IAT 814 Visualization

Representation: Design Idioms 1

Lyn Bartram

These slides borrow heavily from T. Munzner and S. Few, and may be incompletely attributed. Work in progress.

0

Recall: Data Abstractions

- Tables
 - Data item (row) with attributes (columns) : row=key, cells = values
- Networks
 - Item (node) with attributes (features) and relations (links)
 - Trees (hierarchy)
 - Node = key, node-node, link = key, cell = value
- Text/Logs
 - Grammar
 - Bag of words
 - Derived values
- Image
 - 2d location = key, pixel value expresses single attribute or combo of attributes according to coding (RGB)

Recall: Why

Vis tasks and targets [Munzner]

User Tasks (why)

- Amar & Stasko created a taxonomy of user tasks in visualization environments
- 10 basic actions
- Retrieve Value, Filter, Compute Derived Value, Find Extremum, Sort, Determine Range, Characterize Distribution, Find Anomalies, Cluster, Correlate

1. Retrieve Value

- General Description:
 - Given a set of specific items, find attributes-related values of those items.
- Examples:
 - What is the mileage per gallon of the Audi TT?
 - How long is the movie Gone with the Wind?

2. Filter

- General Description:
 - Given some concrete conditions on attribute values, find data cases satisfying those conditions.
- Examples:
 - What Kellogg's cereals have high fiber?
 - What comedies have won awards?
 - Which funds underperformed the S&P-500?

3. Compute Derived Value

- General Description:
 - Given a set of data cases, compute an aggregate numeric representation of those data cases.
- Examples:
 - What is the gross income of all stores combined?
 - How many manufacturers of cars are there?
 - What is the average calorie content of Post cereals?

4. Find Extreme

- General Description:
 - Find data cases possessing an extreme value of an attribute over its range within the data set.
- Examples:
 - What is the car with the highest MPG?
 - What director/film has won the most awards?
 - Which national hockey team has won the most Olympic Gold medals since 1912?

5. Sort/Order

- General Description:
 - Given a set of data cases, rank them according to some ordinal metric.
- Examples:
 - Order the cars by weight.
 - Rank the cereals by calories.

6. Determine Range

- General Description:
 - Given a set of data cases and an attribute of interest, find the span of values within the set.
- Examples:
 - What is the range of film lengths?
 - What is the range of car horsepowers?
 - What actresses are in the data set?

7. Characterize Distribution

- General Description:
 - Given a set of data cases and a quantitative attribute of interest, characterize the distribution of that attribute values over the set.
- Examples:
 - What is the distribution of carbohydrates in cereals?
 - What is the age distribution of shoppers?

7a. Part-whole

- General Description:
 - Given a set of data items that differ in values in one category, reveal the portion that each value represents to some whole.
- Examples:
 - How many Conservatives are women?
 - How do our tax dollars get spent?
 - What is the recommended daily caloric intake across food types for pregnant women?

8. Find Anomalies

- General Description:
 - Identify any anomalies within a given set of data cases with respect to a given relationship or expectation, e.g. statistical outliers.
- Examples:
 - Are there any cereals that have high calories but low sugar?
 - Are there exceptions to the **relationship** between horsepower and acceleration?

9. Cluster

- General Description:
 - Given a set of data cases, find clusters of similar attribute values.
 - Note: you need to determine what "similar" is
- Examples:
 - Are there groups of cereals w/ similar fat/calories/sugar?
 - Are all comedies the same length?

10. Correlate

- General Description:
 - Given a set of data cases and two attributes, determine useful relationships between the values of those attributes.
- Examples:
 - Is there a correlation between carbohydrates and fat?
 - Is there a correlation between country of origin and MPG?
 - Do different genders have a preferred payment method?
 - Is there a trend of increasing film length over the years?

Discussion: Compound Tasks

- "Sort the cereal manufacturers by average fat content"
 - Compute derived value; Sort
- "Which actors have co-starred with Julia Roberts?"
 - Filter; Retrieve value
- "What's the variation in cereal sugar content"?
 - Compute derived value; determine range; characterise distribution

What was left out? Aha analytics!

- Basic math
 - "Which cereal has more sugar, Cheerios or Special K?"
 - "Compare the average MPG of American and Japanese cars."
- Uncertain criteria
 - "Does cereal (X, Y, Z...) sound tasty?"
 - "What are the characteristics of the most valued customers?"
- Higher-level tasks
 - "How do mutual funds get rated?"
 - "Are there car aspects that Toyota has concentrated on?"
- More qualitative comparison
 - "How does the Toyota RAV4 compare to the Honda CRV?"
 - "What other cereals are most similar to Trix?"

Fundamental principles: how

Expressiveness:

 the visual encoding should express all of, and only, the information in the dataset attributes

Effectiveness:

- the importance of the attribute should match the salience of the channel.
- Use the strongest and most accurate channels for the most important interpretation tasks (data)

Recall How version 1: Channel Expressiveness and Effectiveness

IAT 814 | Design Choices 1

Roadmap so far

Part 1: principles

- Data
- Perception
- Visual encoding
- (interaction to come later)

Part 2: Methods (How v2!)

- What defines the design space?
- Taxonomy of design considerations
- How many views?
- How to reduce

A Framework for Analysis (Munzner)

- A visualisation **idiom** is a distinct approach to creating and manipulating visual representations.
 - Data: the types and hierarchical salience of the information to represent
 - Design: the visual encoding and organisation choices
 - Interaction: the methods to man

	ID	Sepal Length	Sepal Width	Petal Length	Petal Width	Species	
	14	4.3	3	1.1	0.1	setosa	
Erom dat	39	4.4	3	1.3	0.2	setosa	
	43	4.4	3.2	1.3	0.2	setosa	
FIUIII Ua	9	4.4	2.9	1.4	0.2	setosa	
	42	4.5	2.3	1.3	0.3	setosa	
	23	4.6	3.6	1	0.2	setosa	
	48	4.6	3.2	1.4	0.2	setosa	
	4	4.6	3.1	1.5	0.2	setosa	
	7	4.6	3.4	1.4	0.3	setosa	
	3	4.7	3.2	1.3	0.2	setosa	
	30	4.7	3.2	1.6	0.2	setosa	
	13	4.8	3	1.4	0.1	setosa	
	12	4.8	3.4	1.6	0.2	setosa	<u> </u>
	31	4.8	3.1	1.6	0.2	setosa	
	25	4.8	3.4	1.9	0.2	setosa	
	46	4.8	3	1.4	0.3	setosa	
	38	4.9	3.6	1.4	0.1	setosa	
	10	4.9	3.1	1.5	0.1	setosa	
	2	4.9	3	1.4	0.2	setosa	
	35	4.9	3.1	1.5	0.2	setosa	
	58	4.9	2.4	3.3	1	versicolor	
	107	4.9	2.5	4.5	1.7	virginica	
	36	5	3.2	1.2	0.2	setosa	N
	5	5	3.6	1.4	0.2	setosa	
	50	5	3.3	1.4	0.2	setosa	
i	20	20		a 14	0.2	361030	

Sepia and petal length for three species of iris [Fisher 1936]

Possible views – scatter plot – why?

Possible views – scatter plot – why?

We can remodel the data

		ID	Species No	Organ	Length	Width	Species Nam		
		1	1.1	sepal	5.1	3.5	setosa		
		2	1.1	sepal	4.9	3	setosa		
		3	1.1	sepal	4.7	3.2	setosa		
		4	1.1	sepal	4.6	3.1	setosa		
		5	1.1	sepal	5	3.6	setosa		
		6	1.1	sepal	5.4	3.9	setosa		
		7	1.1	sepal	4.6	3.4	setosa		
		8	1.1	sepal	5	3.4	setosa		
		9	1.1	sepal	4.4	2.9	setosa		
		10	1.1	sepal	4.9	3.1	setosa		
		11	1.1	sepal	5.4	3.7	setosa		
		12	1.1	sepal	4.8	3.4	setosa		
		13	1.1	sepal	4.8	3	setosa		
		14	1.1	sepal	4.3	3	setosa		
		15	1.1	sepal	5.8	4	setosa		
		16	1.1	sepal	5.7	4.4	setosa		
		17	1.1	sepal	5.4	3.9	setosa		
 Add abstraction 			1.1	sepal	5.1	3.5	setosa		
			1.1	sepal	5.7	3.8	setosa		
			1.1	sepal	5.1	3.8	setosa		
		21	1.1	sepal	5.4	3.4	setosa		
		22	1.1	sepal	5.1	3.7	setosa		
		23	1.1	sepal	4.6	3.6	setosa		
		24	1.1	sepal	5.1	3.3	setosa		
	IAT 814 De	IAT 814 De	25	1.1	sepal	4.8	3.4	setosa	0.0
) ()	

Scatter plots show correlations

SFU

31

However ...

- Scatter plots can be difficult to understand
- What alternatives are there?
- More generally, what kinds of techniques are best for what kinds of problems?

Common 2D design idioms

Design choices for tabular data

Tabular data are $Key \rightarrow Value$ vectors.

 Key/Attribute: property of the data that can be used to index into (sort by/look up) the set. (independent variable)

• N, O

- Value : the actual value of an individual item
 - N,O,Q,

Credit: T. Munzner, 2014

If all you want is a single precise value

	-		-			-	-						
Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
1990	127.4	128.0	128.7	128.9	129.2	129.9	130.4	131.6	132.7	133.5	133.8	133.8	130.7
1991	134.6	134.8	135.0	135.2	135.6	136.0	136.2	136.6	137.2	137.4	137.8	137.9	136.2
1992	138.1	138.6	139.3	139.5	139.7	140.2	140.5	140.9	141.3	141.8	142.0	141.9	140.3
1993	142.6	143.1	143.6	144.0	144.2	144.4	144.4	144.8	145.1	145.7	145.8	145.8	144.5
1994	146.2	146.7	147.2	147.4	147.5	148.0	148.4	149.0	149.4	149.5	149.7	149.7	148.2
1995	150.3	150.9	151.4	151.9	152.2	152.5	152.5	152.9	153.2	153.7	153.6	153.5	152.4
1996	154.4	154.9	155.7	156.3	156.6	156.7	157.0	157.3	157.8	158.3	158.6	158.6	156.9
1997	159.1	159.6	160.0	160.2	160.1	160.3	160.5	160.8	161.2	161.6	161.5	161.3	160.5
1998	161.6	161.9	162.2	162.5	162.8	163.0	163.2	163.4	163.6	164.0	164.0	163.9	163.0
1999	164.3	164.5	165.0	166.2	166.2	166.2	166.7	167.1	167.9	168.2	168.3	168.3	166.6
2000	168.8	169.8	171.2	171.3	171.5	172.4	172.8	172.8	173.7	174.0	174.1	174.0	172.2
2001	175.1	175.8	176.2	176.9	177.7	178.0	177.5	177.5	178.3	177.7	177.4	176.7	177.1
2002	177.1	177.8	178.8	179.8	179.8	179.9	180.1	180.7	181.0	181.3	181.3	180.9	179.9

The first question: Table or graph? []

- Will the data be used to look up and compare individual values, or will the data need to be precise? If so, you should display it in a table.
- Is the message contained in the shape of the data—in trends, patterns, exceptions, or comparisons that involve more than a few values? If so, you should display it in a graph.
- NOTE: (You can use both. Next time and beyond).

Key-value question defines idiom choice (1)

• 2values

• 1 Key and 1 value

• 2 Keys and 1 value

1

Compared to what defines choice (2) [Few]

S. Few, Effectively Communicating Numbers: Selecting the Best Means and Manner of Display

- 7 interesting relationships
- 1. Time Series
 - Quantitative across equal intervals (of time)
- 2. Ranking
 - Sequenced by size of attribute value
- 3. Part-Whole
 - portion that each value represents to some whole,
- 4. Deviation
 - Differ from reference (baseline)
- 5. Distribution
- 6. Correlation
 - How one value affects another
- 7. Nominal
 - Simple categorical

The Power of Space

Relational/Same category

Grouping

Containment (2D)

Connection

Similarity (other channels) Proximity (position)

Ordered/Quantitiative How Much

The Power of Space

Relational/Same category

Grouping Containment (2D) Connection

Proximity (position)

Similarity (other channels)

Ordered/Quantitiative

How Much

Position common scale
Position unaligned scale
Length 🗕 🛥 🗕
Tilt/angle 1// V V V
Area 🔹 🍋 🔵
Curvature 👔 🕽 🔵
Lightness 🔲 🔟 🔳
Saturation 📋 📷 📷
Texture
density

We encode data spatially to

- Express (show) values
- Arrange data groupings
 - Separate /distinguish regions by categorical key
 - Order groups by ordinal key
 - Align for visual comparison along reference value

Design choices [Munzner]

Single view methods

- All information integrated in one view
- basic visual encodings
 - spatial position
 - color
 - other channels
 - pixel-oriented techniques
- visual layering
 - global compositing
 - item-level stacking
- glyphs

Expressing values

- Scatterplots
- Axes encode 2D values
- Color for key/ category
- Additional value in size

Data transformations can enhance value

Log transformations show strong correlation between size and price

Organising data

- List alignment
- Can be ordered along the list axis or by value
- Nominal and ranking (if axis ordered)
- Emphasises individual values

Bar chart idiom

- Categorical attributes match well with spatial regions
- Separate, order, align
- Can be hard to find patterns in the data "shape"

Idiom	Bar Charts
What: Data	Table: one quantitative value attribute, one categori- cal key attribute.
How: Encode	Line marks, express value attribute with aligned ver- tical position, separate key attribute with horizontal position.
Why: Task	Lookup and compare values.
Scale	Key attribute: dozens to hundreds of levels.

Credit: T. Munzner, 2014

Stacked bars

- Multidimensional tables with 2 keys/attributes
- Typically use colour or texture for 2nd

Idiom	Stacked Bar Charts			
What: Data	Multidimensional table: one quantitative value at- tribute, two categorical key attributes.			
How: Encode	Bar glyph with length-coded subcomponents of value attribute for each category of secondary key attribute. Separate bars by category of primary key attribute.			
Why: Task	Part-to-whole relationship, lookup values, find trends.			
Scale	Key attribute (main axis): dozens to hundreds of lev- els. Key attribute (stacked glyph axis): several to one dozen			

Few's correlation bar graph Height Salary

Paired Bar graph with trend lines (Few)

Streamgraphs

Figure 7.6. Streamgraph of music listening history. From [Byron and Wattenberg 08, Figure 0].

• Stacked time series

Idiom	Stacked Bar Charts				
What: Data	Multidimensional table: one quantitative value at- tribute, two categorical key attributes.				
How: Encode	Bar glyph with length-coded subcomponents of value attribute for each category of secondary key attribute. Separate bars by category of primary key attribute.				
Why: Task	Part-to-whole relationship, lookup values, find trends.				
Scale	Key attribute (main axis): dozens to hundreds of lev- els. Key attribute (stacked glyph axis): several to one dozen				

- Show shape of the data and partwhole relationships
- De-emphasise individual values

Line charts and dotplots

- Position to express value according to key
- Line charts use angle/shape to show trends

Red River Discharge Rate - Fargo Station

Frequently time

SFL

Line Chart idiom

Good for ordered data

Idiom	Dotplot
What: Data	table:
	l quant value attrib,
	1 ordered key attrib
How: Encode	point marks
	aligned vertical position to express value attrib,
	separate/order by key attrib into horiz regions
Idiom	line chart
Idiom What: Data	line chart table:
Idiom What: Data	line chart table: 1 quant value attrib,
Idiom What: Data	line charttable:1 quant value attrib,1 ordered key attrib
Idiom What: Data How: Encode	line charttable:1 quant value attrib,1 ordered key attribpoint marks, connection marks,

20

15 10

> 5 0

200 200 200 200 200 200 200 200 2010 201

(a)

Year

Cat Weight (**I**bs)

20

Cat Weight (lbs)

0

2004

100,000,000

2000

Year

(b)

200°

2010 201

Mind the Gap - An Economic Chart Remake

SFU

Percentage of Employed Who are Senior Managers, by Gender, 2008

(Percent) Women + Men

Percentage of Employed Who are Senior Managers, by Gender, 2008 (Percent)

Percentage of Employed Who are Senior Managers, by Gender, 2008

(Percent) • Women • Men

The semantics of mark types

- Bar charts, line charts and dotplots all encode a quantitative value against a key attribute in a rectilinear layout.
- Often use additional encoding for other categories
- Lines also use connection marks to show inter-item relations
 - Only use for ordered data!

Which to use when

- Bars and bubbles emphasise comparison and association of individual values
- Lines (explicit and implied) emphasise trends

Lines and bars

Lines imply connections

• "the more male some the taller he is"

Use when there is some progression between the on the x-axis

 "12 year olds are talle 10 year olds"

Je Zacks and Barbara Tversky. Bars and Lines: A Study of Graphic Communication." Memory and Cognition 27:6(1999), 1073{1079

Tufte's Sparklines

• Give a hint of the trend, but don't show the actual axes and scales.

Good for dashboards and small spaces

Lines: Aspect ratio matters!

- our ability to judge angles is more accurate at exact diagonals than at arbitrary direction
 - We can judge distances "off" 45 or 90 degrees (43) but cannot see the difference between 20 and 22 degrees
- Multiscale banking to 45 degrees algorithm to compute informative aspect ratios to maximise line segments close to the diagonal

Matrix alignment

- Heatmap
- 2 keys, 1 value

ī.

- Good for dense encoding
- Re-ordering for clusters

ldiom	Heatmaps
What: Data	Table: two categorical key attributes (genes, condi-
	tions), one quantitative value attribute (activity level
	for gene in condition).
How: Encode	2D matrix alignment of area marks, diverging color-
	map.
Why: Task	Find clusters, outliers; summarize.
Scale	Items: one million. Categorical attribute levels: hun-
	dreds. Quantitative attribute levels: 3-11.

Parallel layouts

- Parallel coordinates
- Many key attributes
- Different correlations
- Value vector is a line

Parallel coordinates	Idiom What: Data	Parallel Coordinates Table: many value attributes.
	How: Encode	Parallel layout: horizontal spatial position used to separate axes, vertical spatial position used to ex- press value along each aligned axis with connection line marks as segments between them.
	Why: Tasks	Find trends, outliers, extremes, correlation.
	Scale	Attributes: dozens along secondary axis. Items: hundreds.

ft_police unequine menu_wrkrs_handgun_lc_gov_wrkrs_cleared bond in the former is a second sec

13 items, 7 keys

What about Pies?

radial idioms

Idiom	Star plot	
What:data	Table: 1 quant value, 1 categorical attribute	. /
How: Encode	length coding along point marks at 1D spatial position along axis + 1D spatial position for aligned axes	\rightarrow
Idiom	Pie chart	
What:data	Table: 1 quant value, 1 categorical attribute	
How: Encode	area and angle	

Percent Blue relative to Red?

Percent Blue relative to Red?

Few's criteria for an effective visualization

- Clearly indicate the nature of the relationship
- Represent the quantities accurately
- Makes it easy to compare the quantities
- Makes it easy to see the ranked order of values
- Makes obvious how people should use the information

Total Deaths in American by Cause in 2007

Total Deaths in American by Cause in 2007

Clearly indicate the nature of the relationship?

Represents quantities accurately?

Makes it easy to compare quantities?

Makes it easy to see ranked values?

Makes it easy to see how people should use information?

A better way

Percent Water

Percent Water

Bad

Better

The youth vote and everybody else

Even Better*

87

National Spending to Deal with Drug Addiction

National Spending to Deal with Drug Addiction

National Spending to Deal with Drug Addiction

