Building User Interfaces Advanced HCI IAT351

Week 2 Lecture 1 9.05.2012

Lyn Bartram lyn@sfu.ca

Administrivia

- Website and wiki are up!
 - http://www.sfu.ca/siatclass/IAT351/Fall2012/
 - https://wiki.sfu.ca/fall12/iat351
- Remember to make a wiki page please!

Evaluation: Two options - VOTE

- Five programming assignments
 - Each worth 15 %
 - Randomised pairs
 - Spaced pretty evenly throughout the term
- Research project 25%
 - Individual
 - Paper and/or prototype
 - Research and discuss identified issues and approaches in HCI
 - Agreed with instructor
 - Due at end of term

- Four programming assignments
 - Each worth 15 %
 - Randomised pairs
 - Mostly in first 1/2 of term
- Midterm 25%
- Research project 15%

Motivation

- Moore's law has done its job
 - No longer: "can it be built"?
 - Now: "can they use it?" or, more particularly, "how many ways can it be used?": "will they use it"? --> "Can I sell it"?
- Shift towards usability and user experience as a key product denominator
 - Good interaction design
 - Good visual design
 - iPod/iPhone, distributed systems, web services
 - Implicit, explicit, ambient, embedded interaction and display

Think of the UI as part – the touchpoints – of an interactive system

Why study UI software?

- Most systems involve some user somewhere
- Good user interfaces are critical for software survival and economics
- Designing for users is important and difficult
 - Lots of code devoted to the UI
 - Hard to get right the first time (iteration necessary)

- They are reactive and are programmed from the "inside-out"
 - Event based programming
 - More difficult to modularize

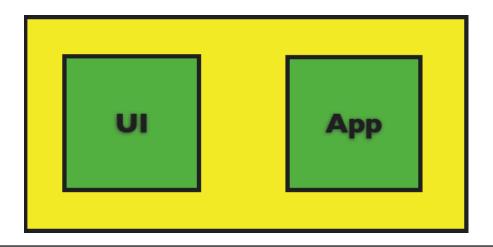
- They generally require multi-processing and concurrency
 - To deal with user actions; aborts
 - Displayrefresh
 - Different displays and windows system as a different process
 - Multiple input devices
 - Performance balancing
 - Real-world events

- There are real-time requirements for handling input events
 - Output 60 times a second
 - Keep up with mouse tracking
 - Video, sound, multi-media
- Need for robustness
 - No crashing, on any input
 - Helpful error messages and recover gracefully
 - Aborts
 - Undo

- Good UI design and construction requires system thinking
- They are non-deterministic
 - (translation: you will NEVER know everything that can happen!)
- Frequent early prototyping and refactoring is critical
- Needs good architecture from the outset

Some good news

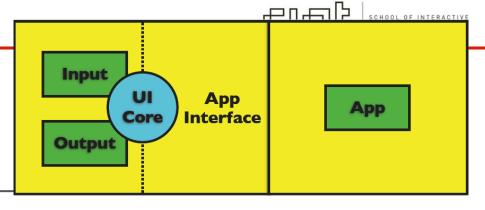
- Large set of tools and middleware layers that abstract the lowest level details away from application programmer
 - .NET
 - Java, Swing
- Don't write a device driver any more, write an extension of some device object to meet new criteria
- UI Builders: we will NOT be relying on these in this course
 - Useful for prototyping
 - Often generate bad software engineering :)


What's the user interface?

- Since mid-40's
 - Display (paper terminal, CRT, LCD, ...)
 - Keyboard
 - "command line", Unix interaction
- Since late '60's
 - Pointing device
 - WIMP/GUI style of interaction
 - "direct manipulation"
 - The desktop
- Since early '90's
 - An extension of our physical environment
 - Sensing, inferencing
 - Different modalities : sound, touch

Programmer's perspective

- The "UI" was/is typically viewed as one component of the overall system
 - The part that "deals with the user"
 - Separate from the "functional core" (the application)



The Software engineering approach

- Advantages of "separation of concerns"
 - Keep UI code separate from app code
 - Isolate changes
 - More modular implementation
 - Different expertise needed
 - Don't want to iterate the whole thing
 - Design in parallel

Hmm, in practice

This is very hard to do in real-world application environments

- More and more interactive programs are "tightly coupled" to the UI
 - Programs are structured around the UI concepts and the flow of behaviour
 - Lower level support needs to be present to enable higher-level behaviour
- Not always bad
 - Tight coupling can lead to better performance and feedback

UI History: A Quick View IAT351

Week 2 Lecture 2 10.09.2012

Lyn Bartram lyn@sfu.ca

Evolution of computing

- Digital computer grounded in ideas from 1700s & 1800s
- Technology became available in the 1940s and 1950s
- 1950s 1960s
 - Computers appeared on the commercial scene
 - Difficult to use, cumbersome
 - Ran in "batch-mode", experienced operators
 - Cards
- Early 1960s 1980s
 - Timesharing systems
 - Manual command line

Evolution of INTERACTIVE computing

- 1970s
 - First personal computers
 - Raster graphics-based networked workstations
 - Mouse pointing devices, desktop metaphor, windows, icons
 - WIMP
 - Widespread adoption
 - Man-machine interface (MM!)
- mid 1980s now
 - Human-Computer interaction (HCI)

Vannevar Bush

Vannevar Bush

- "...publication has been extended far beyond our present ability to make real use of the record."
 - "As We May Think" 1945 Atlantic Monthly
- Postulated Memex device
 - Can store all records/articles/communications
 - Large memory
 - Items retrieved by indexing, keywords, cross references
 - Can make a trail of links through material, etc.
- Envisioned as microfilm, not computer

J.R. Licklider

- 1960 Postulated "man-computer symbiosis"
- Couple human brains and computing machines tightly to revolutionize information handling

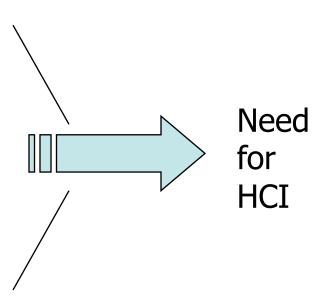
The Memex Vision/Goals

Immed

- Time sharing
- Electronic I/O
- Interactive, realtime system
- Large scale information storage and retrieval

Intermed

Combined
 speech
 recognition,
 character
 recognition,
 light-pen editing


Long-term

- Natural language understanding
- Speech recognition of arbitrary users
- Heuristic programming

Mid 1960's

- Computers too expensive for individuals -> timesharing
 - increased accessibility
 - interactive systems, not jobs
 - text processing, editing
 - email, shared file system
 - Single, dedicated task

Ivan Sutherland

- SketchPad '63 PhD thesis at MIT
 - Hierarchy pictures & subpictures
 - Master picture with instances (ie, OOP)
 - Constraints
 - Icons
 - Copying
 - Light pen as input device
 - Recursive operations

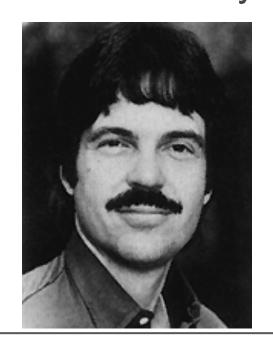
Video Display Units

- More suitable medium than paper
- Sutherland's Sketchpad as landmark system
- Computers used for visualizing and manipulating data

Douglas Engelbart

- Landmark system/demo:
 - hierarchical hypertext, multimedia, mouse, high-res display, windows, shared files, electronic messaging, CSCW, teleconferencing, ...

Inventor of the mouse



Alan Kay

Dynabook - Notebook sized computer loaded with multimedia and can store everything

Personal computing

Desktop interface

Personal Computing

- System is more powerful if easier to use
- Small, powerful machines dedicated to individual
- Importance of networks and time-sharing
- Kay's Dynabook, IBM PC

Personal Computers

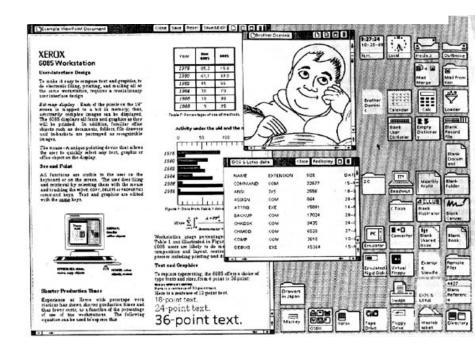
- '70's IBM PC and the command line UI
 - Text and command-based: symbolic input
 - Monochrome
 - Recall not recognition
 - Required new control mappings and modes
 - Different across applications
 - Single input modality, serialised effort
 - Hard to learn but efficient for experts
 - Small spatial/discrete capability (Rogue?)
 - Modal input

PCs with GUIs

Xerox PARC - mid 1970's

Alto

- local processor, bitmap display, mouse
- Precursor to modern GUI, windows, menus, scrollbars
- LAN ethernet

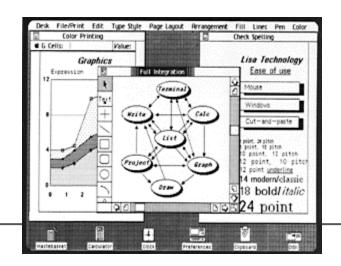


Xerox Star - '81

- First commercial PC designed for "business professionals"
 - Desktop publishing
- First system based on usability engineering
 - Paper prototyping and analysis
 - Usability testing and iterative refinement

desktop metaphor, pointing, WYSIWYG, high degree of consistency and simplicity

Advent of the 2D input device Pointing, selection, control


Apple Lisa - '82

Based on ideas of Star

- More personal rather than office tool
 - Still \$\$\$

Failure

Apple Macintosh - '84

- Aggressive pricing \$2500
- Not trailblazer, smart copier
- Good interface guidelines
- 3rd party applications
- High quality graphics and laser printer

WIMP

- Windows, Icons, Menus, Pointers
- Can do several things simultaneously
 - Context switching
 - Start of the religious wars on tiled vs overlapping
- Familiar GUI interface desktop metaphor
- Xerox Alto, Star; early Apples
- Used a mouse and a keyboard for input

Ben Shneiderman

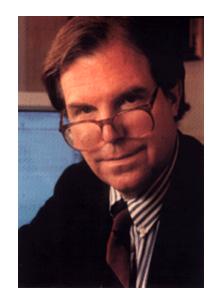
- Coins and explores notion of direct manipulation of interface
- Long-time Director of HCI Lab at Maryland

Direct Manipulation

- NeW Paradigin
- '82 Shneiderman describes appeal of graphically-based interaction
 - object visibility
 - incremental action and rapid feedback
 - reversibility encourages exploration
 - replace language with action
 - syntactic correctness of all actions
- WYSIWYG, Apple Mac

Multimodality

- Mode is a human communication channel
 - Not just the senses, e.g., speech and non-speech audio are two modes
- Emphasis on simultaneous use of multiple channels for I/O
- Fragmentation and integration across many interaction channels
 - Multimodal != additive ??
- More intuitive ?



Nicholas Negroponte

MIT machine architecture & Al group

'69-'80s

- Ideas:
 - wall-sized displays, video disks, AI in interfaces (agents), speech recognition, multimedia with hypertext

Language (Agents)

- Actions do not always speak louder than words
- Interface as mediator or agent
- Language paradigm
- Different communication mapping
 - Clifford Nass learn from human-human communication

CSCW

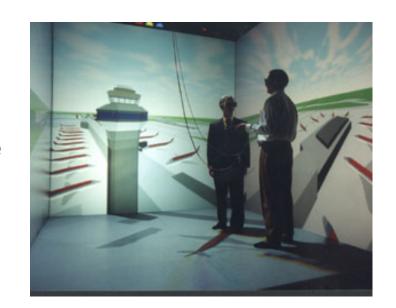
Computer-Supported Cooperative Work

- No longer single user/single system
- Micro-social aspects are crucial
- E-mail as prominent success but other groupware still not widely used
 - Move to real-time and both f2f and remote
- Singular and shared interaction environments
 - Stanford iRoom
 - Multiple mice I machine (Inkpen)
 - Remote interaction techniques
- WYSIWIS

Mark Weiser

- Introduced notion of "calm technology"
 - · It's everywhere, but recedes quietly into background
 - Ubiquitous computing
- CTO of Xerox PARC
- Sensors, actuators
- Vision and image processing

Ubiquity


- Person is no longer user of virtual device but occupant of virtual, computationally-rich environment
- Can no longer neglect macro-social aspects
- Late '90s PDAs, VEs, ...
- 2000 cell phones, RFID, tangible Uis ...
- Large and small shared and partitioned devices
- Information is no longer device-singular in an application
 - Uniformity of techniques no longer applies?
 - Your machine our information?

Immersive and manyD environments

Immersive Virtual reality (NSCA Cave™)

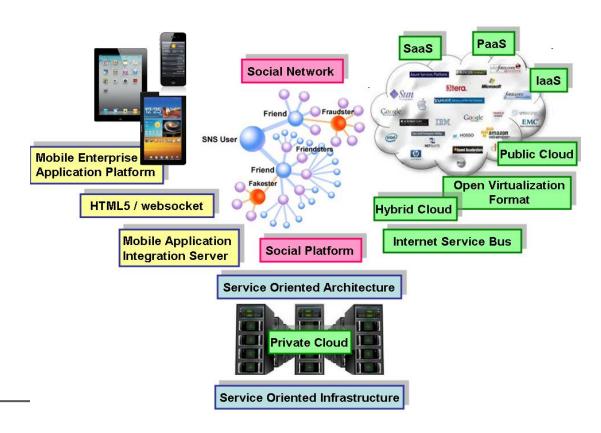
- Fred Brooks, Henry Fuchs
- Very specialised and hard to use
- Extremely useful in simulation
- Architecture

- Expensive and difficult to calibrate
- Perceptually challenging

Immersive and manyD environments

- Fishtank VR and augmented reality
- Single or combined devices with many DOF (head tracker, Flock of Birds)
 - Human factors are challenging

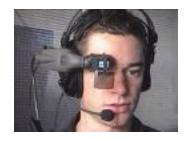
 Increasingly common usage especially in CSCW



The Cloud

- You are your data
- The cloud is all the available services
- Display
- interaction

Our bodies, our interaction devices ...



Instrumenting the human

- Eye tracking/head tracking
- Motion capture
- High resolution direct input
- Less cognitive load?

Haptic and physical interfaces

- Using touch and force for direct input
- Sensors and other capture for indirect input (biomechanical signals-GSR)
- Tangible bits Ishii
- The interactive floor

