|
Chapter Contents |
Previous |
Next |
| Language Reference |
![A = [ A_1|{A}_2|{A}_3| ... |{A}_n
]](images/i17eq96.gif)
![R = [ A_1 & | & A_2 & | & A_3 & | &
... & | & A_n \
A_2 & | & A_3 & | & A_4 ...
...| & 0 \
\vdots & & & & & & & & \
A_n & | & 0 & | & 0 & | &
... & | & 0 ] .](images/i17eq97.gif)
![A = [ A_1 \A_2 \\vdots \A_n \ ]](images/i17eq98.gif)
![R = [ A_1 & | & A_2 & | & A_3 & | &
... & | & A_n \A_2 & | & A_3 & | & A_4 & | &
... & | & 0 \\vdots \A_n & | & 0 & | & 0 & | &
... & | & 0 \] .](images/i17eq99.gif)
r=hankel({1 2 3 4 5});
results in
R 5 rows 5 cols (numeric)
1 2 3 4 5
2 3 4 5 0
3 4 5 0 0
4 5 0 0 0
5 0 0 0 0
The statement
r=hankel({1 2 ,
3 4 ,
5 6 ,
7 8});
returns the matrix
R 4 rows 4 cols (numeric)
1 2 5 6
3 4 7 8
5 6 0 0
7 8 0 0
And the statement
r=hankel({1 2 3 4 ,
5 6 7 8});
returns the result
R 4 rows 4 cols (numeric)
1 2 3 4
5 6 7 8
3 4 0 0
7 8 0 0
|
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.