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MOTIVATION

CANCER DIAGNOSIS

▸ Pathologists’ diagnosis involves simultaneous feature 
identification and tumor classification.
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▸ Automatic cancer diagnosis often involves 
independent segmentation and classification steps.
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MOTIVATION

EXAMPLE: GLAND ANALYSIS FOR CANCER DIAGNOSIS

▸ Glands are reliable bio-markers for different types of 
adenocarcinoma: colon, breast, prostate, etc. 
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MOTIVATION

GLAND ANALYSIS FOR CANCER DIAGNOSIS

▸ Glands are reliable bio-markers for different types of 
adenocarcinoma: colon, breast, prostate, etc. 
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MOTIVATION

GLAND ANALYSIS FOR CANCER DIAGNOSIS

▸ Glands are reliable bio-markers for different types of 
adenocarcinoma: colon, breast, prostate, etc. 
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MOTIVATION

GLAND ANALYSIS FOR CANCER DIAGNOSIS
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▸ Should the class information influence the segmentation ?
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▸ Classification requires segmentation-based features … 

▸ but generally, segmentation techniques does not involve 
knowledge of the class …
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STRATEGY

JOINT CLASSIFICATION-SEGMENTATION

▸ We pose the problem of automatic tissue diagnosis as the 
joint task of segmentation and classification.  

▸ Goal: train an end-to-end system to jointly optimize the 
classification and segmentation predictions.  

▸ Using a deep learning model.
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STRATEGY

HYBRID CLASSIFICATION-SEGMENTATION NETWORK 

Input Output
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Class-specific 
spatial priors



LC = � log(Qy(x))
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STRATEGY

CLASS-SPECIFIC SPATIAL PRIORS
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Simonyan et al.  ICLR Workshop, 2014.

   measures the contribution of each 
layer to the final classification score:
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STRATEGY

FULLY CONVOLUTIONAL SEGMENTATION NETWORK
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STRATEGY

WEIGHTED SEGMENTATION LOSS
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STRATEGY

MULTI-LOSS NETWORK
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EXTENDED RESULTS

EXPERIMENTS

▸ Dataset: 

▸ GLaS gland segmentation challenge, MICCAI 2015 [1]. 

▸ 85 training images: 37 Benign, 48 Malignant. 

▸ 80 test images: 37 Benign, 43 Malignant. 

▸ Model training:  

▸ Sequential training: 1) Classifier 2) Segmentation 3) Joint fine-tuning. 

▸ Stochastic Gradient Descent optimization. 

▸ Implemented in Caffe [2].
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[1] Sirinukunwattana et al.  arXiv:1603.00275 (2016). 
[2] Jia et al. arXiv:1408.5093 (2014).



EXTENDED RESULTS

CLASSIFICATION ACCURACY
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Our hybrid classification-segmentation approach increases the 
classification accuracy up to 6% 
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EXTENDED RESULTS

SEGMENTATION RESULTS
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Using class-specific priors increases the segmentation Dice by 6%.

[3] Ronneberger et al.  MICCAI (2015).  
[4] Long et al.  CVPR (2015).
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EXTENDED RESULTS

SEGMENTATION RESULTS
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For malignant glands, using our hybrid network (using VGG16) increased 
the segmentation Dice by 13%.



EXTENDED RESULTS

ISBI 2016 SKIN LESION SEGMENTATION CHALLENGE 
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EXTENDED RESULTS

CLASS ACC
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SEGM JACCARD
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Using segmentation priors increased the classification accuracy by 3%.  

Using class-specific priors increases the segmentation Jaccard by 2%.



CONCLUSION

▸ We proposed a novel multi-loss network for simultaneous 
image segmentation and classification.  

▸ We showed that:  

1. classification can facilitate the segmentation by introducing 
class-specific spatial priors.  

2. segmentation can benefit classification by providing 
region-specific features. 
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