogues

results in estimators for the density functions that are not well-defined since the empirical charac-

teristic functions are neither integrable nor square integrable, see e.g.Meister (2009). Numerically

inverting Fourier transforms is an ill-posed inverse problem, see e.g. Horowitz (1998), so that a

regularization method is needed for obtaining the estimators
(
f̂ε, f̂η

)
.

The most studied regularization method in the deconvolution literature is the deconvolution

kernel density estimator proposed by Stefanski and Carroll (1990). The regularization method

consists in using a kernel function,K ∈ L1 (R)∩L2 (R), whose characteristic function, φK ∈ [−1, 1],

is compactly supported. This ensures that the problem is well-posed, and thus, that the estimator

is well-defined with probability equal to one. Using the method proposed by Stefanski and Carroll

(1990), the densities of ε and η can be estimated as:

f̂ε (ξ) =
1

2π

∫ hn

−hn
e−iξwφK

(
w

hn

)
φ̂ε (w) dw (13)

f̂η (ξ) =
1

2π

∫ hn

−hn
e−iξτφK

(
w

hn

)
φ̂η (w) dw (14)

Following Delaigle, Hall, and Meister (2008) and Bonhomme and Robin (2010), the charac-

teristic function φK is given by:

φK (ξ) =
(
1− ξ2

)3
I (ξ ∈ [−1, 1])
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which corresponds to the second order kernel3

K (ξ) =
48 cos (ξ)

πξ4

(
1− 15

ξ2

)
− 144 sin (ξ)

πξ5

(
2− 5

ξ2

)

Notice that φ̂η (ξ) is obtained by division by φ̂ε (ξ), running the risk of dividing by zero. I

follow the suggestion of Delaigle, Hall, and Meister (2008) to replace the empirical characteristic

function in the denominator by the following: Let φ̂X be the empirical characteristic function of

the density function fX . Instead of dividing by φ̂X , they propose dividing by

φ̃X (ξ) = φ̂X (ξ) I (ξ ∈ A) + φ̂P (ξ) I (ξ /∈ A)

where A denotes the largest interval around zero where φ̂X (ξ) does not oscillate and φ̂P (ξ) =(
1 + αξ2

)−β
, where α and β are the second and the fourth moments of X. When the empirical

moments are negative, I set α = 1
2
var (X) and β = 1. Likewise, following Bonhomme and Robin

(2010), I set φ̂X (ξ) = 0 whenever
∣∣∣φ̂X (ξ)

∣∣∣ > 1 in order to guarantee that φ̂X (ξ) is a proper

characteristic function.

The remaining density functions fs2 and fz2 are defined as solutions to linear Fredholm integral

equations of the first kind. First, set Ωs = Ωz = [0, 1] and fs2 ∈ L2 (Ωs) , fz2 ∈ L2 (Ωz). At

the population level, the integral equations have unique solutions since the integral operators

associated to them defined as, respectively:

(U1fs2) (ξ) =

∫ 1

0

φε (wξ) fs2 (w) dw, ξ ∈ R (15)

(U2fz2) (ξ) =

∫ 1

0

φη (wξ) fz2 (w) dw, ξ ∈ R

are injective, see the proof of Theorem 1. At the sample level, the resulting equations may be

ill-posed since the operators are usually estimated by discretization methods where one determines

finitely many unknowns, so that the estimated operators are of finite rank.

The estimated operator Û1,n : L2 ([0, 1])→ L2 ([−hn, hn]) and its adjoint Û∗1,n : L2 ([−hn, hn])→
L2 ([0, 1]) are defined as, respectively:

(
Û1,nfs2

)
(ξ) =

∫ 1

0

φ̂ε (wξ) fs2 (w) dw, ξ ∈ [−hn, hn] (16)(
Û∗1,nfs2

)
(w) =

∫ hn

−hn
φ̂ε (wξ) fs2 (ξ) dξ, w ∈ [0, 1] (17)

with Û2,n and Û∗2,n defined similarly. Thus it may happen that φ̂π2 (ξ) /∈ R
(
Û1,n

)
or φ̂τ2 (ξ) /∈

3This kernel function has good performance in simulation studies as shown by Fan (1992) and Delaigle and
Hall (2006).
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R
(
Û2,n

)
or that Û1,n and Û2,n may not be invertible, see e.g. Carrasco, Florens, and Renault

(2007) and Kim (2004). As such, for consistent estimation, the sample counterparts of (7) and

(8) have to be regularized. Then the estimators
(
f̂s2 , f̂z2

)
are defined as the stable solutions of

regularized Fredholm integral equations of the first kind, where the chosen regularization scheme

is Tikhonov regularization with regularization parameter αn. That is, the estimators are defined

as:

f̂s2 (ξ) =
(
αnI + Û∗1,nÛ1,n

)−1
Û∗1,nφ̂π2 (ξ) (18)

f̂z2 (ξ) =
(
αnI + Û∗2,nÛ2,n

)−1
Û∗2,nφ̂π2 (ξ) (19)

where ξ ∈ [−hn, hn] , hn →∞, and αn → 0 as n→∞.

4 Asymptotic Theory

The estimators of the two density functions, f̂ε and f̂η, are shown to be uniformly consistent in

Theorem 2, with upper bounds on the uniform rate of convergence derived, while in Theorem 3,

I derive L2 rates of convergence for the estimators f̂s2 and f̂z2 over the bounded sets, Ωs and Ωz,

respectively.

Assumption 2

(i) Let gl : R+ → [0, 1] , l = ε, η, be an integrable function such that |φl (ξ)| ≤ gl (|ξ|) , for all |ξ|;
(ii) Let gy : R+ → [0, 1] be an integrable, decreasing function, and let c be a constant such

that for |w| > c, |φY (w)| ≥ gy (|w|) with lim|w|→∞ gy (|w|) = 0; (iii) E (Y ) < ∞; (iv) The
moment generating functions of Y 2

t and |YtYt+1| exist in a neighborhood around zero.

Assumption 2(i) relates to the usual assumption made on the rate of decay of characteristic

functions in the deconvolution literature, see the remark below for more details. Assumption 2(ii)

controls the smoothness of the joint distribution function of the observable variables, ensuring that

the tails of the characteristic function of Y do not approach zero too quickly. Similar assumptions

appear in the literature on deconvoluting the density function of an unobservable variable from

that of an error. In that literature, it is usually assumed that the distribution of the error or the

signal is known and assumptions similar to 2(ii) on the characteristic function of the error are

made, for example see Hu and Ridder (2010). Assumption 2(ii) is the analogue of this type of

assumption when the error distribution is not known but when repeated measurements are ob-

served. Assumption 2(iii) imposes that the mean of the dependent variable be finite. Assumption

2(iv) implies that the moments of the random variables Y 2
t and |YtYt−1| exist. This assumption

may be relaxed at the expense of slower rates of convergence, see e.g. Bonhomme and Robin

(2010).
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Theorem 2 Let the data be i.i.d. and suppose that the assumptions of Theorem 1 and assumption
2 hold. Let K be a kernel function of even order q ≥ 2 with its Fourier transform φK satisfying

φK (s) = 0 for |s| > 1. If εn = lnn√
n
and hn = Cnδ/2 for some C, δ > 0, then there exist constants

C1 and C2 such that

sup
z

∣∣∣f̂ε (z)− fε (z)
∣∣∣ ≤ C1

h2n
g2y (hn)

εn + C2
1

hqn

∫ hn

−hn
τ qgε (|τ |) dτ + 2

∫ ∞
hn

gε (|τ |) dτ

and

sup
z

∣∣∣f̂η (z)− fη (z)
∣∣∣ ≤ C1

h2n
g2y (hn)

εn + C2
1

hqn

∫ hn

−hn
τ qgη (|τ |) dτ + 2

∫ ∞
hn

gη (|τ |) dτ

Proof. The proof uses Lemma 1 of Bonhomme and Robin (2010) and it is similar to the proofs

of Theorems 1 and 2 in Bonhomme and Robin (2010). See Appendix A.3.

Let {gi}i≥0 be an orthonormal sequence of L2 ([0, 1]) and let {λi}i≥0 be a sequence of non-
negative real numbers such that λ0 = 1 ≥ λ1 ≥ .... The two sequences enter the singular value

decomposition of the operators in (15), where {λi} are the eigenvalues of the integral operators.
Additionally, define the space

Φβ =

{
g ∈ L2 ([0, 1]) :

∑
i≥0

〈g, gi〉2

λ2βi
<∞

}

Letting Q be the following operator

(Qg) (ξ) =

∫ 1

0

φ (ξw) g (w) dw, ξ ∈ R

andQ∗ its adjoint, consider Proposition 3.2 in Darolles, Fan, Florens, and Renault (2011) included

below for convenience:

Proposition 1 If g ∈ Φβ for some β > 0 and gα = (αI +Q∗Q)−1Q∗Qg, then ||g − gα||2L2 =

O
(
αβ∧2

)
when α→ 0.

Consider the operators defined in (16) and (17) and define Âα,n =
(
αnI + Û∗nÛn

)−1
. To derive

rates of convergence for the two remaining estimators, I assume bounded support of the volatility

parameters s and z, i.e. Ωs = Ωz = [0, 1].

Assumption 3

(i) Let fs, fz ∈ L2 ([0, 1]) be bounded with sups f (s) = M1 and supz f (z) = M2; (ii) Let

fs, fz ∈ Φβ; (iii) Let φε (sξ) and φη (zξ) be continuously differentiable in the interior of

[0, 1]× R; (iv) Let hn be such that hn →∞, hnεn
gy(hn)

= o (1), h
2
nεn

g2y(hn)
= o (1), and h3nε

2
n

g4y(hn)
= o (1);

(v) Let αn be such that αn → 0, h3nε
2
n

αng4y(hn)
→ 0, and either β ≥ 1 or α1−βn g4y (hn)→∞.
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Assumption 3(i) is usually made in the nonparametric instrumental variable literature that uses

Tikhonov regularization in order to derive L2 rates of convergence. Assumption 3(ii) is known in

the inverse problem literature as a source condition, see Engl, Hanke, and Neubauer (2000). It is

needed in order to control the regularization bias of the Tikhonov regularized parameter. I follow

Darolles, Fan, Florens, and Renault (2011) in making assumption 3(iii), which allows me to use

Proposition 1.

Theorem 3 In addition to the assumptions required for Theorem 2, let Assumption 3 hold. Then:∣∣∣∣∣∣f̂s2 (z)− fs2 (z)
∣∣∣∣∣∣2
L2

= Op

(
h3n

ε2n
g4y (hn)

(
α−1n + αβ−1∧1n + αβ−1∧0n

)
+ αβ∧2n

)
∣∣∣∣∣∣f̂z2 (z)− fz2 (z)

∣∣∣∣∣∣2
L2

= Op

(
h3n

ε2n
g4y (hn)

(
α−1n + αβ−1∧1n + αβ−1∧0n

)
+ αβ∧2n

)
Proof. The proof uses Proposition 3.2 in Darolles, Fan, Florens, and Renault (2011) and is

similar to the proof of Theorem 4.1 in the same paper. See Appendix A.4.

5 Monte Carlo Simulations

In this section, I present results from a Monte Carlo study. The DGP is as follows:

Yj1 = εj1 + ηj1

Yj2 = εj1 + sj2εj2 + zj2ηj2

Yj3 = εj1 + sj2εj2 + sj3εj3 + zj3ηj3

with εjt ∼ N (0, 1), ηjt ∼ N (0, 5) for t = 1, 2, 3, and sj2, sj3 ∼ exp (2) , zj2, zj3 ∼ exp (0.5), where

exp (λ) denotes the exponential distribution with parameter λ.

Using the proposed estimation method, I estimate fε, fη, fs2 , and fz2 using (Yj1, Yj2, Yj3)
N=1000
j=1

generated as above. The parameters that I vary in the simulations are the bandwidth parameter

hn and the Tikhonov regulation parameter αn.

Figures 1 to 4 show simulation results based on 500 Monte Carlo replications. The results are

shown for hn ∈
{
1
4
, 1
6

}
and αn ∈ {0.5, 0.7}.4 In each display, the solid curve represents the true

function, the dark dashed curve draws the average estimator across simulations, and the dashed

curves draw MC percentiles at 50±33%. The inter-quantile range captures the true function well,

with the average following the true function closely.

4In the simulations, the bandwidth parameter hn ∈
{
1
4 ,

1
6

}
and the regulation parameter αn ∈ {0.1, ..., 0.9}.

The estimators are fairly robust across different spefications of hn and αn, and across different combinations of the
parameters.

12



Simulation results, hn = 1
6
and αn = 0.5

Figure 1: The figure shows the true function as a straight line, the average estimator across
simulations as a bold dashed line, and the interquantile range as light dashed lines.

Simulation results, hn = 1
6
and αn = 0.7

Figure 2: The figure shows the true function as a straight line, the average estimator across
simulations as a bold dashed line, and the interquantile range as light dashed lines.
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Simulation results, hn = 1
4
and αn = 0.5

Figure 3: The figure shows the true function as a straight line, the average estimator across
simulations as a bold dashed line, and the interquantile range as light dashed lines.

Simulation results, hn = 1
4
and αn = 0.7

Figure 4: The figure shows the true function as a straight line, the average estimator across
simulations as a bold dashed line, and the interquantile range as light dashed lines.
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6 Empirical Illustration

In this section, I apply the estimation method to the data used by Bonhomme and Robin (2010).

The data is a balanced panel from the PSID for the years 1977 − 1989, with a cross-sectional

sample size of 659. Following Bonhomme and Robin (2010), the measured component of earnings

is the OLS residual of log wages on education, age, geographic characteristics, and year dummies.

Using the method proposed, I estimate the densities of the volatilities for each of the eleven

years 1978 − 1988. I use hn = 1
2
and αn = 0.7. As in the estimation, different other parameters

have been considered but the results obtained were qualitatively the same as the ones presented

here. Figure 5 presents the evolution over time for the different quantiles of the volatilities. The

results are similar to those in Jensen and Shore (2015). Figure 5 shows that there is considerable

heterogeneity in the distribution of the volatilities, with those in the right tail of the distribution

experiencing much higher levels of volatility than those below the 75th percentile. It is interesting

to notice that the permanent volatilities of those in the 90th percentile have been very volatile

during the sample studied, while those of the individuals in the 95th volatile have been relatively

constant but much higher than the other percentiles. It is also interesting to notice that during the

1982−1983 recession, it was the volatilities of those in the 90th and 95th percentiles that increased,

while those of the median stayed relatively constant. Hence, those who are in the right tail tend

to suffer more from business cycle variations, which shows that the answer to the debate about

whether or not volatilies are procyclical may be quite nuanced (Salgado, Guvenen, and Bloom

(2017)).

Simulation results, hn = 1
4
and αn = 0.7

Figure 5: The figure shows the percentiles of the volatilities during 1978-1988.

7 Conclusion

The labor and macroeconomics literature has been dominated by income models in which the way

income volatility varies over individuals and time is restricted. In this paper, I relax this assump-
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tion by indexing the volatility of income by both time and individual. I decompose the income risk

into risk associated to permanent shocks and to transitory shocks. I show the nonparametric iden-

tification of the distributions of the conditional variances of the permanent and transitory shocks

with a minimum of three time periods. I propose nonparametric estimators, which I then apply

to data from the PSID, and I show that there is considerable heterogeneity in the distribution

of the volatilities. The results show that it is those in the right tail of the volatility distribution

who experienced high levels of volatility, particularly during recessions. Those in percentiles lower

than the 75th have experienced relatively constant levels of volatilities, which seem to be relatively

constant over the business cycle.

A Appendix

A.1 Proof of Theorem 1

For L ∈ {1, 2}, let

yL = M + UL (20)

yL+1 = M + UL+1 (21)

Using assumption 1I, for the first two time periods (i.e. L = 1),M = ε1, U1 = η1, U2 = τ 2+π2,

while for the second and third time periods (i.e. L = 2), M = ε1 + π2, U2 = τ 2, U3 = τ 3 + π3.

The proof of Kotlarski’s lemma can be found in Rao (1992). I show below how to obtain the

characteristic functions of M, UL, and UL+1 by applying Kotlarski’s lemma to (20) and (21) with

L = 1 and L = 2, respectively.

Let φY (ξ1, ξ2) , ξ1, ξ2 ∈ R be the characteristic function of (yL, yL+1). By assumption 1K(i),

M,UL, UL+1, are independent for L = 1, 2, so that:

φY (ξ1, ξ2) = φM (ξ1 + ξ2)φUL (ξ1)φUL+1 (ξ2)

Notice that
1

φY (0, ξ2)

∂

∂ξ1
φY (ξ1, ξ2)

∣∣∣∣
ξ1=0

=
d

dξ2
log φM (ξ2) + φ′UL (0)
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so that, letting ξ ∈ R :

φM (ξ) = exp

∫ ξ

0

(
∂

∂ξ1
log φY (ξ1, s)

∣∣∣∣
ξ1=0

− φ′UL (0)

)
ds (22)

φUL (ξ) =
φY (ξ, 0)

φM (ξ)
(23)

φUL+1 (ξ) =
φY (0, ξ)

φM (ξ)
(24)

By assumptions 1K(i) and 1K(ii), φ′U1 (0) = φ′η1 (0) = 0 and φ′U2 (0) = φ′τ2 (0) = 0. Then

applying expressions (22) to (24) to the first two time periods obtains:

φε (ξ) = exp

[∫ ξ

0

[
E [iY1 exp (isY2)]

E [exp (isY2)]

]
ds

]
(25)

φη (ξ) =
1

φε (ξ)
E [exp (iξY1)] (26)

φπ2+τ2 (ξ) =
1

φε (ξ)
E [exp (iξY2)] (27)

By the inverse Fourier transform and by assumption 1K(iv), expressions (25) and (26) can be

solved for the density functions of ε and η, respectively, obtaining expressions (5) and (6) in the

main text.

Applying expressions (22), (23) , and (24) to the second and third time periods obtains:

φε+π2 (ξ) = exp

[∫ ξ

0

[
E [iY2 exp (isY3)]

E [exp (isY3)]

]
ds

]
(28)

φτ2 (ξ) =
1

φε+π2 (ξ)
E [exp (iξY2)] (29)

φπ3+τ3 (ξ) =
1

φε+π2 (ξ)
E [exp (iξY3)] (30)

Consider then (27), (28), and (30). Notice that (27) and (29) are multicolinear. By assumption

1K(i):

φτ2+π2 (ξ) = φτ2 (ξ)φπ2 (ξ) (31)

φε+π2 (ξ) = φε (ξ)φπ2 (ξ) (32)

φτ3+π3 (ξ) = φτ3 (ξ)φπ3 (ξ) (33)

Then (25) and (32) identify:

φπ2 (ξ) =
φε+π2 (ξ)

φε (ξ)
(34)

The second step identifies fz2 and fs2 by showing that the integral operators associated with
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(29) and (34) are injective.

Consider first (34). By the law of iterated expectations, the characteristic function φπ2 (ξ) can

be written as:

φπ2 (ξ) = E [E (exp (iξS2ε) |S2 = s)] =

∫
R+
φε (ξs) fs2 (s) ds (35)

Since φε has been identified, (35) is a linear Fredholm integral equation of the first kind for

fs2 . Let U : L2 (R+)→ L2λ (R) be the integral operator associated to it, defined as:

(Ufs2) (ξ) =

∫
R+
φε (ξs) fs2 (s) ds

Equation (35) has a unique solution for fs2 if U is injective and φπ2 ∈ R (U), where R is the range
of the operator U. First, I show that φπ2 ∈ R (U). Consider:

∣∣∣∣φπ2∣∣∣∣2λ,2 =

∫
R

∣∣φπ2 (ξ)
∣∣2 λ (ξ) dξ

≤
∫
R

(∫
R+
|φε (ξs)|2 ds

)(∫
R+
f 2s2 (s) ds

)
λ (ξ) dξ

< ||fs2||
2
2

(∫
R

1

ξ
λ (ξ) dξ

)(∫
R
φ2ε (x) dx

)
<∞ (36)

where the first inequality follows by the Cauchy-Schwarz inequality and by assumption 1F(ii)

which implies that φε (ξs) > 0 for all ξ, s, while (36) follows by a change of variables x = ξs, and

by assumptions 1K(iv) (which implies square integrability of φε) and 1F(iii).

Second, I show that U is an injective operator. Consider two density functions, fs2 , f
′
s2
∈

L2 (R+) such that (Ufs2) (ξ) =
(
Uf ′s2

)
(ξ). Then since φε (ξs) > 0 by assumption 1F(ii),∫

R+
φε (ξs)

(
fs2 (s)− f ′s2 (s)

)
ds = 0⇒ fs2 = f ′s2 (37)

Similarly, fη2 is identified by showing that the linear Fredholm integral operator Ũ below is

injective:

φτ2 (ξ) =

∫
R+
φη (ξs) fz2 (s) ds ≡

(
Ũfz2

)
(ξ)

Since the proof of identification is similar to the above, it is not repeated here.

A.2 Identification without assumption 1I

Consider two time periods.

Assumption R
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(i) π1, τ 1, π2, τ 2 are mutually independent; (ii) E (τ 1) = 0; (iii) fπ1 , fτ1 ∈ L1 (R); (iv) The first

K ≥ 1 moments of π1 and τ 1 exist, E
(
|π1|k

)
<∞ and E

(
|τ 1|k

)
<∞ a.s. k = 1, ..., K; (v)

The first K ≥ 1 moments of ε1 and η1 exist, are non-zero, and are known.

Theorem 4 Let the distribution of (Y1, Y2) be observed and assume that it follows the model

described by (1a), (1b), (4a), and (4b). Let assumption R hold. Then φπ1 (ξ) and φτ1 (ξ) are

identified by Kotlarski’s lemma and the first K ≥ 1 moments of s1 and z1 are identified and given

by

m(k)
s1

=
φ(k)π1 (0)

φ(k)ε1 (0)
and m(k)

z1
=
φ(k)τ1 (0)

φ(k)η1 (0)
, k = 1, 2, ..., K

Proof. Consider the first two time periods:

Y1 = π1 + τ 1

Y2 = π1 + π2 + τ 2

By Kotlarski’s lemma, the characteristic functions φπ1 and φτ1are identified. Then, as in the

proof of Theorem 1, the law of iterated expectations obtains:

φπ1 (ξ) =

∫
R+
φε1 (ξs) fs1 (s) ds

where φε1 and fs1 are unknown. By assumptions R(iv) and (v), it is possible to differentiate the

expression above k = 1, 2, ..., K times with respect to ξ and evaluate the resulting expression at

ξ = 0. This obtains

φ(k)π1 (0) = φ(k)ε1 (0)m(k)
s1
, k = 1, 2, ..., K (38)

By assumption R(v), φ(k)ε1 (0) 6= 0 and since it is known for all k = 1, ..., K, (38) can be solved for

the sequence of moments
{
m
(k)
s1

}K
k=1
, obtaining the expression in Theorem 4.

A similar analysis applies to show the identification of the sequence of moments
{
m
(k)
z1

}K
k=1

.

A.3 Proof of Theorem 2

The estimation error of f̂ε (z) is decomposed into a stochastic error component and a deterministic

error part, as follows:

f̂ε (z)− fε (z) =
1

2π

∫
exp (−izξ)φK

(
ξ

hn

)[
φ̂ε (ξ)− φε (ξ)

]
dξ (39)

+
1

2π

∫
exp (−izξ)φε (ξ)

[
φK

(
ξ

hn

)
− 1

]
dξ (40)
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where φε (z) is given by (25) and φ̂ε (z) is its sample counterpart.

Consider first the stochastic error part in (39) . For n large enough:

sup
z

∣∣∣∣ 1

2π

∫ hn

−hn
exp (−izξ)φK

(
ξ

hn

)[
φ̂ε (ξ)− φε (ξ)

]
dξ

∣∣∣∣
≤ hn

π
sup

ξ∈[−hn,hn]

∣∣∣φ̂ε (ξ)− φε (ξ)
∣∣∣

By using assumption 2(i), the deterministic part appearing in (40) can be bounded as:

sup
z

∣∣∣∣ 1

2π

∫ hn

−hn
exp (−izξ)φε (ξ)

[
φK

(
ξ

hn

)
− 1

]
dξ

∣∣∣∣
≤ 1

2π

∫ hn

−hn
gε (|ξ|)

∣∣∣∣φK ( ξ

hn

)
− 1

∣∣∣∣ dξ
Then for n large enough

sup
z

∣∣∣f̂ε (z)− fε (z)
∣∣∣ ≤ hn

π
sup

ξ∈[−hn,hn]

∣∣∣φ̂ε (ξ)− φε (ξ)
∣∣∣

+
1

2π

∫ hn

−hn
gε (|ξ|)

∣∣∣∣φK ( ξ

hn

)
− 1

∣∣∣∣ dξ (41)

Define

a (s) = E [iYil exp (isYik)] and b (s) = E [exp (isYik)]

and let â (s) and b̂ (s) be the sample counterparts of a (s) and b (s), respectively. Consider:

sup
ξ∈[−hn,hn]

∣∣∣φ̂ε (ξ)− φε (ξ)
∣∣∣ ≤ sup

ξ∈[−hn,hn]
|φε (ξ)|

∣∣∣∣∣exp

[∫ ξ

0

â (s)

b̂ (s)
ds−

∫ ξ

0

a (s)

b (s)
ds

]∣∣∣∣∣
≤ sup

ξ∈[−hn,hn]

∫ ξ

0

∣∣∣∣∣ â (s)

b̂ (s)
− a (s)

b (s)

∣∣∣∣∣ ds (42)

≤ hn
Cεn
g2y (hn)

(43)

The last inequality follows by the arguments below. Consider the term inside the integral in

(42). Applying the same type of arguments as Bonhomme and Robin (2010) we can write

â (s)

b̂ (s)
− a (s)

b (s)
=

1

b (s)
(â (s)− a (s))− â (s)

b (s)

b̂(s)−b(s)
b(s)

b̂(s)−b(s)
b(s)

+ 1
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Now we bound each term appearing in the expression above. Consider first:∣∣∣∣ 1

b (s)

∣∣∣∣ =

∣∣∣∣ 1

E exp (isY )

∣∣∣∣ ≤ 1

inf |s|>c |φY (s)| ≤
1

gy (hn)
(44)

Inequality (44) above follows since by assumption 2(ii) we have that

inf
|s|≤hn

|φY (s)| =
{
gy (hn) if c < |s| ≤ hn

inf |s|≤c |φY (s)| if |s| ≤ c < hn

By Lemma 1 in Bonhomme and Robin (2010),

|â (s)− a (s)| ≤ sup
|s|≤hn

|â (s)− a (s)| < Cεn (45)

Then by (44) and (45),∣∣∣∣∣ b̂ (s)− b (s)

b (s)

∣∣∣∣∣ ≤ sup
|s|≤hn

∣∣∣∣∣ b̂ (s)− b (s)

b (s)

∣∣∣∣∣ < Cεn
gy (hn)

and by assumption 2(iii),

|â (s)| ≤ sup
|s|≤hn

|â (s)| ≤ sup
|s|≤hn

|â (s)− a (s)|+ E |Yil| = O (1)

Then we have that ∣∣∣∣∣ â (s)

b̂ (s)
− a (s)

b (s)

∣∣∣∣∣ ≤ O (εn)

g2y (hn)

Plugging this into (42) obtains (43) .

Then (41) becomes

sup
z

∣∣∣f̂ε (z)− fε (z)
∣∣∣ ≤ h2n

π

O (εn)

g2y (hn)
+

1

2π

∫ hn

−hn
gε (|ξ|)

∣∣∣∣φK ( ξ

hn

)
− 1

∣∣∣∣ dξ
and by the same arguments as in the proof of Theorem 2 of Bonhomme and Robin (2010), we

have that

sup
z

∣∣∣f̂ε (z)− fε (z)
∣∣∣ ≤ h2n

π

O (εn)

g2y (hn)
+ sup

ξ∈[−1,1]
|m (ξ)| 1

hqn

∫ hn

−hn
τ qgε (|ξ|) dξ + 2

∫ ∞
hn

gε (|ξ|) dξ

A.4 Proof of Theorem 3

We prove the theorem only for the density function fs2 . The proof relies heavily on Darolles, Fan,

Florens, and Renault (2011). The proof for fz2 is similar.
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As explained in the main text, the (Tikhonov) regularized solution for f̂s2 is given by

f̂s2 (τ) =
(
αnI + Û∗nÛn

)−1
Û∗nφ̂s2ε (τ) = Âα,nÛ

∗
nφ̂s2ε (τ)

where Âα,n =
(
αnI + Û∗nÛn

)−1
. Letting Aα,n = (αnI + U∗U)−1, we decompose the estimation

error as follows:

f̂s2 (τ)− fs2 (τ) = Âα,nÛ
∗
nφ̂s2ε (τ)− Âα,nÛ∗nφs2ε (τ) (46)

+Âα,nÛ
∗
nφs2ε (τ)− Aα,nU∗φs2ε (τ)

+Aα,nU
∗φs2ε (τ)− fs2 (τ)

where the first term in (46) is the error associated with estimating φ̂s2ε, the second term is the

error associated with estimation of U , and the last terms is the regularization error.

Consider the L2-norm of the first term in (46):∣∣∣∣∣∣Âα,nÛ∗n (φ̂s2ε (τ)− φs2ε (τ)
)∣∣∣∣∣∣2

L2
≤ 1

αn

∣∣∣∣∣∣φ̂s2ε (τ)− φs2ε (τ)
∣∣∣∣∣∣2
L2

≤ 2
C2

αn
h3n

ε2n
g4y (hn)

where we used that the operator norm
∣∣∣∣∣∣Âα,nÛ∗n∣∣∣∣∣∣ ≤ 1√

αn
(see Groetsch (1984)) and that

∣∣∣∣∣∣φ̂s2ε (τ)− φs2ε (τ)
∣∣∣∣∣∣2
L2
≤ ||fs2||

2
L2

∫ hn

−hn
sup
s

∣∣∣φ̂ε (sτ)− φε (sτ)
∣∣∣2 dτ

≤ 2hnM
2
1 sup

s,τ

∣∣∣φ̂ε (sτ)− φε (sτ)
∣∣∣2

≤ (2hn)M2
1

(
hn

Cεn
g2y (hn)

)2
(47)

The second term in (46) can be written as follows

Âα,nÛ
∗
nÛnfs2 (τ)− Aα,nU∗Ufs2 (τ) = αn

[
Âα,n − Aα,n

]
fs2 (τ)

= −
[
αnÂα,nÛ

∗
n

(
Ûn − U

)
Aα,nfs2 (τ) + αnÂα,n

(
Û∗n − U∗

)
UAα,nfs2 (τ)

]
(48)

where we used the identity M−1 − N−1 = M−1 (N −M)N−1 with M−1 = Ân and N−1 = A.

Consider the terms appearing in (48). By the results in Groetsch (1984) and by Proposition 1 we
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have that: ∣∣∣∣∣∣Âα,n∣∣∣∣∣∣2 ≤ 1

α2n
,
∣∣∣∣∣∣Âα,nÛ∗n∣∣∣∣∣∣ ≤ 1

αn
,

||αnAα,nf ||2L2 = Op

(
αβ∧2n

)
, ||αnUAα,nf ||2L2 = Op

(
αβ+1∧2n

)
.

Additionally, by using the definition of the operator norm and the inequality in (47) we have that:

∣∣∣∣∣∣Ûn − U ∣∣∣∣∣∣ ≤ sup
||f ||L2 6=0

∣∣∣∣∣∣(Ûn − U) f ∣∣∣∣∣∣
L2

||f ||L2
≤
√

2

(
h3/2n

Cεn
g2y (hn)

)
∣∣∣∣∣∣Û∗n − U∗∣∣∣∣∣∣ ≤ sup

||f ||L2 6=0

∣∣∣∣∣∣(Ûn − U) f ∣∣∣∣∣∣
L2

||f ||L2
≤
√

2

(
h3/2n

Cεn
g2y (hn)

)

Then (48) obtains that

∣∣∣∣∣∣Âα,nÛ∗nÛnfs2 (τ)− Aα,nU∗Ufs2 (τ)
∣∣∣∣∣∣2
L2

= Op

(
2

(
h3/2n

Cεn
g2y (hn)

)2 (
αβ−1∧1n + αβ−1∧0n

))

Consider now the last term entering (46). By Proposition 1:

||Aα,nU∗Ufs2 (τ)− fs2 (τ)||2L2 = O
(
αβ∧2n

)
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