IAT 814 Visual Encoding 2

Colour in Information Display

Lyn Bartram

Colour is Irrelevant...

- To perceiving object shapes
- To perceiving layout of objects in space
- To perceiving how objects are moving
- Therefore, to much of modern life
 - Laboratory assistant went 21 years without realizing he was colourblind

Colour is Critical...

- To help us break camouflage
- To judge the condition of objects (food) > surfaces
- To determine material types
- Extremely useful for coding information

What about colour?

- Colour perception is relative
- We are sensitive to small differences
 - hence need sixteen million colours
- Not sensitive to absolute values
 - hence we can only use < 10 colours for coding

Cone Response (photopic)

- Cone response sensitivity for colours occurs at different wavelengths in the spectrum
 - Cone response curve
 - Long, medium and short (LMS)

Sort of like a digital camera*

- BUT light sensors in a camera are equally distributed
- Uneven cone distribution
 - saccades for continuous image

From A Field Guide to Digital Color, © A.K. Peters, 2003

Opponent Color

Definition

- Achromatic axis
- R-G and Y-B axis
- Separate lightness from chroma channels
- First level encoding
 - Linear combination of LMS
 - Before optic nerve
 - Basis for perception
 - Defines "color blindness"

Comparing the Channels

- Spatial Sensitivity
 - Red/Green and Yellow/Blue about 1/3 detail of Black/White
- Stereoscopic Depth
 - Pretty much can't do it with hue alone
- Luminance contrast is critical
 - Especially with small patterns
- Form
 - Shape-from shading works well
 - Shape-from-hue doesn't

Some natural philosophers Suppose that these colours arise from the accidental vapours diffused in the air, which communicates their own hues to the shadow

Some natural philosophers Suppose that these colours arise from the accidental vapours diffused in the air, which communicates their own hues to the shadow

Information Labeling: Hue works well!

Opponent Process Theory

- Cone signals transformed into new channels
 - Black/White (Luminance; ignores blue)
 - Red/Green
 - Yellow/Blue

Hed (green)

R-G

Y-B

Yet another reason not to use blue to indicate the shapes of objects; it seems to be ignored in the Luminance calculation.

Color Design Terminology

- Hue (color wheel)
 - Red, yellow, blue (primary)
 - Orange, green, purple (secondary)
 - Opposites complement (contrast)
 - Adjacent are analogous
 - Many different color wheels*
- *See <u>www.handprint.com</u> for examples
- Chroma (saturation)
 - Intensity or purity
 - Distance from gray
- Value (lightness)
 - Dark to light
 - Applies to all colors, not just gray

Tints and Tones

Tone or shade

- Hue + black
- Decrease saturation
- Decrease lightness

Tint

- Hue + white
- Decrease saturation
- Increase lightness

Gradations

Psuedo-Perceptual Models

- HLS, HSV, HSB
- NOT perceptual models
- Simple renotation of RGB
 - View along gray axis
 - See a hue hexagon
 - L or V is grayscale pixel value
- Cannot predict perceived lightness

Lightness Scales

- Lightness, brightness, luminance, and L*
 - Lightness is relative, brightness absolute
 - Absolute intensity has light power as units (measured)
- Luminance is perceived intensity
 - Luminance varies with wavelength
 - Variation defined by luminous efficiency function
- L* is perceptually uniform lightness
- Perceptual uniformity: equal spatial distances define equal perceptual differences

Luminance & Intensity

- Intensity
 - Integral of spectral distribution (power)
- Luminance
 - Intensity modulated by wavelength sensitivity
 - Integral of spectrum x luminous efficiency function
 - Is a perceived intensity

Green and blue lights of equal intensity have different luminance values

Be careful: Colour models, luminance and L*

Colour Deficiency (VCD)

- Simulates color vision deficiencies
 - Photoshop plug-in (View→Proof Setup→Color Deficiency)
 - VisCheck (Robert Dougherty and Alex Wade)

Deuteranope

Protanope

Tritanope

2D Color Space

Color Appearance

Image courtesy of John MCann

Image courtesy of John MCann

Color Appearance

- More than a single color
 - Adjacent colors (background)
 - Viewing environment (surround)
- Appearance effects
 - Adaptation
 - Simultaneous contrast
 - Spatial effects
- Color in context

Color Appearance Models
Mark Fairchild

Simultaneous contrast

Affects Lightness Scale

Simultaneous Contrast

- Influence of immediate surround on perception of colour
- Simple example:
- Add Opponent Color
 - Dark adds light
 - Red adds green
 - Blue adds yellow

These samples will have both light/dark and hue contrast

Bezold Effect: outline makes a difference

Other contrast effects

Chromatic contrast

Small field tritanopia

Spreading

- Spatial frequency
 - The paint chip problem
 - Small text, lines, glyphs
 - Image colors
- Adjacent colors blend
- The higher the spatial frequency, the less saturated the colour Redrawn from Foundations of Vision
 - © Brian Wandell, Stanford University

Coding with Colour

What makes color effective?

"Good ideas executed with superb craft"

—FR Tuffe

Information Display

A quick revisit of data characteristics

- POINT REYES NATIONAL SEASHORE

 PACIFIC OCEAN

 10 Kilometers

 10 Miles San Francisco
- What kind of task are you hoping to support?
- What kind of data do you have?
- No single approach

Data types: recap

- Nominal: names without ordering
 - Continents: Africa, America, Asia, Australia, Europe
 - No concept of relative relationship other than inclusion in the set
- Ordinal: Before-than than relationship holds
 - Rental cars: Economy, Compact, Mid-sized, Full-sized
 - Distance is not uniform
- Quantitative: Relative measurements, equal distances, numeric

Color Design Principles

- Control value (lightness)
 - Ensure legibility
 - Avoid unwanted emphasis
- Use a limited hue palette
 - Control color "pop out"
 - Define color grouping
 - Avoid clutter from too many competing colors
- Use neutral backgrounds
 - Control impact of color
 - Minimize simultaneous contrast

Envisioning Information

"... avoiding catastrophe becomes the first principle in bringing color to information:

Above all, do no harm."

—E. R. Tufte

www.edwardtufte.com

Encoding data with colour

- Data Types
 - Nominal, ordinal, quantitative
 - Qualitative, sequential, diverging
- colour scales
 - Hue scale
 - Nominal (labels)
 - Cyclic (learned order)
 - Lightness or saturation scales
 - Ordered scales
 - Lightness best for high frequency
 - More = darker (or more saturated)
 - Most accurate if quantized

Quantized

Signal varies continuously

Discretized

 Restricted to a prescribed set of values

Fundamental Uses

- To label (colour as noun)
- To measure (colour as quantity/value)
- To represent (colour as representation)
 - to imitate reality
- To enliven or decorate (colour as beauty)

To Label (nominal coding)

Colour great for classification

- Rapid visual segmentation
- Colour helps us determine type
- Only about six categories

Product Categories

Created by Tableau - Visual Analysis for Databases™

Grouping, Highlighting

_ <u></u>	Χ	Υ	Z	Χ	Υ	Z	Χ	Υ	Z	Χ	Υ	Z
red	25.37	13.70	0.05	26.27	14.13	0.04	18.41	10.16	0.05	17.43	9.30	0.00
green	22.14	51.24	0.35	20.68	49.17	0.44	21.11	46.00	0.20	16.36	37.95	0.12
blue	13.17	3.71	74.89	15.38	5.20	86.83	11.55	3.37	65.53	9.96	3.44	56.14
gray	63.46	73.30	78.05	64.66	71.99	90.08	52.96	62.49	67.99	45.54	53.65	58.14
black	0.66	0.70	0.77	0.63	0.66	1.09	0.47	0.58	0.70	0.44	0.54	0.71
	Χ	Υ	Z	Χ	Υ	Z	Χ	Υ	Z	X	V	7
							, · ·					
red	25.37	13.70	0.05	26.27	14.13	0.04			0.05		9.30	0.00
red green	2500 1000 1000 10	AND SEC. 1951				0.04 0.44	18.41	10.16	0.05			200 00 000
	22.14	51.24	0.35	20.68	49.17	0.44	18.41 21.11	10.16 46.00	0.05	17.43 16.36	37.95	0.12
green	22.14 13.17	51.24 3.71	0.35 74.89	20.68 15.38	49.17 5.20	0.44 86.83	18.41 21.11 11.55	10.16 46.00 3.37	0.05 0.20	17.43 16.36 9.96	37.95 3.44	0.12 56.14

Considerations for Labels (N)

- How critical is the color encoding?
 - Unique specification or is it a "hint"?
 - Quick response, or time for inspection?
 - Is there a legend, or need it be memorized?
- Contextual issues
 - Are there established semantics?
 - Grouping or ordering relationships?
 - Surrounding shapes and colors?
- Shape and structural issues
 - How big are the objects?
 - How many objects, and could they overlap?
 - Need they be readable, or only visible (discernible)?

Psychophysics of Labeling

Preattentive, "pop

Time proportional to the number of digits

Contrast Creates Pop-out

Hue and lightness

Lightness only

Pop-out vs. Distinguishable

Pop-out

- Typically, 5-6 distinct values simultaneously
- Up to 9 under controlled conditions

Distinguishable

- 20 easily for reasonable sized stimuli
- More if in a controlled context
- Usually need a legend

Radio Spectrum Map (33 colors)

Colour naming is constant

- Consistent set of colour names [Berlin & Kay]:
 - blue, brown, green, orange, pink, purple, red, yellow, black, grey, white

Jeffrey Heer and Maureen Stone. 2012. Color naming models for color selection, image editing and palette design. In Proceedings of CHI '12. ACM, New York, NY, USA, 1007-1016

Colour naming is constant

- Differences (salience) are not constant,
 - naming confusion between "greens" and "blues"
 - Orange and red

Jeffrey Heer and Maureen Stone. 2012. Color naming models for color selection, image editing and palette design. In Proceedings of CHI '12. ACM, New York, NY, USA, 1007-1016

Colour palettes for nominal encoding

- Minimise name overlap
- Maximise salience

Reduce ambiguity

Jeffrey Heer and Maureen Stone. 2012. Color naming models for color selection, image editing and palette design. In Proceedings of CHI '12. ACM, New York, NY, USA, 1007-1016

Cultural issues

- certain colours are special because they are hard wired
- These colours are often assigned cultural meaning
- E.g. red, white, black
- Red-green, red-blue

Summary: labeling

- Distinctiveness (perceptual distance) vs identification
- Unique hues
 - Don't choose colours from the same category!
- Contrast with background
 - Luminance
- Compensate for colour deficiency
- Limited number of codes
- Size
 - Objects should not be too small
- Cultural conventions

To Measure

Data to Color

- Types of data values
 - Nominal, ordinal, numeric
 - Qualitative, sequential, diverging
- Types of color scales
 - Hue scale
 - Nominal (labels)
 - Cyclic (learned order)
 - Lightness or saturation scales
 - Ordered scales
 - Lightness best for high frequency
 - More = darker (or more saturated)
 - Most accurate if quantized

Quantized

Signal varies continuously

Discretized

 Restricted to a prescribed set of values

False coloring

RGB signals are remapped to enhance distinction of

features

Satellite imagery

2- channels

Pseudocoloring

- Pseudocoloring is the technique of representing continuously varying map values with a sequence of colours
- Sometimes overlaid on luminosity information
 - Need to use an isoluminant color map to avoid distortion
- "intuitive" based on lightness, saturation
- No perceptually based hue scales
 - Need to be learned

Pseudocoloring

SFU

IAT 814 | Colour in Information Display

Frequently used in medicine

Density Map

Lightness scale

Lightness scale with hue and chroma variation

"Rainbow" hue scale Unordered hue, lightness

Different Scales

Chloropleth

 areas are colored or patterned proportionally to the category or value of one or more variables being

represented

Discrete

Typically maps

150

200 Distribution of HSA rates per 100,000 population

250

300

Brewer Scales

- Qulitative scales
 - nominal
 - Distinct hues, but similar emphasis
- Sequential scale
 - Vary in lightness and saturation
 - Vary slightly in hue
- Diverging scale
 - Complementary sequential scales
 - Neutral at "zero"
 - Cross-fade through a neutral color

Brewer's Categories

Color Brewer

www.colorbrewer.org

Heat Map (default ramp)

Full Range

Stenned

- Skewed Data —

www.tableausoftware.com

Threshold Columns: Market.. Rows: Region Product... Skewed Data — Filters: CONSU., CORPO., HOME ., SMALL .. **FURNITURE** OFFICE SUPP... CENT... Level of Detail: **TECHNOLOGY FURNITURE** EAST OFFICE SUPP... Mark: Square **TECHNOLOGY** Text: Color: SUM(Gro... **FURNITURE** Size: WEST OFFICE SUPP... Legend: -410,207 410,207 **TECHNOLOGY** www.tableausoftware.com Size:

K ← → N Sheet 1/

Color and Shading

- Shape is defined by lightness (shading)
- "Color" (hue, saturation) labels

Image co

CT image (defines shape)

of Siemens

PET color highlights tumor

Color Overlay (Temperature)

3D line integral convolution to visualize 3D flow (LIC).

— Color varies from red to yellow with increasing temperature

Multivariate Color Sequences

How many dimensions?

- Univariate scale is a path in a colour space
 - · Progression along a line

- Plane? 2D
- Volume ? 3D
- Rules for color mixing
- Only perceptual coding is 2D
 - lightness x saturation
- Color for multivariate only works well for highly quantized data
 - Like a mnemonic for a labeling scheme

Multi-dimensional Scatter plot

Variable 1, 2 \rightarrow X, Y Variable 3, 4, 5 \rightarrow R, G, B

Do people interpret color blends as sums of variables?

Using Color Dimensions to Display Data Dimensions Beatty and Ware

Color Weaves

6 variables = 6 hues, which vary in brightness

Additive mixture (blend)

Spatial texture (weave)

Weaving versus Blending (APGV06 and SIGGRAPH poster) Haleh Hagh-Shenas, Victoria Interrante, Christopher Healey and Sunghee Kim

Brewer System

Sequential/Sequential Scheme Opt on any poly of the sequential Scheme Solution of th

Change in percent of labor force employed in industry between 1960 and 1980

IAT 814 | Colour in Information Display

Illustrative Color:To Represent or Imitate Reality

Gray's Anatomy of the Human Body

Map of Point Reyes

www.bartleby.com/107/illus520.html

ThemeView (original)

ThemeScape (commercial)

Which has more information?

Which would you rather look at?

SFU

IAT 814 | Colour in Information Display

More Tufte Principles

- Limit the use of bright colors
 - Small bright areas, dull backgrounds
- Use the colors found in nature
 - Familiar, naturally harmonious
- Use grayed colors for backgrounds
 - Quiet, versatile
- Create color unity
 - · Repeat, mingle, interweave

Controlling value: Get it right in black & white!

- Value
 - Perceived lightness/darkness
 - Controlling value primary rule for design
- Value defines shape
 - No edge without lightness difference
 - No shading without lightness variation
- Value difference (contrast)
 - Defines legibility
 - Controls attention
 - Creates layering

Controls Legibility

colorusage.arc.nasa.gov

Legibility

Drop Shadows

Drop Shadow

Drop shadow adds edge

Primary colors on white

Primary colors on black Primary colors on black

Primary colors on black

Primary colors on black

Primary colors on black

Primary colors on black

Readability

If you can't use color wisely, it is best to avoid it entirely Above all, do no harm

If you can't use color wisely, it is best to avoid it entirely Above all, do no harm.

Why does the logo work?

Why does this logo work so well?

Value control

Contrast and Layering

Value contrast creates layering

colorusage.arc.nasa.gov

What Defines Layering?

- Perceptual features
 - Contrast (especially lightness)
 - Color, shape and texture
- Task and attention
 - Attention affects perception
- Display characteristics
 - Brightness, contrast, "gamma"

General guidelines ... or from Tufte to practice [Stone, Ware]

- Assign colour according to function
- Use contrast to highlight
- Use analogy to group
- Control value contrast for legibility

From principles to palettes

 Limit palette to 2 or 3 them

Different choices cor

Tableau Color Example

- Color palettes
 - How many? Algorithmic?
 - Basic colors (regular and pastel)
 - Extensible? Customizable?
- Color appearance
 - As a function of size
 - As a function of background
- Robust and reliable color names

Tableau[™] Colors

www.tableausoftware.com

Maximum hue separation

Stephen Few's practical rules on charts

- 1. If you want different objects of the same color in a table or graph to look the same, make sure that the background—the color that surrounds them—is consistent.
- 2. If you want objects in a table or graph to be easily seen, use a background color that contrasts sufficiently with

884

2,338

Flash Memory

3,252

2,676

Harddisks

Desktop PCs

3,410

Connecticut

4,497

the object.

Don't	do	this	

8.564

1,567

Keyboards

3,418

Printers

6,582

1,361

Scanners

-3.891

3,249

PDAs

2,333

828

Projectors 2 1

1,356

1,272

Cameras

5,450

-141

IAT 814

Few (2)

3. Use colour only when needed to serve a particular communication goal

4. Use different colours only when they correspond to differences of meaning in the data

Few (3)

Variance to Plan

■ California ■ New Jersey ■ Louisiana ■ Montana

- 6. When using color to encode a sequential range of quantitative values, stick with a single hue (or a small set of closely related hues) and vary intensity from pale colors for low values to increasingly darker and brighter colors for high values.

Few (4)

- 7. Non-data components of tables and graphs should be displayed just visibly enough to perform their role, but no more so, for excessive salience could cause them to distract attention from the data
- 8. Avoid using red/green display without redundant cueing
- 9. Avoid using visual effects in graphs

Additional Resources on Color

- Even without the "u"
- Stone Soup website
 - http://www.stonesc.com/Vis06
 - Final copy of slides, references
- A Field Guide to Digital Color
 - Maureen C. Stone
 - Published by A.K. Peters
- Stephen Few's articles on color
 - http://www.perceptualedge.com

