This paper examines the modal expressions *possible*, *likely*, *probable*, and *certain* (henceforth GEMs). Tests for scale structure suggest that they denote functions from propositions to degrees on an upper- and lower-bounded scale. Support for taking this scale to be the range of numerical probabilities [0,1] comes from examples with disjunction and existential quantification. I present evidence that Kratzer (1981)'s semantics of comparative possibility makes incorrect predictions for these cases, while numerical probability makes correct predictions.

As Portner (2009) notes, a semantics for gradable modals should be compatible with a general theory of gradable expressions. Following Kennedy (2007), gradable adjectives denote functions from individuals to degrees on a scale: a triple \((D, \prec, \delta) \), where \(D \) is a set of degrees, \(\prec \) a total ordering of \(D \), and \(\delta \) the dimension of the adjective (e.g., “closure”). Degree modifiers impose conditions on the degree denoted by a measure function, as in (1).

\[
\begin{align*}
\text{(1)} & \quad \text{a. } [\text{closed}] = \lambda x. \lambda d. [x’s degree of closure = d] \\
& \quad \text{b. } [\text{completely closed}] = \lambda x. \text{id}. [x’s degree of closure = d \land d = \max(D_{\text{closed}})]
\end{align*}
\]

Portner considers an analysis of GEMs as probability operators, i.e. as denoting functions from propositions to degrees on the scale \(([0,1], \prec, \text{likelihood}) \). However, Portner is skeptical that GEMs denote on the same scale, because their degree modifiers are not uniform. But adjectives associated with the same scale may accept different modifiers (Kennedy 2007):

\[
\text{(2)} \quad \text{The room is completely full/?#occupied.}
\]

In Kennedy’s terms, this difference is due to the fact that *full* requires that an object possess a maximal degree of fullness, while *occupied* merely requires that an object possess a non-zero degree. I will argue that the distribution of degree modifiers with GEMs has a similar explanation: the differences are not because they denote on different scales, but because they denote different points on the same scale. I analyze each GEM in turn, showing that the distribution of degree modifiers is what we expect if they denote probability operators corresponding to Kennedy’s minimum-, maximum-, and relative-standard adjectives.

In terms of Kennedy’s typology, *certain* is a maximum-standard adjective like *full*: it requires its argument to have a (near-)maximal degree of likelihood, and is associated with the upper portion of an upper-bounded scale. This is shown by the fact that *certain* behaves like *full* on various tests. For example, both can be modified by *completely*, but not *slightly*.

\[
\begin{align*}
\text{(3)} & \quad \text{a. The room is completely/#slightly full.} \\
& \quad \text{b. It is completely/#slightly certain that Thunderbolt will win the race.}
\end{align*}
\]

Possible is a minimum-standard adjective, like *occupied* or *bent*. Minimum-standard adjectives apply to objects that have a non-zero degree of the property in question, and are associated with the lower portion of a lower-bounded scale. Kennedy claims that, if an adjective can be modified by *slightly*, it falls in this class.

\[
\begin{align*}
\text{(4)} & \quad \text{a. Do slightly bent spokes matter? (google)} \\
& \quad \text{b. It’s slightly possible that an asteroid could trigger a nuclear war. (google)}
\end{align*}
\]
Likely and probable fall among the the **relative-standard** adjectives such as tall. Unmodified relative adjectives have a “greater than contextual standard” semantics (via a silent morpheme pos); and, according to Kennedy, they are odd with both completely and slightly.

(5) a. Mary is #completely/#slightly tall.
b. It is #completely/#slightly likely that Thunderbolt will win.

The facts we have seen show that GEMs are associated with a scale which has an upper and a lower bound. Why should we take this scale to be the scale of numerical probabilities? One reason is that, for a certain class of examples, probability makes correct predictions where its primary competitor, comparative possibility à la Kratzer (1981), does not.

Imagine you are watching a horse race. Horse A is in the lead, but B,C,D, and E are close behind. You might be inclined to agree with (6a), but be doubtful about (6b)-(6c):

(6) a. A is more likely to win than B, and A is more likely to win than C, and ... than E.
b. It is more likely that A will win than it is that B or C or D or E will win.
c. It is more likely that A will win than it is that another horse will win.

However, Kratzer’s semantics predicts that no rational person should be able to make this judgment: in fact, all the statements in (6) are logically equivalent for her.

(7) \(p \) is more possible than \(q \), \(p \gtrsim q \) (relative to a modal base \(f \) and an ordering source \(g \)) iff:

- a. \(\forall u \in \bigcap f(w) : (u \in q) \rightarrow \exists v \in \bigcap f(w) : v \gtrsim g(w) \land v \in p \).
- b. \(\exists u \in \bigcap f(w) : (u \in p) \land \neg \exists v \in \bigcap f(w) : v \in q \land v \gtrsim g(w) \land u \).

(Kratzer 1981:48)

According to (7), a proposition is exactly as likely as the most likely world(s) it contains (this is the effect of the existential quantification in (7b)). Thus, \(p \) is more likely than \(q \) iff the top-ranked world in \(p \) outranks the top-ranked world in \(q \). Assuming that \([p \lor q] = [p] \cup [q] \), it follows from (7) that a disjunction is exactly as likely as its most likely disjunct, and thus that (6a) and (6b) are equivalent. And since (6b) = (6c) if there are no other horses, Kratzer’s semantics predicts, against intuition, that all the sentences in (6) are equivalent.

In contrast, in a probability-based semantics (6a) is not equivalent to (6b) or (6c):

(8) a. \([(6a)] = [\text{prob}(A \text{ wins}) > \text{prob}(B \text{ wins})] \land ... \land [\text{prob}(A \text{ wins}) > \text{prob}(E \text{ wins})] \)
b. \([(6b,c)] = 1 \text{ iff } \text{prob}(A \text{ wins}) > \text{prob}([B \text{ wins}) \lor (C \text{ wins}) \lor (D \text{ wins}) \lor (E \text{ wins}) \lor (F \text{ wins})] \)
 \[= 1 \text{ iff } \text{prob}(A \text{ wins}) > \Sigma_{x \neq A} \text{prob}(x \text{ wins}) \]

(8a) is true and (8b) false, e.g., if \(\text{prob}(A \text{ wins}) = .4 \) and \(\text{prob}(x \text{ wins}) = \frac{1-4}{4} = .15 \) for \(x \in \{B,C,D,E\} \). Intuitively, this situation is possible; the probability-based approach can model it, but Kratzer’s semantics of comparative possibility cannot.

Facts about degree modification show that a probability-based approach is possible; facts about disjunctions and quantified statements with likely show that probability fares better than its main competitor. Thus, it appears, probability yields the right semantics for GEMs.

(9) a. \([p \text{ is pos likely/probable}] = 1 \text{ iff } \text{prob}(p) > s_{\text{likely}} \) (the contextual standard for likely).
b. \([p \text{ is possible}] = 1 \text{ iff } \text{prob}(p) > \min([0,1]) \) (i.e., if \(\text{prob}(p) > 0 \)).
c. \([p \text{ is certain}] = 1 \text{ iff } \text{prob}(p) = \max([0,1]) \) (i.e., if \(\text{prob}(p) \simeq 1 \)).