Static and Moving Patterns
(part 2)

Lyn Bartram
IAT 814 week 9
5.11.2009
Administrivia

- Assignment 3
- Final projects
Transparency and layering

- Transparency affords several visual impressions
- Layering
- “haziness” or uncertainty
- Perceptual pitfalls
Perceptual cues

Continuity is important in transparency

- Ratio of colour or grey
 - $x < y < z$ or $x > y > z$
 - $y < z < w$ or $y > z > w$
Transparency

- Rotating disk with gaps – luminance integration
- (Metelli)

- Direction of contrast – Xjunctions
- (Cavanaugh)
Laciness (Cavanaugh)

- Layered data: be careful with composites of textures
- Similar patterns perceptually interfere (last week)
- Overlay menus and images need perceptually strongly distinct channels

b is a distinct patch

b is a distinct patch

c is one, d is “bistable”
Patterns in Diagrams

- Patterns applied to node-link diagrams
Node-link diagrams

• Most common way of showing relation

• Node == entity, object
 ▪ Closed contour

• Link == relation

• Visual grammar has a perceptual basis for how it conveys meaning
- Visual grammar for node-link diagrams
- Static patterns

<table>
<thead>
<tr>
<th>Graphical Code</th>
<th>Visual Instantiation</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Shape of closed region.</td>
<td></td>
<td>Entity type.</td>
</tr>
<tr>
<td>5. Partitioning lines within enclosed region.</td>
<td></td>
<td>Entity partitions are created, e.g., TreeMaps.</td>
</tr>
<tr>
<td>7. Shapes enclosed by contour.</td>
<td></td>
<td>Contained entities.</td>
</tr>
<tr>
<td>10. Linking-line quality.</td>
<td></td>
<td>Type of relationship between entities.</td>
</tr>
<tr>
<td>12. Tab connector.</td>
<td></td>
<td>A fit between components.</td>
</tr>
</tbody>
</table>
Visual Grammar of diagrams

Connecting contour

Enclosing contour

Proximity grouping

Alignment

Common movement

Common color region

Common texture region

Nested regions

Overlapping regions

Entities related across regions

Multiple heterogeneous relationships

These slides are largely copied from Colin Ware, Perception for Design http://ccom.unh.edu/vislab/VisCourse/index.html © 2006
Semantics of structure

<table>
<thead>
<tr>
<th>Graphical Code</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shapes connected by contour</td>
<td>Related entities, path between entities</td>
</tr>
<tr>
<td>Thickness of connecting contour</td>
<td>Strength of relationship</td>
</tr>
<tr>
<td>Color and texture of connecting contour</td>
<td>Type of relationship</td>
</tr>
<tr>
<td>Shapes enclosed by a contour, or a common texture, or a common color</td>
<td>Contained entities. Related entities</td>
</tr>
<tr>
<td>Nested regions, partitioned regions</td>
<td>Heirarchical concepts</td>
</tr>
<tr>
<td>Attached shapes</td>
<td>Parts of a conceptual structure</td>
</tr>
</tbody>
</table>
Grammar of maps

• Common features of geographic maps
 ▪ Areas,
 ▪ line features
 ▪ point features
Maps

- Visual grammar of maps

<table>
<thead>
<tr>
<th>Graphical Code</th>
<th>Visual Instantiation</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. Line.</td>
<td>![Line]</td>
<td>Linear map features such as rivers, roads, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depends on scale.</td>
</tr>
<tr>
<td>5. Dot.</td>
<td>![Dot]</td>
<td>Point features such as town, building.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depends on scale.</td>
</tr>
<tr>
<td>6. Dot on line.</td>
<td>![Dot on Line]</td>
<td>Point feature such as town on linear feature such as road.</td>
</tr>
<tr>
<td>7. Dot in closed contour.</td>
<td>![Dot in Closed Contour]</td>
<td>Point feature such as town located within a geographic region.</td>
</tr>
<tr>
<td>8. Line crosses closed-contour region.</td>
<td>![Line Crosses Contour]</td>
<td>Linear feature such as river crossing geographic region.</td>
</tr>
<tr>
<td>9. Line exits closed-contour region.</td>
<td>![Line Exits Contour]</td>
<td>A linear feature such as a river terminates in a geographic region.</td>
</tr>
<tr>
<td>10. Overlapping contour, colored regions, textured regions.</td>
<td>![Overlapping Contour]</td>
<td>Overlapping geographically defined areas.</td>
</tr>
</tbody>
</table>
Treemaps and hierarchies

- Treemaps use areas (size)
- SP tree
- Graph Trees use connectivity (structure)
Part II: Patterns in Motion

• How can we use motion as a display technique?

• Gestalt principle of common fate

• Motion is very perceptually powerful
Limitation due to Frame Rate

- Can only show motions that are limited by the Frame Rate.
- Maximum displacement of $\lambda/2$ before perception of reversed direction
- λ is aperture size
- We can increase by using additional symbols.
- Limitation on throughput related to correspondence problem

These slides are largely copied from Colin Ware, Perception for Design
http://ccom.unh.edu/vislab/VisCourse/index.html © 2006
Motion as a visual attribute (Common fate)

correlation between points:
 - frequency, phase or amplitude
 - Result: phase is most noticeable (Ware)
 - Shape is also a strong grouper (Bartram)
Motion is Highly Contextual

- Group moving objects in hierarchical fashion.
Frame as motion context

- The stationary Dot is perceived as moving in (a).
 - *Vection*

- The circle has no effect on this process in (b).

These slides are largely copied from Colin Ware, *Perception for Design*
http://ccom.unh.edu/vislab/VisCourse/index.html © 2006
Motion parallax

- when you look out of the side window of a car or a train, you see close objects translating very fast (bushes) and distant objects passing very slow (mountains) or even being stationary (sun)
- *Motion parallax*: the inverse relation between angular speed and distance
Motion parallax

- **Demo 1**: http://psych.hanover.edu/Krantz/MotionParallax/MotionParallax.html

- **Demo 2**: http://www.psypress.co.uk/mather/resources/swf/Demo10_2.swf
Patterns in motion
Motion patterns – what works?

- Rich literature for design of static representations
- Motion perceptually powerful but no principled guidelines for use

- Features shown to be perceptually powerful are
 - Phase (Ware)
 - Direction, flicker, velocity (Healey)
 - Shape (Bartram)

- Experiments show motion-based techniques very effective - but there are caveats
 - distraction
 - false association

- Empirically based guidelines for appropriate use
Potential uses?

• **Signaling**: cognitive tools for managing attention
 ▪ events (external dynamic information)
 ▪ markers (navigation, history, guides)

• **Grouping**:
 ▪ linking heterogeneous, scattered elements (brushing)
 ▪ filtering in context

• **Current codes have limitations**:
 ▪ over-use and saturation
 ▪ poor detection outside focal area (*acuity*)
Why Motion?

- Perceptually efficient
 - strongest cue across entire visual field
 - track multiple motions in parallel [Pylyshyn]
Why Motion?

- Perceptually efficient

- Interpretatively rich
 - Rich disciplines of expression and performance
 - Socially meaningful (Heider, Kassin)
 - motion conveys structure and behaviour [Johanssen, Heider, Cutting, Berry]
Why Motion?

- Perceptually efficient
- Interpretatively rich
- “free” display dimension?
Why Motion?

• Perceptually efficient
• Interpretatively rich
• “free” display dimension
• grouping effect:
 ▪ conveys relationships [Bartram, Ware, Michotte, Alvarado]
Moticons for coding and notification

- Three empirical studies:
 - Which motion features are useful for signals?
 - Large fields of view
 - How do motions contribute to distraction?
 - Features for grouping
 - Filtering
 - Brushing (association)
- 6 shapes
- 2 colour cues: RED and GREEN
6 shapes
2 colour cues: RED and GREEN
Results

• Detection:
 ▪ Moticons were extremely accurately detected
 ▪ Location had large error effect on static cues
 • colour: 5% and 24% error rates
 • shape: 4% and 15% error rates
 ▪ Location doubled static detection times; moticons were constant

• Identification – as above
 ▪ colour: 14% and 19% error rates (of detected)
 ▪ Moticons highly accurate: ~ 1% error
Motion types

- Demo
- file:///Users/lyn/Research/Motion/Dev/MotionExperiments/Applets/distraction.html
Conclusions: Moticons for cueing attention, but…

- Moticons very effective for signaling
 - better than colour and shape, especially in periphery
 - Effective over many locations, types and amplitudes

- Certain motion shapes are more distracting
 - traveling worse than anchored
 - linear shape good candidate: detectable but not distracting

- Task load affects detection
 - signal can be tuned to task
 - Signal can indicate engagement?
Filtering and brushing

• User configures display to make information easily accessible and show subgroups

• **filtering** takes away superfluous data

• **Brushing** highlights data points interactively and visually connects arbitrary distributed objects [Baecker and Cleveland87]
 - brushing requires its own brushing code (colour)
 - problems with colour in periphery

• Motion can be used for brushing and filtering
Recall …

- **strong grouping effect**: things which move together in a similar fashion elicit percept they are a group

- [file:///Users/lyn/Research/Motion/Dev/MotionExperiments/Applets/OneGroup.html]
Questions

• What does it mean to move in a “similar way”?

• Similarity tolerance so that we can cause effect when desired (*grouping*); and

• ensure that multiple unrelated moving objects are perceived as distinct (*discrimination*).
 ▪ (caveat!) Applies to many environments
Brushing with motion

- Dual task visual search experiments
- High level of distractors
- **17 motion combinations**
 - file:///Users/lyn/Research/Motion/Dev/MotionExperiments/Applets/TwoGroups.html
Results

- Motion groups “pop out”
- Motion type is most effective feature for both ranking and discrimination
- Circular type is most visually dominant
- Motion directions blur together < 45° and at 180°
- Large effect for quadrant change
- Motions work for brushing
- Care has to be taken for involuntary grouping
Visualizing relationships

• Preliminary work in representing causality
 ▪ with Colin Ware (1999)
 ▪ With Emily Yao (2007)

• Based on Michotte

• Can we overlay causality information on existing representations like spreadsheets and graphs?
Perception of causality from motion

- Michotte’s claim: direct perception of causality
- Precise timing is required to achieve perceived causality.
Using motion to display causality

These slides are largely copied from Colin Ware, Perception for Design
http://ccom.unh.edu/vislab/VisCourse/index.html © 2006
A causal graph
Visual Causal Vectors

These slides are largely copied from Colin Ware, Perception for Design
http://ccom.unh.edu/vislab/VisCourse/index.html © 2006
Current work on causality

- Scholl et al. (perception of causality)
- Neufeld, Ware, Bartram, Irani
- Yao and Bartram - using motion to overlay causality on other views
 - E.g. maps and graphs
- Value: increase expressive range beyond that permitted by static diagrams
Causal motion
What we discovered

- We can successfully use motion cues to identify paths
- If we want to show just the existence of the causal path, it’s sufficient to animate path and maintain timing (70-160 ms)
 - Vector effect
- However, if we want to add information about the strength of the effect we have to use some kind of node interaction
 - Node effect
- With small node effects, we can identify whether one causal hit is stronger than another
 - Phase and grouping effects
- need to explore design space
Meaningful motion

• Motion is expressively rich (dance, theatre, mime,)

• What are the properties of motion that make it so expressive?

• Trajectory [Tagiuri], interaction [Lethbridge+Ware, Heider+Simmel, etc], smoothness vs jerkiness, velocity, acceleration, amplitude ???

• Experiments [Bartram+Nakatani] in what contributes to making motions meaningful
 ▪ Application in ambient, social and therapeutic interfaces and visualizations
 ▪ Map emotions to more abstract meanings
 ▪ demo
Conclusion

• Motion is under-researched, but evidence suggests its power.

• Initial usable features include velocity, direction, phase, shape (type) and flicker/blink

• There are interactions between motion features and static features that need to be investigated
 ▪ E.g. brighter dots generate stronger motion signals (Schwartz, 2000?)
 http://www.settheory.com/Glass_paper/Kanizsa_observations.html

These slides are largely copied from Colin Ware, Perception for Design
http://ccom.unh.edu/vislab/VisCourse/index.html © 2006
Pattern learning

• Can we learn to see patterns better?

• What is the scientific evidence that people can learn to see patterns better?

• The results are mixed.

• There have been some studies of pattern learning where almost no learning occurred.

• But other studies have found learning for certain patterns.
Pattern learning

• A plausible explanation is that pattern learning occurs least for simple, basic patterns processed early in the visual system, and most for complex, unfamiliar patterns processed late in the visual system.

• What are the implications of these findings for visualization?
Pattern learning

• One is that people can learn pattern-detection skills, although the ease of gaining these skills will depend on the specific nature of the patterns involved.

• Experts do indeed have special expertise.
 ▪ The power law of practice
 ▪ Radiologists, meteorologists, pilots, video editors
Pattern learning

- People who work with visualizations must learn the skill of seeing patterns in data.

- In terms of making visualizations that contain easily identified patterns, one strategy is to rely on pattern-finding skills that are common to everyone.

- Good idea to use *priming* to enhance perceptual receptivity
Pattern learning

- People who work with visualizations must learn the skill of seeing patterns in data.

- In terms of making visualizations that contain easily identified patterns, one strategy is to rely on pattern-finding skills that are common to everyone.

- Good idea to use *priming* to enhance perceptual receptivity