Please note:
To view the Summer 2019 Academic Calendar go to www.sfu.ca/students/calendar/2019/summer.html
Applied Mathematics Honours
Applied mathematics traditionally consists of areas of mathematics which are closely related to the physical sciences and engineering, but nowadays sophisticated mathematical tools are used across many disciplines, and applied mathematics has become increasingly computationally oriented.
The Department of Mathematics offers an applied mathematics honours program. Students interested in applied mathematics may also wish to consider the joint honours program in mathematics and computer science, and the mathematical physics honours program, both of which include a substantial number of applied mathematics courses.
Prerequisite Grade Requirement
To enroll in a course offered by the Department of Mathematics, a student must obtain a grade of C or better in each prerequisite course. Some courses may require higher prerequisite grades. Check the MATH course's Calendar description for details.
Students will not normally be permitted to enroll in any course for which a D grade or lower was obtained in any prerequisite. No student may complete, for further credit, any course offered by the Department of Mathematics which is a prerequisite for a course the student has already completed with a grade of C or higher, without permission of the department.
Program Requirements
Students complete 120 units, as specified below.
Lower Division Requirements
Students complete 40 units, including either
both of
An elementary introduction to computing science and computer programming, suitable for students with little or no programming background. Students will learn fundamental concepts and terminology of computing science, acquire elementary skills for programming in a highlevel language and be exposed to diverse fields within, and applications of computing science. Topics will include: pseudocode, data types and control structures, fundamental algorithms, computability and complexity, computer architecture, and history of computing science. Treatment is informal and programming is presented as a problemsolving tool. Prerequisite: BC Math 12 or equivalent is recommended. Students with credit for CMPT 102, 128, 130 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129, 130 or 135 first may not then take this course for further credit. Quantitative/BreadthScience.
Section  Instructor  Day/Time  Location 

D300 
Milan Tofiloski 
Mo, We, Fr 4:30 PM – 5:20 PM 
AQ 3181, Burnaby 
D400 
Diana Cukierman 
Mo, We, Fr 9:30 AM – 10:20 AM 
RCB IMAGTH, Burnaby 
D500 
Harinder Khangura 
Mo, We, Fr 8:30 AM – 9:20 AM 
SRYE 1002, Surrey 
D501 
Harinder Khangura 
Mo 9:30 AM – 10:20 AM 
SRYE 4024, Surrey 
D502 
Harinder Khangura 
Mo 10:30 AM – 11:20 AM 
SRYE 4024, Surrey 
D503 
Harinder Khangura 
Mo 11:30 AM – 12:20 PM 
SRYE 4024, Surrey 
D504 
Harinder Khangura 
Mo 12:30 PM – 1:20 PM 
SRYE 4024, Surrey 
D505 
Harinder Khangura 
Mo 1:30 PM – 2:20 PM 
SRYE 4024, Surrey 
D506 
Harinder Khangura 
Mo 2:30 PM – 3:20 PM 
SRYE 4024, Surrey 
D507 
Harinder Khangura 
Mo 3:30 PM – 4:20 PM 
SRYE 4024, Surrey 
D508 
Harinder Khangura 
Mo 4:30 PM – 5:20 PM 
SRYE 4024, Surrey 
A second course in computing science and programming intended for students studying mathematics, statistics or actuarial science and suitable for students who already have some background in computing science and programming. Topics include: a review of the basic elements of programming: use and implementation of elementary data structures and algorithms; fundamental algorithms and problem solving; basic objectoriented programming and software design; computation and computabiiity and specification and program correctness. Prerequisite: CMPT 102 or CMPT 120. Students with credit for CMPT 125 or 135 may not take this course for further credit. Quantitative.
(Students transferring into a math program should contact the math undergraduate advisor if they have already completed equivalent courses.)
or both of
An introduction to computing science and computer programming, using a systems oriented language, such as C or C++. This course introduces basic computing science concepts. Topics will include: elementary data types, control structures, functions, arrays and strings, fundamental algorithms, computer organization and memory management. Prerequisite: BC Math 12 (or equivalent, or any of MATH 100, 150, 151, 154, or 157). Students with credit for CMPT 102, 120, 128 or 166 may not take this course for further credit. Students who have taken CMPT 125, 129 or 135 first may not then take this course for further credit. Quantitative/BreadthScience.
Section  Instructor  Day/Time  Location 

D100 
Bobby Chan 
Mo, We, Fr 2:30 PM – 3:20 PM 
SRYE 2016, Surrey 
D101 
Bobby Chan 
Th 11:30 AM – 12:20 PM 
SRYE 4024, Surrey 
D102 
Bobby Chan 
Th 12:30 PM – 1:20 PM 
SRYE 4024, Surrey 
D103 
Bobby Chan 
Th 1:30 PM – 2:20 PM 
SRYE 4024, Surrey 
D104 
Bobby Chan 
Th 2:30 PM – 3:20 PM 
SRYE 4024, Surrey 
D200 
Brian Fraser 
Mo, We, Fr 2:30 PM – 3:20 PM 
SRYE 1002, Surrey 
D201 
Brian Fraser 
Tu 10:30 AM – 11:20 AM 
SRYE 4013, Surrey 
D202 
Brian Fraser 
Tu 11:30 AM – 12:20 PM 
SRYE 4013, Surrey 
D203 
Brian Fraser 
Tu 12:30 PM – 1:20 PM 
SRYE 4013, Surrey 
D204 
Brian Fraser 
Tu 1:30 PM – 2:20 PM 
SRYE 4013, Surrey 
D205 
Brian Fraser 
Th 3:30 PM – 4:20 PM 
SRYE 4013, Surrey 
A second course in systemsoriented programming and computing science that builds upon the foundation set in CMPT 130 using a systemsoriented language such as C or C++. Topics: a review of the basic elements of programming; introduction to objectoriented programming (OOP); techniques for designing and testing programs; use and implementation of elementary data structures and algorithms; introduction to embedded systems programming. Prerequisite: CMPT 130. Students with credit for CMPT 125, 126, or 129 may not take this course for further credit. Quantitative.
and all of
Using a mathematical software package for doing calculations in linear algebra. Development of computer models that analyze and illustrate applications of linear algebra. All calculations and experiments will be done in the Matlab software package. Topics include: largescale matrix calculations, experiments with cellular automata, indexing, searching and ranking pages on the internet, population models, data fitting and optimization, image analysis, and cryptography. Prerequisite: One of CMPT 102, 120, 126, 128 or 130 and one of MATH 150, 151, 154 or 157 and one of MATH 232 or 240. MATH 232 or 240 can be taken as corequisite. Students in excess of 80 units may not take MACM 203 for further credit. Quantitative.
Using a mathematical software package for doing computations from calculus. Development of computer models that analyze and illustrate applications of calculus. All calculations and experiments will be done in the Maple software package. Topics include: graphing functions and data, preparing visual aids for illustrating mathematical concepts, integration, Taylor series, numerical approximation methods, 3D visualization of curves and surfaces, multidimensional optimization, differential equations and disease spread models. Prerequisite: One of CMPT 102, 120, 126, 128 or 130 and MATH 251. MATH 251 can be taken as a corequisite. Students in excess of 80 units may not take MACM 204 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Michael Monagan 
Th 2:30 PM – 3:20 PM 
AQ 3005, Burnaby 
D101 
Michael Monagan 
Fr 2:30 PM – 3:20 PM 
AQ 3148.1, Burnaby 
D102 
Michael Monagan 
Fr 3:30 PM – 4:20 PM 
AQ 3148.1, Burnaby 
D103 
Michael Monagan 
Fr 4:30 PM – 5:20 PM 
AQ 3148.1, Burnaby 
Rectangular, cylindrical and spherical coordinates. Vectors, lines, planes, cylinders, quadric surfaces. Vector functions, curves, motion in space. Differential and integral calculus of several variables. Vector fields, line integrals, fundamental theorem for line integrals, Green's theorem. Prerequisite: MATH 152; or MATH 155 or MATH 158 with a grade of at least B. Recommended: It is recommended that MATH 240 or 232 be taken before or concurrently with MATH 251. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Weiran Sun 
Mo, We, Fr 8:30 AM – 9:20 AM 
WMC 3520, Burnaby 
D200 
Mahsa Faizrahnemoon 
Mo, We, Fr 8:30 AM – 9:20 AM 
SRYE 3016, Surrey 
D300 
Jamie Mulholland 
Mo, We, Fr 8:30 AM – 9:20 AM 
WMC 2830, Burnaby 
OP01 

TBD  
OP02 

TBD  
OP03 

TBD 
Vector calculus, divergence, gradient and curl; line, surface and volume integrals; conservative fields, theorems of Gauss, Green and Stokes; general curvilinear coordinates and tensor notation. Introduction to orthogonality of functions, orthogonal polynomials and Fourier series. Prerequisite: MATH 240 or 232, and 251. MATH 240 or 232 may be taken concurrently. Students with credit for MATH 254 may not take MATH 252 for further credit. Quantitative.
Basic laws of probability, sample distributions. Introduction to statistical inference and applications. Prerequisite: or Corequisite: MATH 152 or 155 or 158. Students wishing an intuitive appreciation of a broad range of statistical strategies may wish to take STAT 100 first. Quantitative.
Section  Instructor  Day/Time  Location 

C100  Distance Education  
D100 
Scott Pai 
Mo, We 9:30 AM – 10:20 AM Fr 9:30 AM – 10:20 AM 
SWH 10081, Burnaby WMC 3520, Burnaby 
OP01 

TBD 
and one of
A general calculusbased introduction to mechanics. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12 or PHYS 100 or equivalent, with a minimum grade of C. This prerequisite may be waived, at the discretion of the department, as determined by the student's performance on a regularly scheduled PHYS 100 final exam. Please consult the physics advisor for further details. Corequisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 101, 125 or 140 may not take this course for further credit. Quantitative/BreadthScience.
Section  Instructor  Day/Time  Location 

D100 
Erol Girt 
Mo, We, Fr 9:30 AM – 10:20 AM 
SSCC 9001, Burnaby 
D101 

Tu 11:30 AM – 12:20 PM 
RCB 8105, Burnaby 
D102 

Tu 12:30 PM – 1:20 PM 
AQ 5005, Burnaby 
D103 

Tu 1:30 PM – 2:20 PM 
WMC 2507, Burnaby 
D104 

Tu 9:30 AM – 10:20 AM 
WMC 3515, Burnaby 
D106 

Tu 4:30 PM – 5:20 PM 
AQ 5005, Burnaby 
D107 

We 11:30 AM – 12:20 PM 
RCB 8105, Burnaby 
D108 

We 12:30 PM – 1:20 PM 
RCB 7105, Burnaby 
D110 

Th 9:30 AM – 10:20 AM 
WMC 3513, Burnaby 
D113 

Th 11:30 AM – 12:20 PM 
RCB 8104, Burnaby 
D114 

Th 12:30 PM – 1:20 PM 
RCB 5100, Burnaby 
D115 

Th 1:30 PM – 2:20 PM 
RCB 5100, Burnaby 
D116 

Th 8:30 AM – 9:20 AM 
WMC 3533, Burnaby 
D119 

We 2:30 PM – 3:20 PM 
BLU 11911, Burnaby 
An enriched course in mechanics for students with good preparation in physics and mathematics. Special relativity and classical topics such as translational and rotational dynamics and conservation laws will be given a much more sophisticated treatment than in our other firstyear courses. Prerequisite: Permission of the department. Corequisite: MATH 125 or MATH 151. Students with credit for PHYS 101, 120 or PHYS 140 may not take PHYS 125 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Michel Vetterli 
Mo, We, Fr 9:30 AM – 10:20 AM 
BLU 10921, Burnaby 
D101 

Mo 1:30 PM – 2:20 PM 
BLU 10921, Burnaby 
A general calculusbased introduction to mechanics taught in an integrated lecturelaboratory environment. Topics include translational and rotational motion, momentum, energy, gravitation, and selected topics in modern physics. Prerequisite: BC Principles of Physics 12, or PHYS 100 or equivalent, with a minimum grade of C. Corequisite: MATH 150 or 151 or 154 must precede or be taken concurrently. Students with credit for PHYS 125 or 120 or 101 may not take this course for further credit. Quantitative/BreadthScience.
Section  Instructor  Day/Time  Location 

D100 
Neil Alberding 
Mo, We, Fr 11:30 AM – 12:20 PM 
SUR 2975, Surrey 
D101 
Neil Alberding 
Mo 12:30 PM – 1:20 PM 
SUR 2975, Surrey 
D200 
Neil Alberding 
Mo, We, Fr 3:30 PM – 4:20 PM 
SUR 2975, Surrey 
D201 
Neil Alberding 
Mo 4:30 PM – 5:20 PM 
SUR 2975, Surrey 
LA01 
Neil Alberding 
We, Fr 12:30 PM – 1:20 PM 
SUR 2975, Surrey 
LA02 
Neil Alberding 
We, Fr 4:30 PM – 5:20 PM 
SUR 2975, Surrey 
and one of
A general calculusbased introduction to electricity, magnetism and optics. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 120 or 125 or 140 (or PHYS 101 with a grade of A or B). Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit for PHYS 102, 126 or 141 may not take this course for further credit. Quantitative/BreadthScience.
An enriched course in electromagnetism for students with good preparation in physics and mathematics. Classical topics such as waves, electricity and magnetism, as well as wave particle duality and the birth of Quantum Mechanics, will be given a much more sophisticated treatment than in our other first year courses. Prerequisite: PHYS 125 or permission of the department. Corequisite: MATH 126 or MATH 152. Students with credit in PHYS 102, 121 or 141 may not take this course for further credit. Quantitative.
A general calculusbased introduction to electricity, magnetism and optics taught in an integrated lecturelaboratory environment. Topics include electricity, magnetism, simple circuits, optics and topics from applied physics. Prerequisite: PHYS 120 or PHYS 125 or PHYS 140, with a minimum grade of C (or PHYS 101 with a minimum grade of B). Corequisite: MATH 152 or 155 must precede or be taken concurrently. Students with credit for PHYS 126 or 121 or 102 may not take this course for further credit. Quantitative/BreadthScience.
and one of
Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Topics as for Math 151 with a more extensive review of functions, their properties and their graphs. Recommended for students with no previous knowledge of Calculus. In addition to regularly scheduled lectures, students enrolled in this course are encouraged to come for assistance to the Calculus Workshop (Burnaby), or Math Open Lab (Surrey). Prerequisite: PreCalculus 12 (or equivalent) with a grade of at least B+, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 151, 154 or 157 may not take MATH 150 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Sophie Burrill 
Mo, We, Fr 8:30 AM – 9:20 AM 
SSCB 9200, Burnaby 
D101 

Tu 8:30 AM – 9:20 AM 
WMC 2220, Burnaby 
D102 

Tu 9:30 AM – 10:20 AM 
WMC 2220, Burnaby 
D103 

Tu 10:30 AM – 11:20 AM 
WMC 2220, Burnaby 
D104 

We 2:30 PM – 3:30 PM 
WMC 2810, Burnaby 
D105 

We 3:30 PM – 4:20 PM 
WMC 2810, Burnaby 
D200 
Veselin Jungic 
Mo, We, Fr 8:30 AM – 9:20 AM 
RCB IMAGTH, Burnaby 
D201 

Tu 8:30 AM – 9:20 AM 
WMC 3535, Burnaby 
D202 

Tu 1:30 PM – 2:20 PM 
SWH 10061, Burnaby 
D203 

Tu 2:30 PM – 3:20 PM 
SWH 10061, Burnaby 
D204 

Fr 2:30 PM – 3:20 PM 
WMC 2810, Burnaby 
D205 

Fr 3:30 PM – 4:20 PM 
WMC 2810, Burnaby 
D300 
Natalia Kouzniak 
Mo, We, Fr 9:30 AM – 10:20 AM 
SRYE 1002, Surrey 
D301 

We 1:30 PM – 2:20 PM 
SUR 3240, Surrey 
D302 

We 4:30 PM – 5:20 PM 
SUR 3250, Surrey 
D303 

Th 1:30 PM – 2:20 PM 
SUR 3250, Surrey 
OP01 

TBD  
OP02 

TBD  
OP03 

TBD 
Designed for students specializing in mathematics, physics, chemistry, computing science and engineering. Logarithmic and exponential functions, trigonometric functions, inverse functions. Limits, continuity, and derivatives. Techniques of differentiation, including logarithmic and implicit differentiation. The Mean Value Theorem. Applications of differentiation including extrema, curve sketching, Newton's method. Introduction to modeling with differential equations. Polar coordinates, parametric curves. Prerequisite: PreCalculus 12 (or equivalent) with a grade of at least A, or MATH 100 with a grade of at least B, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 154 or 157 may not take MATH 151 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Sophie Burrill 
Mo, We, Fr 8:30 AM – 9:20 AM 
SSCB 9200, Burnaby 
D200 
Veselin Jungic 
Mo, We, Fr 8:30 AM – 9:20 AM 
RCB IMAGTH, Burnaby 
D300 
Natalia Kouzniak 
Mo, We, Fr 9:30 AM – 10:20 AM 
SRYE 1002, Surrey 
OP01 

TBD 
Designed for students specializing in the biological and medical sciences. Topics include: limits, growth rate and the derivative; elementary functions, optimization and approximation methods, and their applications; mathematical models of biological processes. Prerequisite: PreCalculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 157 may not take MATH 154 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Petr Lisonek 
Mo, We, Fr 8:30 AM – 9:20 AM 
SSCC 9001, Burnaby 
D200 
Alamgir Hossain 
Mo, We, Fr 9:30 AM – 10:20 AM 
SUR 2600, Surrey 
OP01 

TBD  
OP02 

TBD 
Designed for students specializing in business or the social sciences. Topics include: limits, growth rate and the derivative; logarithmic, exponential and trigonometric functions and their application to business, economics, optimization and approximation methods; introduction to functions of several variables with emphasis on partial derivatives and extrema. Prerequisite: PreCalculus 12 (or equivalent) with a grade of at least B, or MATH 100 with a grade of at least C, or achieving a satisfactory grade on the Simon Fraser University Calculus Readiness Test. Students with credit for either MATH 150, 151 or 154 may not take MATH 157 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Stephen Choi 
Mo, We, Fr 11:30 AM – 12:20 PM 
SSCC 9001, Burnaby 
D200 
Arezou Valadkhani 
Mo, We, Fr 12:30 PM – 1:20 PM 
SRYE 1002, Surrey 
OP01 

TBD  
OP02 

TBD 
and one of
Riemann sum, Fundamental Theorem of Calculus, definite, indefinite and improper integrals, approximate integration, integration techniques, applications of integration. Firstorder separable differential equations and growth models. Sequences and series, series tests, power series, convergence and applications of power series. Prerequisite: MATH 150 or 151; or MATH 154 or 157 with a grade of at least B. Students with credit for MATH 155 or 158 may not take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Michael Monagan 
Mo, We, Fr 8:30 AM – 9:20 AM 
SSCB 9201, Burnaby 
OP01 

TBD 
Designed for students specializing in the biological and medical sciences. Topics include: the integral, partial derivatives, differential equations, linear systems, and their applications; mathematical models of biological processes. Prerequisite: MATH 150, 151 or 154; or MATH 157 with a grade of at least B. Students with credit for MATH 152 or 158 may not take this course for further credit. Quantitative.
Designed for students specializing in business or the social sciences. Topics include: theory of integration, integration techniques, applications of integration; functions of several variables with emphasis on double and triple integrals and their applications; introduction to differential equations with emphasis on some special firstorder equations and their applications; sequences and series. Prerequisite: MATH 150 or 151 or 154 or 157. Students with credit for MATH 152 or 155 may not take MATH 158 for further credit. Quantitative.
and one of
Linear equations, matrices, determinants. Introduction to vector spaces and linear transformations and bases. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. An emphasis on applications involving matrix and vector calculations. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 240 make not take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Luis Goddyn 
Mo, We, Fr 11:30 AM – 12:20 PM 
RCB IMAGTH, Burnaby 
D200 
Justin Chan 
Mo, We, Fr 3:30 PM – 4:20 PM 
SUR 3170, Surrey 
OP01 

TBD  
OP02 

TBD 
Linear equations, matrices, determinants. Real and abstract vector spaces, subspaces and linear transformations; basis and change of basis. Complex numbers. Eigenvalues and eigenvectors; diagonalization. Inner products and orthogonality; least squares problems. Applications. Subject is presented with an abstract emphasis and includes proofs of the basic theorems. Prerequisite: MATH 150 or 151; or MACM 101; or MATH 154 or 157, both with a grade of at least B. Students with credit for MATH 232 cannot take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Razvan Fetecau 
Mo 11:30 AM – 12:20 PM We 11:30 AM – 12:20 PM Fr 11:30 AM – 12:20 PM 
AQ 3005, Burnaby AQ 3153, Burnaby AQ 3159, Burnaby 
OP01 

TBD 
and at least one of
Introduction to a variety of practical and important data structures and methods for implementation and for experimental and analytical evaluation. Topics include: stacks, queues and lists; search trees; hash tables and algorithms; efficient sorting; objectoriented programming; time and space efficiency analysis; and experimental evaluation. Prerequisite: (MACM 101 and ((CMPT 125 and 127), CMPT 129 or CMPT 135)) or (ENSC 251 and ENSC 252). Quantitative.
Section  Instructor  Day/Time  Location 

D100 
David Mitchell 
Mo, Fr 10:30 AM – 11:20 AM We 10:30 AM – 11:20 AM 
AQ 3182, Burnaby SSCB 9201, Burnaby 
D101 
David Mitchell 
Fr 11:30 AM – 12:20 PM 
ASB 9838, Burnaby 
D102 
David Mitchell 
Fr 11:30 AM – 12:20 PM 
ASB 9838, Burnaby 
D103 
David Mitchell 
Fr 12:30 PM – 1:20 PM 
ASB 9838, Burnaby 
D104 
David Mitchell 
Fr 12:30 PM – 1:20 PM 
ASB 9838, Burnaby 
D105 
David Mitchell 
Fr 1:30 PM – 2:20 PM 
ASB 9838, Burnaby 
D106 
David Mitchell 
Fr 1:30 PM – 2:20 PM 
ASB 9838, Burnaby 
D107 
David Mitchell 
Fr 2:30 PM – 3:20 PM 
ASB 9838, Burnaby 
D108 
David Mitchell 
Fr 2:30 PM – 3:20 PM 
ASB 9838, Burnaby 
E100 
Anne Lavergne 
We 5:30 PM – 8:20 PM 
HCC 1900, Vancouver 
Fundamental electrical circuit quantities, and circuit elements; circuits laws such as Ohm law, Kirchoff's voltage and current laws, along with series and parallel circuits; operational amplifiers; network theorems; nodal and mesh methods; analysis of natural and step response of first (RC and RL), as well as second order (RLC) circuits; real, reactive and rms power concepts. In addition, the course will discuss the worker safety implications of both electricity and common laboratory practices such as soldering. Prerequisite: (PHYS 121 or PHYS 126 or PHYS 141), ENSC 120, MATH 232 and MATH 310. MATH 232 and/or MATH 310 may be taken concurrently. Students with credit for MSE 250 or SEE 230 cannot take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Ash Parameswaran 
Tu 12:30 PM – 2:20 PM Th 12:30 PM – 2:20 PM 
AQ 3149, Burnaby AQ 3150, Burnaby 
D101 
Ash Parameswaran 
TBD  
LA01 
Ash Parameswaran 
Mo 4:30 PM – 6:50 PM 
ASB 9800A, Burnaby 
LA02 
Ash Parameswaran 
Th 2:30 PM – 4:50 PM 
ASB 9800A, Burnaby 
LA03 
Ash Parameswaran 
Fr 9:30 AM – 11:50 AM 
ASB 9800A, Burnaby 
A continuation of MACM 101. Topics covered include graph theory, trees, inclusionexclusion, generating functions, recurrence relations, and optimization and matching. Prerequisite: MACM 101 or (ENSC 251 and one of MATH 232 or MATH 240). Quantitative.
Section  Instructor  Day/Time  Location 

D200 
Matthew DeVos 
Mo, We, Fr 12:30 PM – 1:20 PM 
SSCC 9001, Burnaby 
OP01 

TBD  
OP02 

TBD 
This course will cover the following topics: fundamental electrical circuit quantities, and circuit elements; circuits laws such as Ohm law, Kirchoff's voltage and current laws, along with series and parallel circuits; operational amplifiers; network theorems; nodal and mesh methods; analysis of natural and step response of first (RC and RL), as well as second order (RLC) circuits; real, reactive and rms power concepts. In addition, the course will discuss the worker safety implications of both electricity and common laboratory practices such as soldering. Prerequisite: PHYS 121 and 131, or PHYS 126 and 131, or PHYS 141, and MATH 232 and 310. MATH 310 may be taken concurrently. Students with credit for SEE 230 or ENSC 220 may not take MSE 250 for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Ahmad Rad 
Tu 11:30 AM – 1:20 PM Th 11:30 AM – 12:20 PM 
SUR 5280, Surrey SUR 5280, Surrey 
D101 
Ahmad Rad 
Th 12:30 PM – 1:20 PM 
SUR 5280, Surrey 
LAB1 
Ahmad Rad 
Mo 9:30 AM – 12:20 PM 
SUR 4290, Surrey 
LAB2 
Ahmad Rad 
We 9:30 AM – 12:20 PM 
SUR 4290, Surrey 
LAB3 
Ahmad Rad 
Fr 9:30 AM – 12:20 PM 
SUR 4290, Surrey 
An intermediate mechanics course covering kinematics, dynamics, calculus of variations and Lagrange's equations, noninertial reference frames, central forces and orbits, and rigid body motion. Prerequisite: PHYS 126 or 121 or 141, with a minimum grade of C (or PHYS 102 with a minimum grade of B). Corequisite: MATH 251; MATH 232 or 240. Recommended: MATH 310 and PHYS 255. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
John Bechhoefer 
Mo, We, Fr 9:30 AM – 10:20 AM 
AQ 3154, Burnaby 
D101 

Tu 9:30 AM – 10:20 AM 
RCB 5125, Burnaby 
D102 

Tu 10:30 AM – 11:20 AM 
RCB 6101, Burnaby 
D103 

Tu 11:30 AM – 12:20 PM 
AQ 5005, Burnaby 
This course is a continuation of STAT 270. Review of probability models. Procedures for statistical inference using survey results and experimental data. Statistical model building. Elementary design of experiments. Regression methods. Introduction to categorical data analysis. Prerequisite: STAT 270 and one of MATH 152, MATH 155, or MATH 158. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Sessional 
Tu 2:30 PM – 4:20 PM Th 2:30 PM – 3:20 PM 
AQ 3153, Burnaby BLU 9660, Burnaby 
D101 
Scott Pai 
Th 3:30 PM – 4:20 PM 
RCB 7102, Burnaby 
D102 
Scott Pai 
Th 4:30 PM – 5:20 PM 
AQ 5007, Burnaby 
D104 
Scott Pai 
Th 6:30 PM – 7:20 PM 
AQ 5007, Burnaby 
* strongly recommended
** with a B grade or better
+ The following substitutions are also permitted. They may not be used to satisfy the upper division requirements below. MACM 409  Numerical Linear Algebra: Algorithms, Implementation and Applications (3) for MACM 203. MACM 401  Introduction to Computer Algebra (3) for MACM 204. MACM 442  Cryptography (3) for MACM 204.
Upper Division Requirements
Students complete 48 units, including all of
A presentation of the problems commonly arising in numerical analysis and scientific computing and the basic methods for their solutions. Prerequisite: MATH 152 or 155 or 158, and MATH 232 or 240, and computing experience. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Vijaykumar Singh 
Mo, We, Fr 12:30 PM – 1:20 PM 
WMC 3520, Burnaby 
D101 

We 2:30 PM – 3:20 PM 
WMC 2830, Burnaby 
D102 

We 3:30 PM – 4:20 PM 
WMC 2830, Burnaby 
D103 

We 4:30 PM – 5:20 PM 
WMC 2830, Burnaby 
D104 

Th 9:30 AM – 10:20 AM 
WMC 2830, Burnaby 
D105 

Th 10:30 AM – 11:20 AM 
WMC 2830, Burnaby 
D106 

Th 11:30 AM – 12:20 PM 
WMC 2830, Burnaby 
Firstorder differential equations, second and higherorder linear equations, series solutions, introduction to Laplace transform, systems and numerical methods, applications in the physical, biological and social sciences. Prerequisite: MATH 152; or MATH 155/158 with a grade of at least B, MATH 232 or 240. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Sessional 
Mo, We, Fr 12:30 PM – 1:20 PM 
SRYE 2016, Surrey 
D101 

We 2:30 PM – 3:20 PM 
SRYE 4016, Surrey 
D102 

We 3:30 PM – 4:20 PM 
SRYE 4016, Surrey 
D103 

We 4:30 PM – 5:20 PM 
SRYE 4016, Surrey 
E100 
Brenda Davison 
Mo 4:30 PM – 5:20 PM We 4:30 PM – 6:20 PM 
AQ 3182, Burnaby SSCB 9200, Burnaby 
E101 

Tu 9:30 AM – 10:20 AM 
WMC 2830, Burnaby 
E102 

Tu 10:30 AM – 11:20 AM 
WMC 2830, Burnaby 
E103 

Tu 11:30 AM – 12:20 PM 
WMC 2830, Burnaby 
E104 

Tu 4:30 PM – 5:20 PM 
WMC 2830, Burnaby 
E105 

Tu 5:30 PM – 6:20 PM 
WMC 2830, Burnaby 
E106 

Mo 6:00 PM – 6:50 PM 
WMC 2830, Burnaby 
Fourier series, ODE boundary and eigenvalue problems. Separation of variables for the diffusion wave and Laplace/Poisson equations. Polar and spherical coordinate systems. Symbolic and numerical computing, and graphics for PDEs. Prerequisite: MATH 310; and one of MATH 251 with a grade of B+, or one of MATH 252 or 254. Quantitative.
Functions of a complex variable, differentiability, contour integrals, Cauchy's theorem, Taylor and Laurent expansions, method of residues. Prerequisite: MATH 251. Students with credit for MATH 424 may not take this course for further credit. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Stephen Choi 
Mo, We, Fr 1:30 PM – 2:20 PM 
AQ 3159, Burnaby 
D101 

Th 12:30 PM – 1:20 PM 
AQ 5037, Burnaby 
D102 

Th 1:30 PM – 2:20 PM 
AQ 5037, Burnaby 
D103 

Th 11:30 AM – 12:20 PM 
AQ 5008, Burnaby 
Firstorder linear equations, the method of characteristics. The wave equation. Harmonic functions, the maximum principle, Green's functions. The heat equation. Distributions and transforms. Higher dimensional eigenvalue problems. An introduction to nonlinear equations. Burgers' equation and shock waves. Prerequisite: MATH 310 and one of MATH 314, 320, 322, PHYS 384. An alternative to the above prerequisite is both of MATH 254 and MATH 310, both with grades of at least A. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Weiran Sun 
Mo, We, Fr 12:30 PM – 1:20 PM 
BLU 10921, Burnaby 
Students will develop skills required for mathematical research. This course will focus on communication in both written and oral form. Students will write documents and prepare presentations in a variety of formats for academic and nonacademic purposes. The LaTeX document preparation system will be used. Course will be given on a pass/fail basis. Corequisite: MATH 499W.
Section  Instructor  Day/Time  Location 

D100 
Nathan Ilten 
Th 12:30 PM – 2:20 PM 
AQ 5006, Burnaby 
An honours research project in mathematics is an original presentation of an area or problem in mathematics. A typical project is an original synthesis of knowledge generated from students research experience. A project can contain substantive, original mathematics, but need not. The presentation consists of a written report and an oral presentation both of which must be completed before the end of the exam period. Prerequisite: 18 credits of upper division MATH or MACM courses. Must be in an honours program with a GPA of at least 3.0. Corequisite: MATH 498. Writing.
and at least one of
Linear programming modelling. The simplex method and its variants. Duality theory. Postoptimality analysis. Applications and software. Additional topics may include: game theory, network simplex algorithm, and convex sets. Prerequisite: MATH 150, 151, 154, or 157 and MATH 240 or 232. Quantitative.
Section  Instructor  Day/Time  Location 

D200 
Masood Masjoody 
Tu 4:30 PM – 5:20 PM Th 3:30 PM – 5:20 PM 
SWH 10041, Burnaby SWH 10041, Burnaby 
D201 

We 10:30 AM – 11:20 AM 
AQ 5037, Burnaby 
D202 

We 3:30 PM – 4:20 PM 
AQ 5016, Burnaby 
D203 

We 4:30 PM – 5:20 PM 
AQ 5037, Burnaby 
Theoretical and computational methods for investigating the minimum of a function of several real variables with and without inequality constraints. Applications to operations research, model fitting, and economic theory. Prerequisite: MATH 232 or 240, and 251. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
John Stockie 
Mo 9:30 AM – 10:20 AM We 9:30 AM – 10:20 AM Fr 9:30 AM – 10:20 AM 
WMC 3210, Burnaby SSCC 9000, Burnaby SSCC 9000, Burnaby 
D101 

Tu 12:30 PM – 1:20 PM 
WMC 2830, Burnaby 
D102 

Tu 1:30 PM – 2:20 PM 
WMC 2830, Burnaby 
and at least one of
Formulation, analysis and numerical solution of continuous mathematical models. Applications may be selected from topics in physics, biology, engineering and economics. Prerequisite: MATH 310 and one of MATH 314, MACM 316, MATH 418, PHYS 384. An alternative to the above prerequisite is both of MATH 251 and MATH 310, both with grades of at least B+. Students with credit for MATH 361 or MATH 761 may not complete this course for further credit. Quantitative.
Incompressible fluid flow phenomena: kinematics and equations of motion, viscous flow and boundary layer theory, potential flow, water waves. Aerodynamics. Prerequisite: one of MATH 314, MATH 418, PHYS 384. An alternative to the above prerequisite is both of MATH 251 and MATH 310, both with grades of at least B+. Quantitative.
Stability and bifurcation in continuous and discrete dynamical systems, with applications. The study of the local and global behaviour of linear and nonlinear systems, including equilibria and periodic orbits, phase plane analysis, conservative systems, limit cycles, the PoincareBendixson theorem, Hopf bifurcation and an introduction to chaos. Prerequisite: MATH 310. Quantitative.
and at least one of
Development of numerical methods for solving linear algebra problems at the heart of many scientific computing problems. Mathematical foundations for the use, implementation and analysis of the algorithms used for solving many optimization problems and differential equations. Prerequisite: MATH 251, MACM 316, programming experience. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Nilima Nigam 
Mo, We, Fr 9:30 AM – 10:20 AM 
WMC 2532, Burnaby 
Procedures of Euler, Lagrange and Hamilton. Extremum problems, stationary values of integrals. Canonical equations of motion, phase space, Lagrangian and Poisson brackets. Prerequisite: MATH 310 and one of MATH 314, 320, 322, PHYS 384. An alternative to the above prerequisite is both of MATH 254 and MATH 310, both with grades of at least A. Quantitative.
and at least fifteen more upper division units, of which at least three must be chosen from the 400 level. These fifteen units may be selected from any MATH or MACM courses or from
Covers advanced topics in geometric modelling and processing for computer graphics, such as Bezier and Bspline techniques, subdivision curves and surfaces, solid modelling, implicit representation, surface reconstruction, multiresolution modelling, digital geometry processing (e.g. mesh smoothing, compression, and parameterization), pointbased representation, and procedural modelling. Prerequisite: CMPT 361, MACM 316. Students with credit for CMPT 469 between 2003 and 2007 or equivalent may not take this course for further credit.
Computerbased approaches to solving complex physical problems. Includes topics such as MonteCarlo and molecular dynamics techniques applied to thermal properties of materials; dynamical behavior of systems, including chaotic motion; methods for ground state determination and optimization, including NewtonRaphson, simulated annealing, neural nets, and genetic algorithms: symplectic methods; and analysis of numerical data. Prerequisite: MATH 310, PHYS 255, CMPT 102, 120, or equivalent, with a minimum grade of C. Recommended: PHYS 344 or equivalent. Quantitative.
Central forces, rigid body motion, small oscillations. Lagrangian and Hamiltonian formulations of mechanics. Prerequisite: PHYS 384, with a minimum grade of C or permission of the department. Nonphysics majors may enter with MATH 252, 310 and PHYS 211, with a minimum grade of C. Quantitative.
Section  Instructor  Day/Time  Location 

D100 
Levon Pogosian 
Mo, We, Fr 9:30 AM – 10:20 AM 
WMC 2202, Burnaby 
D101 
Levon Pogosian 
Mo 3:30 PM – 4:20 PM 
SWH 10051, Burnaby 
Review of discrete and continuous probability models and relationships between them. Exploration of conditioning and conditional expectation. Markov chains. Random walks. Continuous time processes. Poisson process. Markov processes. Gaussian processes. Prerequisite: STAT 330, or all of: STAT 285, MATH 208W, and MATH 251. Quantitative.
NOTE: SFU students enrolled in the Accelerated Master's degree program within the Department of Mathematics may apply a maximum of 10 graduate course units, taken while completing the bachelor's degree, towards the upper division undergraduate electives of the bachelor's program and the requirements of the master's degree. For more information go to: http://www.sfu.ca/deangradstudies/future/academicprograms/AcceleratedMasters.html.
Other Requirements
At least 60 of the units must be at the upper division. A cumulative grade point average (CGPA) of at least 3.00 and an upper division grade point average of at least 3.00 are required. These averages are computed on all courses completed at the University. If both averages are at least 3.50, the designation ‘first class’ applies.
University Honours Degree Requirements
Students must also satisfy University degree requirements for degree completion.
Writing, Quantitative, and Breadth Requirements
Students admitted to Simon Fraser University beginning in the fall 2006 term must meet writing, quantitative and breadth requirements as part of any degree program they may undertake. See Writing, Quantitative, and Breadth Requirements for universitywide information.
WQB Graduation Requirements
A grade of C or better is required to earn W, Q or B credit
Requirement 
Units 
Notes  
W  Writing 
6 
Must include at least one upper division course, taken at Simon Fraser University within the student’s major subject  
Q  Quantitative 
6 
Q courses may be lower or upper division  
B  Breadth 
18 
Designated Breadth  Must be outside the student’s major subject, and may be lower or upper division 6 units Social Sciences: BSoc 6 units Humanities: BHum 6 units Sciences: BSci 
6 
Additional Breadth  6 units outside the student’s major subject (may or may not be Bdesignated courses, and will likely help fulfil individual degree program requirements) Students choosing to complete a joint major, joint honours, double major, two extended minors, an extended minor and a minor, or two minors may satisfy the breadth requirements (designated or not designated) with courses completed in either one or both program areas. 
Residency Requirements and Transfer Credit
 At least half of the program's total units must be earned through Simon Fraser University study.
 At least two thirds of the program's total upper division units must be earned through Simon Fraser University study.
Elective Courses
In addition to the courses listed above, students should consult an academic advisor to plan the remaining required elective courses.