

SFU

MULTI-LOSS CONVOLUTIONAL NETWORKS FOR GLAND ANALYSIS IN MICROSCOPY

AÏCHA BENTAIEB, JEREMY KAWAHARA, GHASSAN HAMARNEH ISBI 2016, SPECIAL SESSION IN DEEP LEARNING FOR MEDICAL IMAGING

CANCER DIAGNOSIS

Pathologists' diagnosis involves simultaneous feature identification and tumor classification.

AUTOMATIC CANCER DIAGNOSIS

Automatic cancer diagnosis often involves independent segmentation and classification steps.

EXAMPLE: GLAND ANALYSIS FOR CANCER DIAGNOSIS

Glands are reliable bio-markers for different types of adenocarcinoma: colon, breast, prostate, etc.

GLAND ANALYSIS FOR CANCER DIAGNOSIS

Glands are reliable bio-markers for different types of adenocarcinoma: colon, breast, prostate, etc.

GLAND ANALYSIS FOR CANCER DIAGNOSIS

Glands are reliable bio-markers for different types of adenocarcinoma: colon, breast, prostate, etc.

GLAND ANALYSIS FOR CANCER DIAGNOSIS

Should the class information influence the segmentation ?

JOINT CLASSIFICATION-SEGMENTATION

Classification requires segmentation-based features ...

but generally, segmentation techniques does not involve knowledge of the class ...

JOINT CLASSIFICATION-SEGMENTATION

- We pose the problem of automatic tissue diagnosis as the joint task of segmentation and classification.
- Goal: train an end-to-end system to jointly optimize the classification and segmentation predictions.
- Using a deep learning model.

HYBRID CLASSIFICATION-SEGMENTATION NETWORK

CLASSIFICATION SUB-NETWORK

CLASS-SPECIFIC SPATIAL PRIORS

f measures the contribution of each layer to the final classification score:

$$f_k^y = \frac{\partial Q_y(x)}{\partial z_k(x)}$$

Simonyan et al. ICLR Workshop, 2014.

FULLY CONVOLUTIONAL SEGMENTATION NETWORK

WEIGHTED SEGMENTATION LOSS

MULTI-LOSS NETWORK

EXPERIMENTS

Dataset:

- ► GLaS gland segmentation challenge, MICCAI 2015 [1].
- 85 training images: 37 Benign, 48 Malignant.
- 80 test images: 37 Benign, 43 Malignant.

Model training:

- Sequential training: 1) Classifier 2) Segmentation 3) Joint fine-tuning.
- Stochastic Gradient Descent optimization.
- Implemented in Caffe [2].

[1] Sirinukunwattana et al. arXiv:1603.00275 (2016).[2] Jia et al. arXiv:1408.5093 (2014).

CLASSIFICATION ACCURACY

Our hybrid classification-segmentation approach increases the classification accuracy up to 6%

SEGMENTATION RESULTS

Using class-specific priors increases the segmentation Dice by 6%.

[3] Ronneberger et al. MICCAI (2015).[4] Long et al. CVPR (2015).

SEGMENTATION RESULTS

For malignant glands, using our hybrid network (using VGG16) increased the segmentation Dice by 13%.

ISBI 2016 SKIN LESION SEGMENTATION CHALLENGE

ISBI 2016 SKIN LESION SEGMENTATION CHALLENGE

Using segmentation priors increased the classification accuracy by 3%. Using class-specific priors increases the segmentation Jaccard by 2%.

- We proposed a novel multi-loss network for simultaneous image segmentation and classification.
- We showed that:
 - 1. classification can facilitate the segmentation by introducing class-specific spatial priors.
 - 2. segmentation can benefit classification by providing region-specific features.

THANK YOU.

contact: <u>abentaie@sfu.ca</u>