Context-Aware Computing

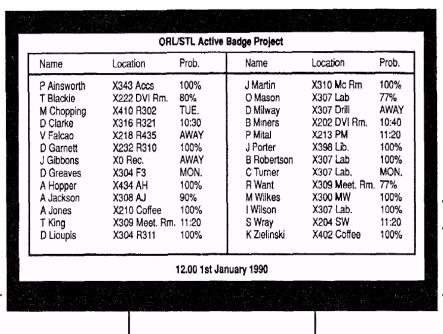
IAT351

Week 10 Lecture 1 5.11.2012

Lyn Bartram lyn@sfu.ca

Administrivia

- Assignment 4 details
- Mahshid has put sample working code and instructions up
- Assignment 4 25% catchup
- Final projects are in review, looking good
- Final presentation schedules will be randomly assigned


Context-Aware Computing

- Context: situational elements relevant to interaction between user, application, environment
- Context-awareness: situationally appropriate; apps adapting to context, increasing value to users
 - Using sensors and actuators to improve human-computer interaction and (computer-mediated) human-human and human-environment interaction
- Examples: tour guide, reminders, diary retrieval

Olivetti Active Badges

- Problem: locating researchers
- Solution: badge tied to identity, tracked as researcher moves in building

Assistant sees this view

- knows where researcher is
- can forward call

Want and Hopper, 1992]

Active Badges

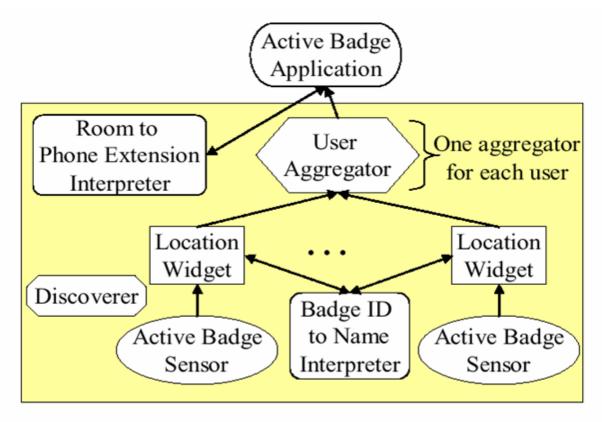


Figure 2. Architecture diagram for the Active Badge call-forwarding application.

People Issues

- Avoiding embarrassing situations
 - Active Badges + bathrooms
 - Inconvenient phone forwarding
- Avoiding dangerous situations
 - Need to take into consideration cost of mistake
 - Smoke alarms when cooking
 - Lights that turn off when you're still there
 - Woman locked in "smart toilet stall"
- Will adding more context really help here?

People Issues

- Making it predictable and understandable
 - Setting preferences
 - "I want my cell phone to ring except in theaters and when I'm in a meeting unless..."
 - Why the heck did it do that?
- Privacy
 - What does the computer know about me? What do others know about me?
 - Capturing/collecting lots of information about people, places and devices
 - People uncomfortable when don't know what is being collected and how it's used

What's the Context

Shop in Indonesia? Buying something?

Being a tourist?
Getting a good bargain?
Making a video?

Operational Definition of Context

- "Context is any information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is considered relevant to the interaction between a user and an application, including the user and the application themselves." [Dey and Abowd, 2000]
- Emerged from point of view of developer/computer scientist
- Determined in absence of all but basic infrastructure
 - Networking but no services

Context-Aware Infrastructures

- Context Toolkit: privacy, uncertainty, end-user support (2001)
- <u>Java Context-Awareness Framework</u>: quality of context and context modeling (2009)
- PersonisAD: context models of entities and links between them, support for scrutability (2002) – user can examine
- Nexus: context modeling, representation, and spatiotemporal processing
- Context Fabric: privacy, and modeling of context entities
- Context Spaces: context modeling, inferencing of security and probabilistic reasoning

Dey (CMU) – 10 years of context-aware computing research

- Driven by a single problem
- Reminder to buy milk
- When to deliver: not time/location specific
- How to deliver: appropriate modality

We can build it now but none of you would use it

Context Toolkit

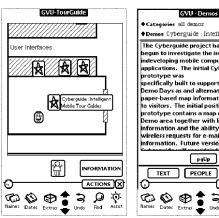
- 1997: difficult to build simple context-aware applications
 - No abstractions for acquiring and using context from sensors or controlling actuators
 - Context coming from a number of distributed sources
 - No principles for designing applications
- Aggregated sources and distributed service deliveries

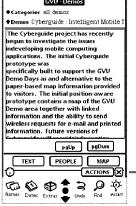
Context-Aware Applications

- What is a context-aware application?
 - App that uses context to perform some behavior/service for its user(s)
- "A system is context-aware if it uses context to provide relevant information and/or services to the user, where relevancy depends on the user's task."

Context-Aware Features

- Presentation of information and services
 - Tour guide, Active Badges
- 2. Automatic execution of services
 - Smart homes (turn off lights, adjust temperature)
- Tagging of context to information for later retrieval
 - Digital camera meta-data (time, location)

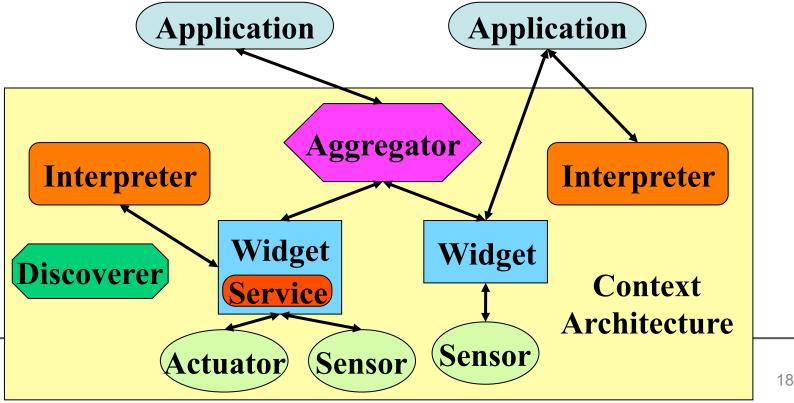

Directly displaying context



Execute/Adapt Services

- Select and perform a relevant service from multiple services
- Change how a service behaves or is executed

Tag Information


Use context to aid in context-based retrieval

Thesis: Context Toolkit

Context Toolkit to support programmers in building context-aware applications more easily

Context Toolkit Infrastructure

- Context Widgets Basic building block, provides abstraction of sensor details.
- Context Servers Abstraction to provide aggregation of context data from context widgets
- Context Interpreter Takes input from context widgets and outputs it in a way that a set of applications can use.

Context Widget

- Abstracts sensor details.
- Provides a common paradigm for context-aware applications.
- Allows reuse of code and persistence.
- Tailors sensor information to the needs of the application.
- Have attributes and behaviors.

Aggregators

- Widgets + ability to aggregate context info
- Collect sensory info about an entity (person, place, thing, etc.) from multiple sources into one widget
- Hide more complexity about context-sensing mechanisms by combining multiple sensors
- Enable maintainability and efficiency

How are they used?

Applications use context widgets as follows:

- Applications subscribe to widgets that they need data from
- a widget could be local or remote.
- Widgets perform callbacks to the application when something interesting happens, passing data back to the application in a form that the application requires.
 - "callbacks" = event-listener model

So if the technology is here....are we ready?

- Just making it easier to build applications is only part of the problem
 - Once you know what context to capture and how to use it, easier to execute
 - But how do you figure this out?
- But, we still don't have widespread deployment
- Lots of problems to be addressed on the user side
- Commercially available apps focusing on locationbased services – with two notable exceptions...(later)

What are the Impediments?

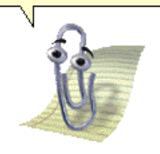
- Cost and difficulty in deploying infrastructure
- Applications are of limited value
 - Not modeling the right tasks
- Applications lacking in usability
 - Apps lacking in support for end-user control
 - Apps lacking in intelligibility

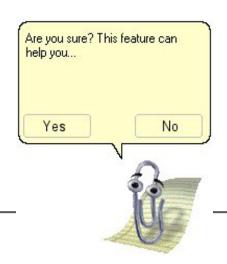
Usability is Key

- Dourish, Abowd and Mynatt, Bellotti and others: lack of control in these environments
- Information collected, synthesized and used implicitly
- How do I know what's going on? (intelligibility)
- How do I change what's going on? (control)
- Who gets this information? (privacy)
- Is this another way to SPAM me? (overload)

Dey: Key principles

- End-User Intelligibility and Control: decide what actions an environment should take and understand environment state; help the user feel in control
 - CHI 04, Pervasive 06, Ubicomp 06, CHI 07, Ubicomp 07
- Privacy: user decides what to release and when
- Calmness: use peripheral displays and unintrusive modalities to present information without overwhelming
 - CHI 03, CHI 04, Pervasive 04, UIST 04, UIST 05, CHI 06

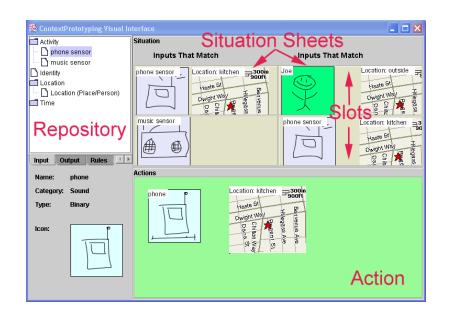


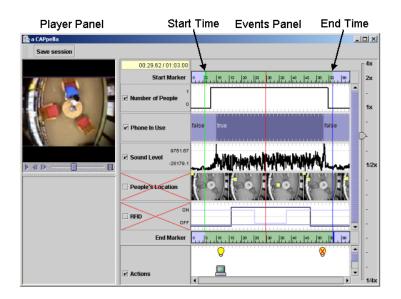

Challenges

- Leveraging real human context a you're not really getting at huma
 - Clippy

It looks like you're trying to work. Would you like me to bug you instead?

- Annoy me till my eyes bleed
- Go away please




End User Control and Intelligibility

- Control: real situations are dynamic and cannot always be planned for a priori
 - Need to allow constant adaptation
 - Home: new people, new organization, new roles
 - Programmer can't possibly hope to cover these situations
 - Must support end-users in maintaining control
 - Need support for this

Control of Smart Homes

End User Control and Intelligibility

- Intelligibility: users will reject systems they do not understand, particularly when these systems make mistakes
 - Amazon recommender, Clippy
 - Complex systems need to describe their behavior to some degree

Discussion

- If you were designing an application and you wanted to take advantage of context, would this framework be helpful?
- Example: cell-phone restaurant locator
- What are the entities?
- Relevant Characteristics (context): ?
- How Does this help the designer and user?

Implications of Representable Context

Context is:

- Form of information that can be encoded
- Delineable: in advance define what contexts are relevant for the application
- Stable: determination of relevance of potential context in an activity can be made once, reused
- Separable from activity

Dourish's Context

- Previous approaches to context are representational:
 "what is context and how can it be encoded?"
- Alternative approach uses interactional model: "how and why, in the course of their interactions, do people achieve and maintain a mutual understanding of the context for their actions"
- Miminum set for reliable behaviour?

Context can be encoded

- Alternative:
 - You cannot bundle up all the context
 - Objects can be contextually relevant

- **Dey**: relevant info about entities (people, exhibit, interface, ...) is context
- **Dourish**: all those things might be contextually relevant, but they do not fully describe the context

Context is Delineable

- Alternative:
 - Scope of application's contextual features is defined dynamically

- When contexts X, Y, Z come into play, feature A can be engaged
- simplistic

Context is Stable

- Alternative
 - Context is an occasioned property
 - Particulars of situation and activity matter

- example:
- **-Dey**: Relevance of user's proximity to an exhibit is always relevant
- **Dourish**: highly dependent on the current situation

Case Study: Web Apps

- Do they match up with our discussion of context?
- How effective are they?
- What are the problems?
- What can they learn from the views of context discussed here?
- Dey: Context can be represented and processed
- Dourish: Context is emergent. Applications should help users produce new meanings and contexts

Case study: context-aware mobile tools

- Killer app? The Virtual Personal Assistant
 - Android Friday™
 - iPhone Siri™
- Mashup of existing disparate tools, information, activities
- Infrastructure of services and APIs

SiriTM

I found the following Italian restaurants that reviews say are romantic near your home

Your table is reserved for 2 Saturday night at 8:00pm.

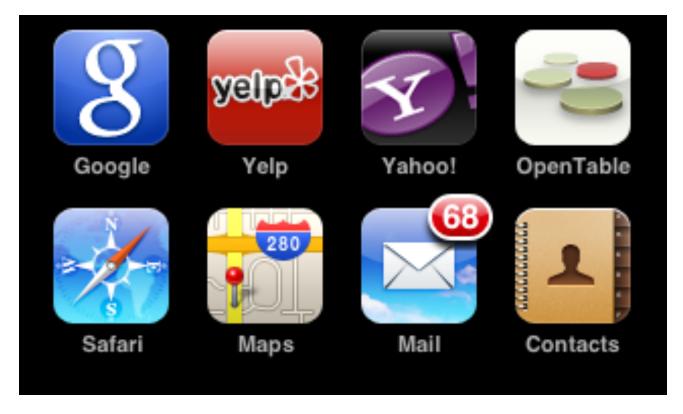
Siri Helps you Do Things

- Multiple-criteria vertical search and browse
- combining multiple sources of information
- with integrated transactions
- and social communication

Your invitation has been sent to friend@email.com

Employing the services of...

Email

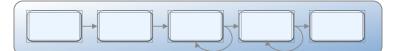


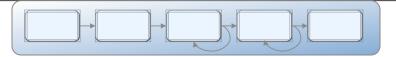
Maps

and many more. • CTom Gruber, Siri, Inc. 2009

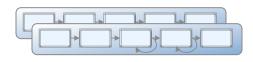
Lots of Steps, Lots of Apps

Apps required to do meal planning flow

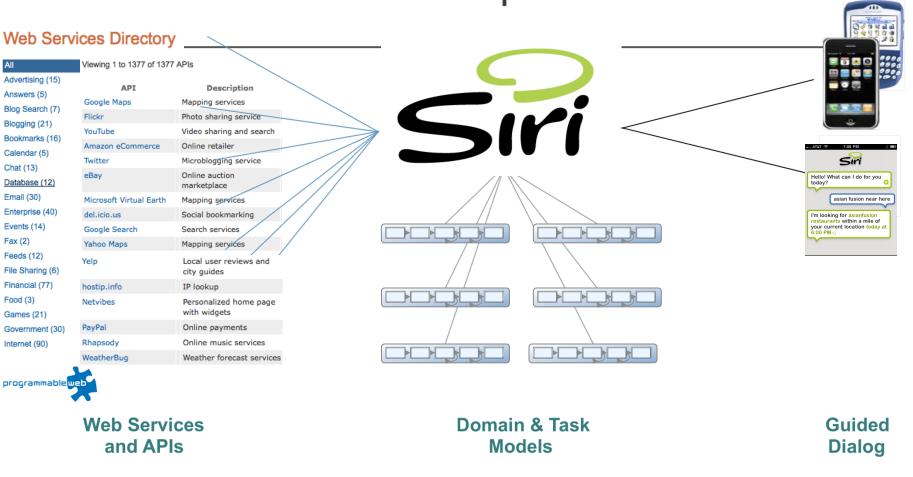

And Lots of Tasks


Plan a Meal


Find something to do


Go to the movies

Find a store


Plan a trip

. . .

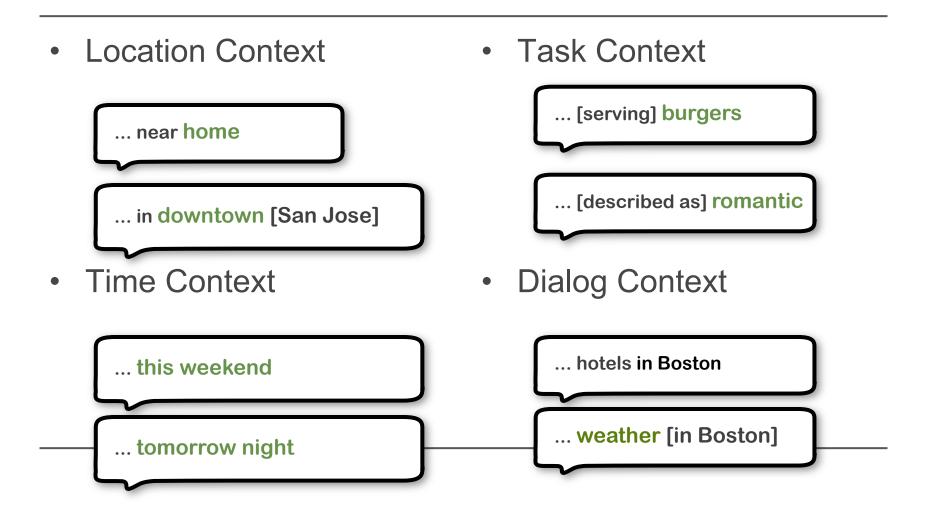
Service Delegation: The Mother of All Mash-ups

Siri:

Does Things for You

focus on task completion

Gets What you Say


intent understanding via conversation

Gets to Know You

learns and applies personal information

Understanding Intent in Context

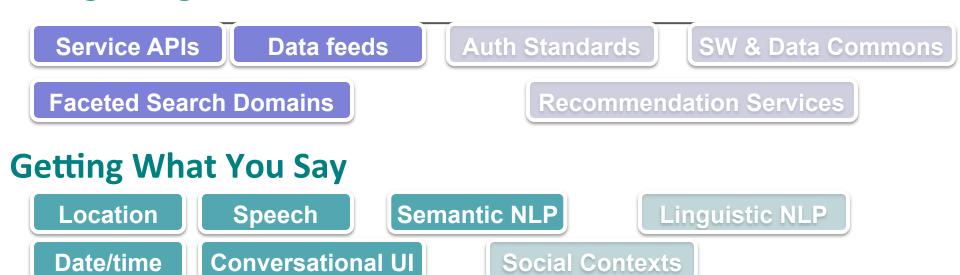
Siri:

Does Things for You

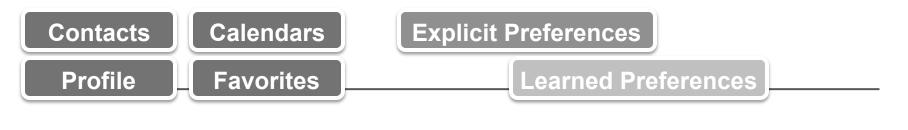
focus on task completion

Gets What you Say

intent understanding via conversation


Gets to Know You

learns and applies personal information



Future

Development Evolution Doing Things For You

Getting Personal

Today Tomorrow

Implications on Design

- Predefined contexts will likely fail
- What are the critical features?
- What can we live with?
 - Highly context dependent
- Cost of being wrong
- Overhead of recovery
- Support evolution of meaning through practice