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ABSTRACT

Manual tissue diagnosis is the most prevalent approach to
cancer diagnosis. However, it mainly relies on a subjective
visual quantification of specific morphometric features, which
often leads to a relatively limited reproducibility among ex-
perts. In most computational techniques proposed to au-
tomate the diagnostic procedure, accurate segmentation is
paramount as a precursor to the extraction of relevant mor-
phometric features. Since the ultimate goal of segmentation
is generally classification, yet a given class imparts an ex-
pected tissue appearance beneficial to segmentation, we pose
the problem of automatic tissue analysis as the joint task of
segmentation and classification. We propose a novel multi-
objective learning method that optimizes a single unified
deep fully convolutional neural network with two distinct loss
functions. We illustrate our reasoning on the task of colon
adenocarcinomas diagnosis and show how glands’ classifica-
tion can facilitate their segmentation by adding class-specific
spatial priors. The final classification also benefits from this
joint learning framework yielding an improvement of 6%
over classification-only models.

Index Terms— Deep Learning, Histopathology, Classifi-
cation, Segmentation.

1. INTRODUCTION

Almost all forms of cancer are diagnosed by the analysis of
tissue biopsies. During diagnosis, a pathologist determines
the presence of neoplasm in a tissue section on the basis of
different criteria such as cellular abnormalities or prolifera-
tion. Further analysis of tumour-specific morphometric fea-
tures are used to determine the tumour type or grade of dif-
ferentiation. For example, the analysis of histology glands
has proven to be a reliable bio-marker during the diagnosis
of tumours developed in the glandular structures of epithelial
tissues such as colon, breast or prostate carcinomas. Over-
all, pathologists’ diagnosis of tumours involves a simultane-
ous identification of morphometric features and classification,
which relies on a subjective visual-cognitive analysis of tis-
sues. In addition to the potential for a false negative diagnosis,
a direct shortcoming to this manual procedure is the limited
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intra- and inter-observer reproducibility, which has lead to the
development of different automated diagnosis methods.

Generally, existing automatic methods for analyzing tu-
mours from histopathology slides treat image segmentation
and classification as two independent tasks. While segmenta-
tion is often done without the knowledge of the tumour type,
classification usually relies on features extracted from pre-
segmented images. For example, a large number of works
[1, 2] focused on designing robust segmentation techniques
for gland segmentation. Most of these works rely solely on
combining pixel-level data with class-oblivious appearance
priors to detect specific constituents of the tissue (e.g. glandu-
lar lumen, cellular nuclei, and stroma). However, as recently
demonstrated by Sirinukunwattana et al. [2], most of these
existing gland segmentation techniques fail when applied to
different tumour grades as the tissue structures shape regular-
ity assumption no longer holds for pathological cases. The
recent success of machine learning techniques, which tightly
integrate feature learning and classification in a single frame-
work, has allowed for bypassing the pre-segmentation and
feature design steps, i.e. the learnt discriminatory features
are derived directly from the input image. A key example
is the use of convolutional neural networks that have been
successful in the pattern recognition task of classifying mi-
totic cells, and have also been extended to segmentation being
modelled as a pixel-level classification task [3, 4]. To the best
of our knowledge, none of these deep learning-based models
attempts to integrate classification priors in the segmentation
in an end-to-end framework.

While it is generally accepted that features based on seg-
mentation are critical for classification, the inverse, i.e. clas-
sification can benefit the segmentation, is much less explored.
A given tissue class imparts an expected class-specific tis-
sue appearance beneficial for guiding the segmentation. This
dilemma: classification requires segmentation-based features
but accurate segmentation requires knowledge of the class to-
be-segmented, justifies a joint segmentation-classification ap-
proach. In contrast to existing works, we propose a joint deep
learning model where the segmentation and detection of mor-
phometric features are coupled with tissue classification. We
make the assumption that there exists certain candidate seg-
mentation regions that benefit the classification of the under-
lying tissue and, in reverse, the knowledge of the tumour type
allows a finer automatic tuning of a class-dependent segmen-
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Fig. 1. Multi-loss network architecture.

tation by reducing the segmentation search space.

In this work, we focus on the analysis of glands from
colon adenocarcinoma slides. We propose an end-to-end
framework based on a deep fully convolutional network
for colon adenocarcinoma segmentation and classification.
Given an input tissue slide, our system predicts a tumour type
(benign vs malignant) and provides a segmentation of the
relevant glandular structures. This paper shows how the joint
learning of a segmentation and classification can be modeled
effectively in a unified framework using a novel deep learning
architecture and a multi-loss objective function.

2. METHOD

Figure 1 presents the overall architecture of our network with
a classification and a segmentation components organized
symmetrically. The classification component, composed of
layers of convolution and subsampling, identifies the tumour
type. Then, the segmentation component performs the reverse
operations with layers of deconvolution and upsampling to
produce pixel-wise labelling of the identified glands. We
define cross-network spatial activation maps to integrate the
classification feature maps into the segmentation.

Given an input RGB image z, our goal is to simultane-
ously predict a class label 7 € {0,1}? ([1, 0] for benign [0, 1]
for malignant) and a 2-channel segmentation mask S where
each channel corresponds to a label map for gland and back-
ground. We use a multi-loss objective function to train the
network and optimize both segmentation and classification in
an end-to-end (i.e. across the whole network) fashion. The
next sections describes the detailed configurations of the pro-
posed network and its components.

2.1. Classification

To effectively train our full network, reduce training time and
avoid vanishing gradients as observed in very deep neural net-
works, we pre-train the classification component. Given an

input image x and a ground truth class label y, the classifica-
tion model outputs a normalized score vector Q(x) € {0, 1}2.
The classification’s objective is to minimize the error £, be-
tween ground truth y and predicted score Q(z) using the lo-
gistic loss:

Lo(xi,yi) =
Q(x)

—yilog (Q(x;)) (1)

exp (22(x))
fory € {1,2}, (2)
Spy exp (2L(x)

where 2Y is the classification component’s output activation
for label y.

2.2. Cross-network feature maps

We exploit the pre-trained classification component to extract
class-specific spatial maps (i.e. locations of discriminatory
regions) and inject these cues to the segmentation compo-
nent. The stacked layers of convolution and subsampling
learned by the classifier preserve the spatial configuration of
glands’ locations. However, the layers’ activation maps may
contain mixed activations from all class labels in the image,
so we need to identify which activations are relevant for the
given image. To this end, we define class-specific spatial
priors which correspond to the averaged output activation
maps from all pooling layers of the classification component.
We combine these pooling layers such that they include only
information relevant to the class of the input image. More
concretely, given an image x, the pre-trained classifier out-
puts a normalized score vector Q(z). Our goal is to rank
pixels in x based on their contribution to the final score Q(z).
As shown by Simonyan et al. [5], determining the importance
of each pixel of the input image = on the output classifica-
tion score Q(z) corresponds to computing the class-score
derivative with respect to the image.

We extract class-specific spatial priors, f,i for a given
class [ from each pooling layer k of the classifier by comput-
ing the derivative of the class score ()(x) with respect to the



activation value zj, of pooling layer k:
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This operation can be performed using back-propagation
from the final class score layer to each pooling layer. Intu-
itively, computing the derivative operation in eq. 3 amounts to
measuring the contribution of the activations, in each pooling
layer, to the final class score.

We use this class-specific spatial information as a prior
to the segmentation component by upsampling and average
pooling all activation maps {f!,..., f},..., fL} obtained
from the classifier’s pooling layers (see Figure 1). We will
refer to the final spatial prior as f.

2.3. Segmentation

The segmentation component takes as input three elements: 1)
the input color image x of size W x H x 3; ii) the class-specific
spatial prior f for the given image; and iii) the normalized
class scores output from the classifier. This component pre-
dicts a 2-channel label map P(z) = {P,(z), Py(z)} of size
W x H for gland and background classes where P,, P, € R2.

The provided ground truth segmentation (background vs.
gland) does not directly encode the specific appearance char-
acterizing the glands, i.e. the gland comprises a central area
corresponding to the lumen surrounded by epithelial cells.
However, we incorporate this gland appearance prior using
the class-specific spatial prior (obtained in Section 2.2). We
hypothesize that the class-specific activation maps will en-
able us to encode glands’ appearance by showing stronger
activations for pixels located at the center of detected glands.
Thus, we weight the ground truth segmentation S by the
class-specific activations f and define the following loss
function:

Q

Lo(i,Siy fi) = = Y (Sij % fij) log( Py(wij)) @

+(1 = Sij x fij)log( Po(zis)),

where ) is the total number of pixels in the input image; P,
and P, correspond to probabilities of a pixel belonging to the
background b, or to the lumen g of the gland respectively.

2.4. Joint training and prediction

After pre-training the classification layers and extracting the
cross-network activation maps using back-propagation as de-
fined in Section 2.2, we train the full network including the
segmentation layers. We use a weighted multi-loss objective
function which jointly optimizes eq. 1 for classification and
eq. 4 for segmentation, as follows:

L(z,y,5) = Ac(z,y) + (1 = A) Lo(2,5, f), ()

where ) is a user-specified coefficient used to weight the rel-
ative importance of each loss in the multi-objective function.

At test time, we compute the class-specific spatial acti-
vation maps and obtain segmentation maps identifying ma-
lignant and benign glands. The final predicted segmentation
mask S is obtained by identifying the maximum score in each
pixel out of the 2-channel scoring map P(z):

S; = argmax {Py(z;), Py(z;)} Vje€ Q. (6)

3. EXPERIMENTS

3.1. Dataset

We evaluate our method on the available Warwick-QU dataset
[2] which consists of 37 benign and 48 malignant H&E
stained colon adenocarcinomas. Each slide was scanned at
20x microscope magnification and annotated by an expert
pathologist who graded the tumour type and handmarked the
ground truth segmentation. Each slide was approximately
500 x 700 pixels. After resizing each image to 500 x 500 pix-
els, we extract non-overlapping image crops of size 250 x 250
from each slide. We split the full dataset into train, validation
and test sets with the ratios 70,10, and 20%.

3.2. Implementation

Images and their corresponding tumour label and segmenta-
tion are used to train the network. To include a sufficient
amount of variability in the training set samples and gain ro-
bustness during training, we augment the training set using a
series of spatial (affine and elastic) transformations and colour
perturbations. We use Caffe library to implement and train
our network with stochastic gradient descent with momen-
tum as solver. Input images are cropped to 224 x 224 to fit
our GPU memory constraints and a batch size of 1 is used.
Accordingly, we set the momentum to 0.99 in order to con-
sider a large number of training samples during the gradient
update. We set A in eq. 6 to 0.5. The network converges af-
ter approximately 20,000 iterations of the solver and training
takes 5 days on our single 4 GB-memory GPU.

3.3. Evaluation

We evaluate the contribution of our multi-loss network on 1)
the tumour classification accuracy and on 2) the segmentation
accuracy for malignant and benign glands at both: 2a) the
pixel-level, i.e. pixel label classification and 2b) the object-
level via the Dice similarity coefficient (DSC). For a fair com-
parison, we use as baseline convolution-based networks re-
cently proposed for image classification (AlexNet [7]) and
biomedical image segmentation (UNet [4]). We also eval-
uate the performance of each of our network’s components
individually as classifier or segmentation network only. For



Networks Class Pixel Benign | Malignant
ACC (%) | ACC (%) | DSC DSC
AlexNet [7] 83.0 - - -
Multi-Loss-Class 83.0 - - -
UNet [4] - 78.0 0.62 0.55
Multi-Loss-Seg - 86.8 0.70 0.56
Multi-Loss-Joint 89.0 92.0 0.90 0.76

Table 1. Segmentation and classification performance. Multi-
Loss-Seg and Multi-Loss-Class correspond to our model seg-
mentation and classification component only wherease Multi-
Loss-Joint refers to the proposed joint learning model.

these experiments, we train the network using the classifica-
tion or the segmentation loss individually for each task. In
all our experiments, each network’s parameters were tuned
on the validation set and Table | reports the best performance
achieved after convergence.

3.4. Results

Our results confirm the advantage of jointly learning classi-
fication and segmentation networks. We show better perfor-
mance (up to 6% increase in accuracy and 6 to 20% increase
in segmentation) when using our multi-loss implementation
for both classification and segmentation tasks. We also note
that our classification and segmentation component used in-
dividually show competitive results with baseline networks
proposed for image classification and segmentation. We ob-
serve a clear gain in DSC accuracy when segmenting malig-
nant glands, which are often harder to segment due to their
complex shapes [2]. We believe that the supervision added
by the class-specific spatial activation maps allows to encode
glands shape priors that contribute to the segmentation.

Figure 2 presents qualitative results of the segmenta-
tion outputs generated for benign and malignant glands. We
also show the class-specific spatial priors generated from
the trained classifier component. The class-specific spatial
priors show the location of detected glands. This interesting
property allow us to reduce the search space of candidate
segmentations for a given image by reducing variations of
input distributions and detecting relevant objects.

4. CONCLUSION

We proposed a multi-loss convolutional network for joint
classification and segmentation of colon adenocarcinoma
glands. By including class-specific spatial priors, we were
able to train more effectively our segmentation network and
restrict the set of candidate segmentations based on their
discriminative ability. We showed how classification and
segmentation can be learned simultaneously and resulted in
improved performance for both tasks. We believe our sys-
tem can benefit different histopathology image analysis tasks

Fig. 2. Qualitative segmentation results. GT are the ground
truth segmentation, CP are the class-specific spatial priors.

involving tumour diagnosis and morphometric features iden-
tification. To train our system, we rely on strongly annotated
datasets provided with class labels and binary segmentation
which limits the applicability of our work to weakly-labeled
datasets but raises new challenges for future works.

5. REFERENCES

[1] Cigdem Gunduz-Demir et al., “Automatic segmentation
of colon glands using object-graphs,” MIA, vol. 14, no. 1,
pp- 1-12, 2010.

[2] Korsuk Sirinukunwattana, David Snead, and Nasir Ra-
jpoot, “A stochastic polygons model for glandular struc-
tures in colon histology images,” IEEE TMI, vol. 34, no.
11, pp. 23662378, 2015.

[3] Dan C Ciresan et al., “Mitosis detection in breast cancer
histology images with deep neural networks,” in MIC-
CAIL pp. 411-418. 2013.

[4] Olaf Ronneberger, Philipp Fischer, and Thomas Brox,
“U-net: Convolutional networks for biomedical image
segmentation,” arXiv preprint: 1505.04597, 2015.

[5] Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man, “Deep inside convolutional networks: Visualising
image classification models and saliency maps,” arXiv
preprint: 1312.6034,2013.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton,
“Imagenet classification with deep convolutional neural
networks,” in NIPS, 2012, pp. 1097-1105.



	 Introduction
	 Method
	 Classification
	 Cross-network feature maps
	 Segmentation
	 Joint training and prediction

	 Experiments
	 Dataset
	 Implementation
	 Evaluation
	 Results

	 Conclusion
	 References

