Spring Logo:

A New Way of Visualizing HMM Logo for Sequence - Profile Alignment
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Fig.1. Spring Logo visualization employs the wave representation idea enabling analysts to compare probability and
the score of the fitness together. The visualization also clarifies the reverse complement regions and the letters
missed in the Hidden Markov Model.

Abstract — One bottleneck in bioinformatics algorithms such as sequence-profile alignment has
to do with evaluating the final alignment score. To a limited degree, this score shows how
much the sequence is similar to the model. However, the final score only shows the overall
tally, but it does not give us any information about the local areas of sequences. Showing local
areas of interest could be greatly aided by visualization tools that display the sequence and the
model to the analyst. This way an analyst could discover the results in all areas of interest. This
paper presents our design decisions in improving one of the existing visualization methods —
sequence logo-. Current visualization logos in this domain focus on showing the similarity
between the new sequence and the Hidden Markov Model (HMM), by representing the
characters and the probability of each character in each position. We present a novel logo
display, “Spring Logo”, which emphasizes the degree of fitness in both probability and weight

aspects. Our tool replaces comparing each character against the model one by one.
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1 Introduction and Background

Living cells consist of their basic units called genes. A gene carries information of construction
and maintenance of that cell. These genes are gathered together and build DNA sequences.
These DNA sequences are copied in a process called transcription, producing an RNA copy of
the gene's information. The information of the RNA can then be translated and produces

protein chains.

To visualize sequences’, it is important to know that the RNA and DNA consist of small parts

called nucleotides, and proteins consist of small parts called amino acids. Different alphabetic

letters usually represent both nucleotide and amino acids.

Finding similarities between sequences begins with the assumption that if two genes have
similar sequences, then they are likely to have similar functions, or there is an evolutionary
relationship between them. In bioinformatics, we have the sequence alignment process that is a
way of discovering similar regions between sequences. We typically arrange sequences in rows

and try to find these regions.

In pairwise alignment, we compare only one sequence to another. Although pairwise alignment
is useful in many cases, sometimes it leads to an incorrect result. This is mostly because we are
comparing two sequences with no prior knowledge of other members (other similar sequences)
of the protein or gene sequences, and as a result in our algorithm there is no information about
a particular position. In general, considering a multiple sequence alignment of a family of
sequences, one will notice that there are two types of positions across the entire alignment: 1.
Variable positions in which mutations were allowed and it won’t cause a loss of function in the

sequence. 2. Conserved positions that would result in a loss of sequence functionality if there

! We refer to DNA, RNA, and Protein using the general term of “sequence”



were to be a change. (For example those positions may not accept gaps across several of the

family members).

Another drawback of the pairwise alighment is the case of comparing one sequence against a
huge number of sequences in sequence databases: As the sequence databases grow, the
amount of time to compare each sequence to those sequences in such databases grows

accordingly.

So how can we resolve the problem? We know that a group of the similar sequences (family
members) could tell us much more than a single representative sequence. So we may choose to
cluster the sequences in huge databases and build a general model of them, which is called a
sequence family or sequence profile. This family has the information about all of the sequences
in each position. Then we can just compare a new sequence with those families that are general

representations of their sequence members. Below we bring an example of this concept:
Suppose we have 5 sequences:

HGKVLHL

HGKVLHL

HGKVAHL

HGKVGHL

HGLVLHL
In a very simple way, we could represent these data as a regular expression of the form:

HG [KL] V [LAG] HL

This means H will be in the first position, G will be in the second position, K or V will be in the

third position, and so on.

But what is raised here is the fact that one does not need to bring a sequence that has an exact

number of characters as a model. If the new sequence has extra characters that do not seem to



fit the model, we can classify them as an insertion in the model, and if it has fewer characters,

we can consider it as a deletion in the model. Below is an example of this.

My new sequence: HGKHL

So the model is changed to below:

HG [KL] - - HL

Thus we may allow this insertion and deletion to occur between all the positions (with their
own probability that is called the background probability). But it is hard to display this new
information in our representation of the model, and these family models may be shown by the

Hidden Markov Models concept.

A Markov chain is simply a collection of states, with a certain transition probability between
each state. The model is referred to as ‘hidden’ because you do not know which series of

transitions produced that state.

An HMM that models a sequence will have one state for every position in the sequence, and
each of those states will have matched states (twenty possible outcomes, for each amino acid

or 4 possible outcomes for each nucleotide) and two other states for the insertion and deletion.

Any sequence can have different scores (sum of all probabilities for each transition) tracing
through different paths of the model from one state to the next, and we may choose the path

with the highest score as the final path.

One simple representation of HMMs is show in Figure 2.



Fig. 2 Match States with Insertions and Deletion

In order to complete the simple model, we want to add the probability of each match, insertion

and deletion to that. The result is shown in Figure 3. In this figure we have:

S: start state, N: N-terminal insertion state, B: beginning state of the core of HMM, M: matching
state (square), D: deletion state (yellow circle), I: insertion state (pink diamond), E: ending state
of the core of HMM, J: jump state from E to B to allow domain duplication, C: C-terminal
insertion state, T: terminal state. Circles (S, B, D, E, T) states are dummy states that do not
generate symbols. The connectivity (directed edge) between two states denotes a possible
transition. The number associated with an edge is the transition probability. The connectivity
between B, M, D, |, and E state is similar to the traditional profile of HMM, except that B can

jump to any M state and any M state can jump to E. [4]
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Fig. 3. A simple HMM profile HMM model visualized by HHMVE. [4]



One common way of graphically visualizing HMMs is called a Sequence Logo. A logo is
graphically represented by columns of letters for each position. The relative height of each
letter in the stack is its relative probability (its frequency among all the other characters) at the
position. Usually, colors are used for different characters. If we ignore the insertion and

deletion probabilities of a HMM, we can visualize it with a sequence logo. (e.g. Figure 4)
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1 TATCA AGT TAT
2 ATA ACT TGATA
3 TCAACA AGAGATAA
4 TTATCTCT TGTTGA
5 TTATCA AGAT TTA
6 TAA ATCT TGATAA
7 TATCA AN ATAA
8 TTAT TT TGATA
9 TAACA T TGTTGA
10 TCAACA A TGTTA
11 TTA TCT TGATAA
12 TTATCA AGA TAA
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Fig. 4. Some aligned sequences and their logo.

However, this would mean ignoring a big part of the model. Therefore the next step [2] is to

modify Sequence Logos in such a way that they can show which positions can be deleted and

where we can expect insertions. Figure 5 shows a sequence logo, which has deleted and



inserted states. In this figure, positions with narrow match state columns are more likely to be
deleted. The total width of a red-shaded (dark + light) stack visualizes the expected number of

inserted letters. [2]
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Fig. 5. Example of a HMM Logo.

Another feature that we want to add to this model is showing our new sequence against the
model. One way to do this is to write the sequence below the logo. In this paper we will discuss
the idea that if we could represent the path of a new sequence against the model, the analyst
would be independent for comparing each character against the model each time. Here our
method to represent the logo resolved this problem, but what still remains as a question is how
to represent a profile against another profile? Figure 6 shows visualizing profile-profile
alignment using pairwise HMM logos. [7]. The aligned states in each HMM are framed and
connected by a block. Opening a block that is shaded in grey shows inserted states, and closing

the block(s) shows deleted states.
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Fig. 6. Alignment of two HMM families, an HMM Logo is drawn for each profile family.

2 Related Works

Gary Churchill of Cold Spring Harbor Laboratory first proposed HMMs for use in bioinformatics.
However, the original development of Profile Hidden Markov Models, took place at the
University of California, Santa Cruz, in David Haussler’s group. The UCSC group developed an
HMM implementation called the Sequence Analysis Method (SAM). Meanwhile at Washington
University, Sean Eddy developed a suite of Profile Hidden Markov Model tools called the
HMMer package (pronounced Hammer). This became the basis for the Protein Family database,

commonly known as Pfam.

The HMMer package is now the most widely used system for profile-HMM analysis, however
this package has no visual representation by itself, and that is why some analysts prefer to use
the SAM package instead. For example the “make logo” tool of the SAM software package does

make a sequence logo.

The first sequence logo was proposed in a paper by D. Schneider and Stephens [8]. After that
there arose lots of logo generators such as Weblogo, LogoBar, MoRAine, and GENIO/logo.
These logos are used to represent sequence-profile alignment as well as profile-profile

alignments. The evolution of these methods has been discussed in the previous part.



3 Design Decisions
Visualizing a sequence alignment task requires several types of information in each position.
These include:
(1) If a match occurs:
(1.1) information about the probability of that letter in the model.
(1.2) the weight of that letter in the model,
but not the letter itself.
(2) If an insert occurs:
(2.1) the probability of having an insertion of this letter in that position in the model,
(2.2) the weight of having an insertion of this letter in that position in the model.
(3) If a delete occurs:
(3.1) the probability of having a deletion of this letter in that position in the model.

(4) In the DNA or RNA sequences, if a match, insert or delete occurs, whether a nucleotide
matches to its reverse complement or not, whether a reverse complement inserted instead of
the original nucleotide, and whether a reverse complement has been deleted instead of the

original nucleotide.

(5) The probability and the score of the letters that were not in the training sequences in a

particular position in all three matches, deletions, and insertion states.

To our best knowledge, no visualization tools exist to integrate all of this information. The
existing logos show parts 1.1, 2.1, 3.1, and 4, but most of them visualize this type of information

by showing the letters. No visualization tool exists to represent parts 1.2, 2.2, and 5.



We designed a visual encoding that captures all of these features in a single representation with

the intent to eliminate the need of showing the letters and using too many color encodings.

3.1 Representing the Probability

Sequence logo designers use the relative height of each letter within one column (each
position) to display the match probability [2]. We decided to use each spring’s height to
represent the relative probability within the whole model, instead of dynamic definition in each
column. (The old models used this because in their logos, the height of column represents
entropy, but we chose this because we saw that knowing the entropy has no meaning to the

analysts.)

3.2 Representing the Weight

No logo visualization exists to represent the weight of the letters in each position within the
model. What is the weight, and why is it important? One problem with HMMs is called
overspecialization. It means that if the sequence members that are building the model, are
highly similar, the model will be highly similar to those sequences and cannot accept a
sequence that is partly similar to them. To prevent this, several methods of sequence weighting

have been proposed.

One kind of weighting method is the position-specific weighting method proposed by Henikoffs
(3].

1
Weight = ——,
5 m*k

Equation 1. Henikoffs’ Weighting Method

where, m is the number of different characters in the column and k is the number of times that

character appears in that position.



For example considering these four sequences, shown below, the probability of positioning R in

the first column is equal to the probability of positioning R in the second column (%), but the

weight of R being in the first column is 1 whereas the weight of R being in the second column
4

So it means that although the probability of these two R is the same, there is a difference

between these two Rs.

Fig. 7. Example of four related protein sequences. The R in the first column is more powerful in the model, in
comparison with the R in the second column.

We chose this sequence weighting method because it is simple for our implementation. In our
wave representation logo, each oscillation refers to a fixed number of weights. High weight
characters produce short wavelengths while short weight characters produce short
wavelengths (Figure 8). Simple arcs represent characters which have their weight below a

threshold.



Fig. 8. Different height represents different probability, and different wavelength represents different weight.

3.3DNA has two direction

One fact about DNA sequences that is different from protein sequences is DNA has a reverse
complement which means that an A nucleotide can be matched to a T, and a C nucleotide can

be matched to a G. Figure 9 shows this puzzle conception.

- for Adenine

§ I for Thymine
- for Cytosine
‘ for Guanine

Fig. 9. DNA nucleotides are like puzzle pieces.



One option for capturing the two-direction nature of DNA is to reverse the orientation of the
characters in the logo as some designers did (Figure 10). But, this representation has some
drawbacks. First, reverse shape of each character should be defined separately. Additionally,

this option has to represent the different shape of characters.
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Fig. 10. Orientation of some characters changed because of the reverse complement nature of DNA nucleotides.

Another option that was proposed by Nielsen et al. in [1] is using the leaf-like shape. In this
context it means that if the character is the original one, we force the maximum amplitude to
occur close to the spring shape’s start edge, but if it belongs to the complement one, we force
maximum amplitude to occur close to the spring shape’s end edge. The result looks like Figure

11.



Fig. 11. One option for showing direction is using leaf like shapes. These shapes are showing two different
directions.

By choosing this method, the column widths would be different all over the models depending

on the existence of tall large weight letters, or short low weight characters.

Instead, we represent this as a wave with phase 180 degrees more than our original wave.
Thus, for each match, insertion, and deletion that occurs by the reverse character, we will have

a representation like Figure 12.
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Fig. 12. Our method showing reverse complement matching.

3.4 Regularize the Overfitting problem

Another potential difficulty is known as overfitting, and illustrated by the example shown in
Figure 7. Consider these four sequences to be members of our training set, and suppose that
they are protein sequences. The first column contains two distinct amino acids: R and A. Using
the methods described so far, the probability of any of the other 18 amino acids appearing in
the first position is 0. However, if we set all these probabilities to 0 in the model, we will have a
model unable to recognize family members that do not begin with R and A. Remember the
weighting methods that wanted to solve the overfitting problem. This is somewhat similar to
that problem but instead of the weight concept we need to solve the problem of a probability
of 0 because here we know that some members might exist that have other characters in that

particular position.

A variety of approaches known as regularization have been proposed to solve the overfitting
problem. The simplest is called pseudocounts: this means that, even if a given character does
not appear in a column, we will give it a fake probability, and after that we will consider that
probability like a real one. The number depends on whether the missing character belongs to
amino acids or nucleotides. Below we show the formula for calculating the probability of all

characters, even existing or missing ones, in a different way:



obserevedcountsofthatcharacter + PseudocountofthatCharacter

ProbabilityOfEachCharacter =

Obserevdcountsoverallcharacters + pseudocountsoverallcharacters

Equation 2. Pseudocount method is used or calculation the probability.

In this formula the pseudocounts over all characters is deferent between protein and DNA

sequences. For proteins it is 20 and for DNA is 4. So for example in the first column of figure 7,

3 1
the probability of A is 24 and the probability of all other characters is 24 if it belongs to the

-~ -~

3
protein sequences. If it belongs to the DNA sequences, A’s probability would be Y and all

1
missing characters would be 3

In order to show these fake letters in the model, we chose a fixed length spring with one
oscillation, which we always put at the bottom of each column that has these kinds of letters.
Each of these springs represents all the missing characters.

Figure 13 shows how the last decision looks like.

BB SN N

Fig. 13. Missing characters in the model have the same probability and the same weights, and are shown at the
end of each column by a simple arc.

3.5 Insertion

We may have the probability of an insertion of different letters with different insertion
weightings after or before all the positions. We may show the springs in these columns with

different color-coding (in our representation we chose blue for that purpose). For saving the



place, we only visualize the insertion characters in the model that an insertion really happened

in the new sequence against the model.

3.6 Deletion

There is a probability of deletion in all the positions (we do not have this particular column in
our model). Although this probability is not identical in all positions, we will show the deletion
just by leaving that column in its own color and we won’t show any fitting in that column as

Figure 14 shows.
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Fig. 14. Column 2 and 4 show a deletion in this two positions by the lack of orange or blue spring.

3.7 Color Coding

We used gray to show the model in areas that matches may occur, and orange color for
showing our sequence against the model. In some columns you see a blue spring. These are
columns that an insertion occurs and the rest of the spring is shown in gray instead of our new

sequence’s spring that is shown by a blue color.

So there are three types of columns:



1. Gray springs with one orange spring:
This shows a match of our red spring against the model, and gray springs are the letters
that are not matched by this new sequence, but each of them has their own probability
and weight of matching.

2. Gray springs with one blue spring:
This shows an insertion of a new character in that position in comparison with the
model. Each of the springs in this column has a different chance of insertion in this
position, but just one of them is inserted (each has its own probability and weight). The
probability of this insertion has been shown by a number under the column.

3. Just the gray springs which shows a deletion. A number under the column shows the

probability of that deletion.

So we use three colors gray, blue, and orange and also a small black line behind each spring

showing differences.

Fig. 15. The first column shows a deletion, the second column shows a match, and the third column shows an
insertion between positions.



We checked these colors with Vischeck to be sure that this color-coding is useful for colorblind

people as well.

The results are shown in the images below.
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Fig. 16. Deuteranope (a form of red/green color deficit) run by vischeck.com



Original Image Protanope Simulation
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Fig. 17. Protanope (another form of red/green color deficit) run by vischeck.com

4 Implementation of Spring Logo

Our sequence alignment visualization tool, Spring Logo, has not implemented completely
because we are in the first software implementation’s life cycle that is the prototyping. We
decided to implement the interface of the software in order to show it to the analysts. After
receiving their feedback, we will complete our system. In this stage we used Action Script 3,
Flex Builder framework of implementation. Our prototype has the ability of inserting a spring
with given parameters from the user (length, number of oscillations, position, color, and so on.)
So we could build a model that shows a particular logo in order to compare the visual

effectiveness of our model.



5 Conclusion, limitations, and Future work

In this paper we explored the use of wave representation as a novel encoding for showing a

HMM logo, and sequence profile alignment task against this model.

We demonstrated the utility of our spring representation in visualizing the information we
need. We tried to enhance logo visualization by using colors and different shapes (alphabets) as
less as possible, and improving the model by adding weight features to it. To clarify, the intent
of this model is not to give any visual preference to a particular letter based on its genetic
characteristics. Instead, we merely wished to show how a letter sequence could be clearly
visualized. Therefore, this model has nothing to do with the visual design of any particular
letter. As a result, the visual orientation is only significant in that it highlights a given letter’s

fitness against the model.

One other feature of our visualization model demonstrates the spring-like structure for more
than one letter. For example, if the probability and weight of the characters were relatively

equivalent, we would have conserved some of the leftover vertical space.

One of the limitations of our visualization is that all of the columns in our current model contain
no information about their background probability®. Furthermore, our design still does not

show the background probability for each recently inserted or deleted column.

One option to show the background probability of the columns is using column width. Future
researchers may choose to develop an interactive system that allows analysts to zoom towards

a selected column in order to clearly display the columns that have less width (see figure 6).

% The probability of having a particular column in the model



Another limitation is that our model does not yet allow the analyst the ability to conveniently
compare profiles. This is due to the fact, that we have not yet solved the persistent problem of

profile-profile alignments raised by the design flaws shown in earlier models (e.g. figure 7).

Our future work consists of running an experiment to show the usability of our proposed
method. To improve the system, we may add interactive elements to each spring in a way that
a user could see the exact number of relative and background probabilities as well as the

associated weights, which conform to both the model and the new sequence.
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