Catch a rising star: New Faculty Profiles

Dr. Timothy Audas

Asst Prof, Dept of Molecular Biology & Biochemistry

RNA Biology, Amyloidogenesis, Neurological Diseases

Dr. Audas is interested in how cells respond to changes in their environment. Recently, he showed that a class of biological molecules – noncoding RNA – is essential to many of the stress response pathways used by cells to adapt to changing conditions.  In particular, he discovered a noncoding RNA-mediated pathway that causes cellular proteins to clump (i.e., form amyloids) under stress conditions; he suspects that this pathway can go awry and lead to neurological disorders, like Alzheimer’s or Parkinson’s. Could these diseases be activated by cellular stress events? The increasing incidence of neurological diseases motivates Dr. Audas to unravel how this pathway works and identify compounds that may cause or disassemble amyloids.

Read more: an interview with Dr. Audas, his profile on the Department of Molecular Biology & Biochemistry website and his lab website

Dr. Stephanie Simmons

Asst Prof, Dept of Physics

Silicon Quantum Computing

With a goal of developing quantum technologies, Dr. Simmons’ work falls squarely between engineering and physics. She believes that silicon is the way to go for quantum computing because “thanks to the hugely successful semiconductor industry, we really understand how to make accurate, reliable nanoscale structures in silicon.” Control and accuracy are essential to realizing the potential of quantum technology and bringing it into the mainstream.

Read more: an interview with Dr. Simmons, her profile on the Department of Physics website and her Silicon Quantum Technology Lab’s website

Dr. Sam Doesburg

Assoc Prof, Dept of Biomedical Physiology & Kinesiology

Developmental Cognitive Neuroscience

Our ability to unravel the biological mechanisms underpinning behaviour and the mind is expanding. Imaging techniques are critical to brain research, and advances in the development of these tools are fuelled by the rapidly moving fields of computing science and biology. Dr. Doesburg’s research program leverages brain imaging technology to probe the effectiveness of intervention strategies for autism and ultimately establish a clear, scientifically-founded basis for autism treatments.

Read more: an interview with Dr. Doesburg and his profile on the Biomedical Physiology & Kinesiology website

Dr. Roger Linington

Assoc Prof & Tier 2 Canada Research Chair, Dept of Chemistry

Natural Products Drug Discovery via High-throughput Screening

Dr. Linington’s research program applies marine microbiology, natural products isolation and structure determination, bioassay design and development, synthetic medicinal chemistry, and 'omics' techniques to tackle biomedical problems. His group develops high-content approaches to natural products discovery that use modern methods in image-based screening and high resolution mass spectrometry to create powerful tools for the functional annotation of natural products libraries. His strategy integrates high-throughput chemical and biological annotation of the libraries to predict biological functions of compounds early in the discovery process. His ultimate goal is to discover novel natural products that possess bioactivity against targets in disease areas such as infectious disease and cancer.

Read more: an interview with Dr. Linington, his personal website, his profile on the Chemistry website, and research features on the Nature of Things, Motherboard, and Seeker Digital Network

Dr. Luke Bornn

Asst Prof, Dept of Statistics & Actuarial Science

Computational Statistics and Machine Learning Applied to Large-scale Spatial and Dynamic Data

Dr. Bornn possesses exceptional skills in statistical modeling and computation. He creates original, scalable statistical models and innovative computational approaches to identify complex patterns from immense, complex datasets. His research on high dimensional spatio-temporal data has diverse applications, including environmental and climate modeling, optical tracking in sports, and structural health monitoring. He uses stochastic computation (e.g., Monte Carlo methods) to tackle the associated computational problems.  

Read more: an interview with Dr. Bornn and his personal website

2014

Dr. Vicki Marlatt

Asst Prof, Dept of Biological Sciences

Aquatic Ecotoxicology and Endocrine Disruption

The growing threat to ecosystems posed by pollution and climate change highlights the importance of environmental monitoring activities and informed action by governments.  Endocrine disruption in wildlife exposed to environmental contaminants is of concern worldwide. Through lab work and field studies, she is developing new biomarkers as early onset indicators of exposure to environmental contaminants that can be used in risk assessment and monitoring activities, which will benefit both local and global communities.

Read more:  an interview with Dr. Marlatt and her profile on the Biology website

Dr. Loren Kaake

Asst Prof, Dept of Chemistry

Transport Phenomena in Organic Optoelectronics

Dr. Kaake is interested in understanding the transport of ions, charges, and heat in polymeric and molecular films. These materials are already used in computer and cell-phone displays and will someday be in widespread use as solar cells and transistors. The properties that make organic materials useful in optical and electronic devices rely on the transport of one or more things through the film. His group uses a combination of electrical and spectroscopic measurements to understand transport processes at the nanoscale. A deep understanding of these phenomena will catalyze the development of materials with significantly better properties and lead to new applications.

Read more: an interview with Dr. Kaake, his personal website and his profile on the Chemistry website

Dr. Ben Adcock

Asst Prof, Dept of Mathematics

Compressed Sensing Algorithms

High-dimensional approximation is becoming imperative in the data-rich era. Dr. Adcock’s research tackles problems related to the recovery of complex, high-dimensional objects from limited datasets in the realms of modern science, medicine, and engineering. He seeks to develop new algorithms using the theory of a signal processing technique called compressed sensing (CS), as well as optimal approximation algorithms. His work is interdisciplinary, with applications in medical imaging, intelligent signal processing, machine learning, uncertainty quantification, and the numerical solution of partial differential equations.

Read more: an interview with Dr. Adcock, his personal website and his profile on the Mathematics website

Dr. Nathan Ilten

Asst Prof, Dept of Mathematics

Algebraic Varieties with Combinatorial Structure

Dr. Ilten’s research focuses on understanding algebraic varieties (e.g., toric and Fano varieties), deformation theory and Hilbert schemes, and linear subspaces of varieties. His group tackles geometric problems using combinatorial techniques related to polyhedral geometry, representation theory, and Gröbner basis theory. Dr. Ilten is also engaged in developing computational tools in algebraic geometry; for example, he has authored several packages in the Macaulay2 software system.

Read more: an interview with Dr. Ilten, his personal website and his profile on the Mathematics website

Dr. Eundeok Mun

Asst Prof & Tier 2 Canada Research Chair, Dept of Physics

Emerging Materials in Condensed Matter Physics

Dr. Mun seeks to create novel materials that possess unusual physical properties. He has a knack for growing high-quality crystals and designing complex, precise measurements. His research group grows single crystals of strongly correlated electron systems and characterizes their ground states using extreme experimental conditions, such as high magnetic fields and extremely low temperatures. His research program is developing ultra-precise, novel measurement tools that will form the basis of new technologies, from which exotic materials will be developed with ground-breaking industrial applications.

Read more: Dr. Mun's personal website and his profile on the Physics website

Dr. David Sivak

Asst Prof & Tier 2 Canada Research Chair, Dept of Physics

Nonequilibrium Thermodynamics of Molecular-scale Biological Processes

Dr. Sivak’s group applies fundamental theory and computational methods to the efficient design of molecular machines. They seek to understand the communication of energy and information within and between driven biomolecular systems. His research program explores how fundamental physics leads to principles that might guide the evolution of efficient, powerful biomolecular motors. This knowledge will inform the design of artificial molecular machines or other nano-scale devices, e.g., for drug delivery or solar energy conversion purposes, and the development of drugs to target malfunctioning biomachines.  

Read more:  an interview with Dr. Sivak, his personal website and his profile on the physics website