Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Language Reference

VARMACOV Call

computes the theoritical auto-cross covariance matrices for stationary VARMA(p,q) model

CALL VARMACOV( cov, phi, theta, sigma <, p, q, lag>);

The inputs to the VARMACOV subroutine are as follows:
phi
specifies to a kp ×k matrix containing the vector autoregressive coefficient matrices. All the roots of |\Phi(B)|=0 are greater than one in absolute value.

theta
specifies to a kq ×k matrix containing the vector moving-average coefficient matrices. You must specify either phi or theta.

sigma
specifies a k ×k symmetric positive-definite covariance matrix of the innovation series. By default, sigma is an identity matrix with dimension k.

p
specifies the order of AR. You can also specify the subset of the order of AR. By default, let phi = \Phi,
p={ {\rm the number of row of matrix} \Phi \over
 {\rm the number of column of matrix} \Phi }.
For example, consider a 4 dimensional vector time series, if phi = \Phiis 4 ×4 matrix and p=1, the VARMACOV subroutine computes the theoritical auto-cross covariance matrices of VAR(1) as follows
y_t = \Phi y_{t-1} + m{\epsilon}_t.
If phi = \Phi is 4×4 matrix and p=2, the VARMACOV subroutine computes the theoritical auto-cross covariance matrices of VAR(2) as follows
y_t = \Phi y_{t-2} + m{\epsilon}_t.
If phi = [ \Phi_1' \Phi_3' ]' is 8×4 matrix and p = {1,3 }, the VARMACOV subroutine computes the theoritical auto-cross covariance matrices of VAR(3) as follows
y_t = \Phi_1 y_{t-1} + \Phi_3 y_{t-3} + m{\epsilon}_t.

q
specifies the order of MA. You can specify the subset of the order of MA. By default, let theta = \Theta,
q={ {\rm the number of row of matrix} \Theta \over
 {\rm the number of column of matrix} \Theta }.
The usage of q is the same as that of p.

lag
specifies the length of lags, which must be a positive number. If lag = h, the VARMACOV computes the auto-cross covariance matrices from at lag zero to at lag h. By default, lag = 12.

The VARMACOV subroutine returns the following value:
cov
refers an (k*lagk matrices the theoritical auto-cross covariance VARMA(p,q) series. In case of VMA(q) when p=0, the VARMACOV computes the auto-cross covariance matrices from at lag zero to at lag q.

To compute the theoritical auto-cross covariance matrices of a bivariate (k=2) VARMA(1,1) model
y_t = \Phi y_{t-1} + 
 m{\epsilon}_t - \Theta m{\epsilon}_{t-1},
with m{\epsilon}_t \sim WN( 0, \Sigma),where
\Sigma=[\matrix{1.0 & 0.5 \cr
 0.5 & 1.25\cr
 }],
\Phi=[\matrix{1.2 & -0.5 \cr
 0.6 & 0.3 \cr
 }],
\Theta=[\matrix{-0.6 & 0.3 \cr
 0.3 & 0.6 \cr
 }],
you can specify
  call varmacov(cov, phi, theta, sigma) lag=5;


The VARMACOV subroutine computes theoritical auto-cross covariance matrices for the VARMA(p,q) model when AR coefficient matrices \Phi_i, MA coefficient matrices \Theta_i, and an inovation covariance matrix \Sigma are known. Auto-cross covariance matrices \Gamma(l) are
\Gamma(l) = \sum_{j=1}^p \Gamma(l-j) \Phi_j'
 - \sum_{j=l}^q \Psi(j-l) \Sigma \Theta_j', 
 {\rm for}l=0, ... ,q
\Gamma(l) = \sum_{j=1}^p \Gamma(l-j) \Phi_j' {\rm for} l\gt q
where \Psi_j satisfy
\Psi_j = \Phi_1 \Psi_{j-1}+\Phi_2 \Psi_{j-2}+ ...  
 +\Phi_p \Psi_{j-p}-\Theta_j
with \Theta_0 = -I, \Psi_0 = I, and \Psi_j = 0 for j < 0.

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.