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Abstract

Context: It has been shown that ovarian carcinoma subtypes are distinct pathologic entities with

differing prognostic and therapeutic implications. Histotyping by pathologists has good repro-

ducibility, but occasional cases are challenging and require immunohistochemistry and subspe-

cialty consultation. Motivated by the need for more accurate and reproducible diagnoses and to

facilitate pathologists’ workflow, we propose an automatic framework for ovarian carcinoma clas-

sification. Methods: Our method is inspired by pathologists’ workflow. We analyze imaged tissues

at two magnification levels and extract clinically-inspired color, texture, and segmentation-based

shape descriptors using image-processing methods. We propose a carefully designed machine

learning technique composed of four modules: a dissimilarity matrix, dimensionality reduction,

feature selection and a support vector machine classifier to separate the five ovarian carcinoma

subtypes using the extracted features. Results: This paper presents the details of our implementa-

tion and its validation on a clinically derived dataset of 80 high-resolution histopathology images.

The proposed system achieved a multiclass classification accuracy of 95.0% when classifying un-

seen tissues. Assessment of the classifier’s confusion (confusion matrix) between the five different

ovarian carcinoma subtypes agrees with clinician’s confusion and reflects the difficulty in diagnos-

ing endometrioid and serous carcinomas. Conclusion: Our results from this first study highlight

the difficulty of ovarian carcinoma diagnosis which originate from the intrinsic class-imbalance

observed among subtypes and suggest that the automatic analysis of ovarian carcinoma subtypes

could be valuable to clinician’s diagnostic procedure by providing a second opinion.
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Introduction

It is now accepted that ovarian carcinomas are not a single disease, but consist of a heterogeneous

group of several distinct histotypes1. The World Health Organization (WHO) recommends divid-

ing ovarian carcinomas into five main epithelial types (Figure 1-a): high-grade serous (HGSC),

endometrioid (EN), clear cell (CC), mucinous (MC), and low-grade serous carcinomas (LGSC).

These tumors not only differ at the molecular level but in many other aspects such as the re-

sponse to treatment and aggressiveness2. Until very recently, all ovarian carcinomas were treated

homogeneously, with surgery and/or common chemotherapy regimens depending on the disease

stage, with disappointing results in many cases. It is estimated that 75% of patients with advanced

disease stage experience recurrence after surgery and chemotherapy and ultimately die of the dis-

ease1. Thus, in order to improve outcomes for individual patients and have a better understanding

of ovarian carcinomas, it is important to differentiate between these tumor types as accurately as

possible.

While many clinical and biologic issues regarding ovarian carcinomas remain poorly under-

stood, reproducible histopathological diagnosis of cancer is an important condition for successful

treatment and prognosis3. Occasional cases present significant diagnostic challenges, as there re-

main ambiguities on how to define each subtype and how to characterize them efficiently from

tissue sections. This results in imperfect interobserver agreement3 and reproducibility due to the

subjective nature of the diagnostic procedure.

Automatic histopathology image analysis aims at tackling challenges observed in cancer di-

agnosis and covers different topics such as stain normalization, quantitative image analysis for

cancer grading, automatic detection of tissue components (e.g. nuclei and cytoplasm), image re-

trieval, etc. Several excellent reviews, such as Gurcan et al.4 and Veta et al.5, have summarized

existing methods proposed in this field.

One of the most common applications for automatic histopathology image analysis is the

detection and grading of cancer. Doyle et al.6 used textural and nuclear features for analyzing

breast cancer histopathology images. They showed the importance of texture in classifying low

2



and high grades of breast cancer. Similarly, Al Kadi7 showed the importance of the combination

of statistical and model-based textural features for meningioma tissues classification. Other works

focused on segmentation-based features in order to describe the cytology and morphology of tissue

components. Monaco et al.8 proposed to extract statistics on glandular shapes from segmented im-

ages of prostate histology sections. They showed the effectiveness of these features in classifying

benign vs. malignant tumours. More recently, some works focused on learning features from pixel

intensities to extract specific visual patterns. Caceido et al.9 used a bag of words framework to

detect biological structures from basal cell carcinoma. The goal was to detect this skin carcinoma

type from tissue sections.

In this work, we demonstrate the usefulness of automatic image analysis and machine learn-

ing for ovarian carcinoma subtyping, by employing carefully chosen image processing techniques

to extract clinically-inspired discriminative features. One of the most common application for au-

tomatic histopathology image analysis is the detection and grading of cancer6;7;8;9. Despite their

effectiveness in detecting cancerous from non-cancerous tissues none of the existing works ad-

dressed the automatic identification of ovarian carcinoma subtypes.

We describe our proposed automatic ovarian carcinoma classifier as a “translation” of pathol-

ogists’ diagnostic procedure into a computer vision system that selects discriminative image fea-

tures to perform an automatic diagnosis. An overview of the proposed model is shown in Figure

2. The framework includes four modules: image pre-processing, image segmentation, feature

extraction, and machine learning-based classification.

Material and Methods

Study Cases

A total of 80 representative slides from resection samples were used. The dataset, which

is composed of 29 HGSC, 21 CC, 11 EN, 10 MC, and 9 LGSC images, was obtained 1 from a
1The dataset is available for review at http://www.gpecimage.ubc.ca/aperio/images/

transcanadian/index.html
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previously published trans-Canadian study on ovarian cancer classification3. Each of the 80 H&E

slides was provided with a review diagnosis and labeled by expert pathologists3. The diagnoses

from that study were derived according to 2003 WHO criteria with the following exceptions: nu-

clear atypia and mitotic count were used to further classify serous carcinoma into high grade and

low grade. Mucinous cell type was characterized based on the presence of intracytoplasmic mucin

in cells. The presence of glandular differentiation was accepted as part of high grades serous carci-

nomas and not sufficient to the diagnosis of endometrioid tumors which were characterized based

on squamous differentiation.

Image Pre-processing and Segmentation

Each image is a single core of ovarian biopsy tissue. Tissue slides were digitized at multiple

microscope magnifications with 100 to 900 millions of pixels per image and an average of 650 ±

50 million pixels. To process and reduce the large amount of information embedded in these

multi-resolution digitized histopathology slides, every image was automatically analysed from 120

patches at two different microscope resolutions and different spatial locations. Patch extraction

proceeds as follows (Figure 1-b). We randomly extracted a set of 20 rectangular non-overlapping

500 ⇥ 500 pixel patches (i.e. 5 million unique pixels) at 4x zoom and 100 patches of similar

size at 20x zoom (25 million pixels). Regions where the majority of pixels lie outside tissue (i.e

background pixels) were not selected. Background pixels, which appear white, were detected using

a threshold on pixels’ intensities. This procedure was automatically performed and did not require

any user interaction.

Images were normalized with respect to staining variations using a state-of-the-art staining

normalization technique10. Image segmentation using the graph cuts method11 was then performed

to detect epithelial nuclei and cellular structures. A sample segmentation result is shown in Figure

3-a. While there exists more advanced techniques for nuclei segmentation, we chose to mimic

pathologist’s rough estimation of nuclei density which generally relies on a visual assessment of

the amount of stain observed in the tissue slide.

Image Feature Extraction
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A core component of the automatic ovarian carcinoma classifier is the feature extraction.

Based on discussions with pathologists describing their workflow and diagnostic procedure, we re-

sorted to using the following features extracted at two different magnifications. Low magnification

features (4x) were designed to describe the architectural organization of the tissue via quantifica-

tion of color, texture and shape characteristics, while higher magnification features (20x) quantify

the cytology and morphology of nuclei and cytoplasmic structures. Table 1 summarizes the set of

features used in the automatic ovarian carcinoma classifier.

1) Low magnification features (4x):

Low magnification features comprise color and texture features calculated from the 4x patches.

Color appearance reflects the nucleic acids and proteins prevalence in each image, and are com-

puted as the mean, the standard deviation, the 5th and 95th percentile of each color channel (red,

green and blue) as well as the ratio of red over blue channels.

Color distribution ranges are often similar for some subtypes such as EN and HGSC, which

are more prone to misclassification. To capture color differences more efficiently, we introduce

our color dissimilarity feature. Color dissimilarity is quantified in an unsupervised manner. After

pre-processing the images, we cluster the dataset based on the color histogram of images using

k-means. The number of clusters is defined via cross validation. In our experiments, we set it to 5

clusters. Then, we defined the distance measure (di,j (1)) between distributions of each image in

the dataset and the centroids of each cluster.

dij = 1� exp(�↵||bi � cj||), (1)

where bi is the color histogram of image i, cj is the histogram corresponding to the centroid of the

j

th cluster, and ||.|| is the L2 distance between two color histograms. Here, ↵ is a coefficient for

normalizing the sensitivity of our dissimilarity measure that we set to 0.5 empirically.

Texture features, on the other hand, capture the organization of cells and structural patterns

observed in the tissue, e.g. organized, disorganized, homogeneous, grainy, striped, or check-

ered. Using image processing techniques, we computed two types of texture features relevant

to histopathology images: a multispectral color-texture and a Gabor filter-based feature.
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The multispectral color-texture approach has been shown to increase the performance of

classification applications12. This approach computes several co-occurrence matrices which cap-

ture the number of color pairs between adjacent pixels. We computed a co-occurrence matrix on

each isolated labeled region of interest from the segmented images: nuclei, cytoplasm and stroma

and their respective pairs. This resulted in six matrices: nuclei, cytoplasm, stroma and pairwise

combinations of these three structures. These matrices were then used to compute texture statistics

corresponding to the four first Haralick features13 which describe the average spatial relationship

observed between tissue structures (nuclei, cytoplasm, stroma and their respective pairs). To com-

plement our texture analysis, we used a filtering-based approach that showed excellent results for

texture characterization4. Gabor filter banks14 decompose an image based on its texture for classi-

fication purposes. Multi-channel Gabor filters (i.e. red, green and blue), mimics the human visual

system. Here, the aim is to measure the response of each image to a particular filter described with

a specific frequency and orientation. In our implementation, we used 38 filters. Each filter gave a

different response when applied to the image. We used these responses to compute statistical tex-

ture measures corresponding to Tamura’s texture features15;16 that were designed to discriminate

between different textures more accurately.

2) High magnification features (20x):

At higher magnification, we used the segmented images to compute a set of features describ-

ing the morphology and cytology of cells and nuclei in the tissue. The median nuclear density and

nuclear to cytoplasm ratio (NCR) was quantified on each segmented image by counting the num-

ber of automatically detected nuclei and cytoplasmic structures. We also characterized the nuclear

shape by fitting an ellipse to each segmented nuclei and computing the ellipse major and minor

axis lengths, eccentricity and area (Figure 3-b).

To quantify the cytology, we studied the glandular organization and shape of cells. Cells in

tumors organize in circular or elliptic configurations and cluster into groups of similar shape and

size defining a gland (Figure 4-a). These glands are organized in a similar fashion with three main

components: a central empty region (lumen), a cytoplasm and a nucleus. We detected glands by

automatically looking for lumen regions surrounded by nuclei (Figure 4-b). The convex hull17 of
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the detected gland was used to extract statistical measures describing the gland’s area, circularity

( 4⇡⇤lumen area
lumen perimeter ) and thickness between the lumen and its surrounding nuclei. We also quantified the

nuclei abundance around each gland by counting the number of detected nuclei.

Furthemore, we quantified the hierarchical vs non-hierarchical organization of neighboring

glands within a patch (Figure 4-b). For this purpose, we constructed a network whose nodes corre-

spond to centroids of lumen regions and whose edges connect neighboring centroids (Figure 4-b).

In the constructed network, we grouped nodes into connected components representing neighbor-

ing glands. We then computed the shape similarity (e.g. gland size and eccentricity) across glands

from the same connected component and neighboring connected components. We define three

measurements for to describe the shape similarity between connected components:

- The average number of elements in each connected component, which reflects glands prox-

imity in the tissue.

- Shape similarity s1 which captures the difference between a connected component and all

components in terms of circularity and thickness defined to quantify each single gland (2).

- Size similarity s2 which measures the average lumen area difference between a connected

component and all components (3).

s1(i) =
1

N

NX

j=1

LSVi � LSVj (2)

s2(i) =
1

N

NX

j=1

||Ai � Aj||2, (3)

where LSVi and LSVj are the feature vectors quantifying shape measurement (glands circularity

and thickness) on the i

th and j

th connected components. Ai is the average area of lumens in the

connected component i. N is the number of connected components in each image.

Image Classification

The final feature vector for each image, computed based on the aforementioned descriptions,

was of 179 dimensions (forming the feature space, see Table 1). These features were used in a
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machine learning framework to train a classification model. This model was carefully designed

to overcome the specific difficulties (high intra-class and low inter-class variance) observed in

ovarian carcinoma classification. In fact, the classification model relies on four specific modules:

dissimilarity matrix, feature selection, dimensionality reduction and SVM classifier. Each of these

modules favors better discrimination between each carcinoma subtype. We opted for a linear

classification method with a linear SVM classifier and dimensionality reduction technique as these

techniques have generally fast computation times and most importantly, are less likely to overfit to

our relatively small dataset.

We introduce a dissimilarity matrix that allows us to separate classes in feature space more

effectively. This dissimilarity is defined as the distance between each pair of patients’ feature

vector. The dissimilarity coefficient for each patient is computed based on the minimum sum

distance as follows:

D(Im, In) =
X

i

min
j

d(xm
i , x

n
j ) +

X

j

min
i

d(xm
j , x

n
i ), (4)

where I

m
, I

n are two subjects represented by patches from their WSI. xm
i , x

n
j are the i

th and j

th

patches described by their feature vector, for subjects m and n respectively. The dissimilarity ma-

trix is of size N ⇥N where N is the total number of subjects. This dissimilarity matrix represents

the final feature representation of our training set.

The performance of the classifier intrinsically depends on the separability of each sub-

type/class in this feature space. On top of the dissimilarity matrix, we apply linear discriminant

dimensionality reduction18 that integrates Fisher score for feature selection and linear discriminant

analysis for dimensionality reduction. Using a dissimilarity matrix allows for a better discrimina-

tion of subtypes by selecting a subset of dissimilar and relevant features. The feature selection and

dimensionality reduction modules speed up the computation time.

The final module of the classification model is a linear classifier based on a trained multi-class

support vector machine (SVM)19. More concretely, the classifier learns a set of hyper-parameters

defining four distinct separating hyperplanes (i.e. discriminate between each pair of ovarian car-

cinoma subtype) in the high-dimensional feature space. The classifier was trained on features and
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class labels of training images that always excluded the novel image to be classified.

To test the classifier on an unseen image, all 179 clinically-inspired features were extracted

from the new image and classified using the trained classification model which outputs a predicted

carcinoma for the given novel image.

Implementation details

Each whole slide image was pre-processed using the VIPS library 2 to extract patches at

different magnifications, using the built-in function dzsave to create image pyramids from a

whole slide image. Image segmentation and feature extraction were implemented in Python 2.7
3 using the OpenCV v3.0 library 4, using functions calcHist to extract our color features,

cvGrayscaleMat updated to compute the multispectral color-texture gray-level coocurrence

matrix, getGaborKernel and filter2D to compute the Gabor filter responses and the func-

tion cvconnectedComponents to quantify the glandular organization of tissues. All modules

of our classification pipeline were developed using scikit-learn 5 and the sklearn.svm.LinearSVC

package 6 to train our multiclass linear SVM. All code was tested on a CPU Core 2 Duo E8400 @

3.00 GHz machine.To facilitate direct comparison we release our model and data at the following

URL: http://199.60.17.63.

Results and discussion

Multiclass Classification Accuracy

We carried out a leave-one-patient-out cross validation to test the sensitivity of our method

to the training data used. While iterating over all 80 patients slides, we randomly removed five

patients (one from each class) from the dataset and used them as a test set. At each round, the

training set corresponds to the 75 remaining patients. Also, to test the sensitivity of the method to
2http://www.vips.ecs.soton.ac.uk/index.php?title=Libvips
3https://www.python.org
4http://opencv.org
5http://scikit-learn.org/
6http://scikit-learn.org/
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different tissue patches, we repeated these tests five times using five different sets of automatically

randomly sampled patches from each tissue slide. Table 2 reports the mean and standard deviation

values of the accuracy, sensitivity, specificity and precision of our classifier. At test stage, given

a new tissue sample, the automatic ovarian carcinoma classifier was able to predict a carcinoma

type with an average accuracy of 95.0%. As shown in Table 2, each of the classifier’s modules

played a critical role in the final classification accuracy. We observed a significant improvement in

the classification accuracy as we added each of the modules: dissimilarity matrix, feature selection

and dimensionality reduction (from 72.5% to 95.0%).

Using cross-validation not only allow us to estimate how well our model will generalize to

new test sets, it also shows the sensitivity of the model to different training sets. In fact, when

using an iterated 3-fold cross validation on our dataset of 80 patients, we report a variance of 2.0%

across iterations. This reported variance implies that our model is relatively robust to training set

changes. While these results are helpful to understand the characteristics of the model, they are

still limited to the study cases used in this work and can not be be interpreted as conclusive clinical

validations.

In order to validate the statistical significance of our results, we compare our results with

a pure chance predictor. A random predictor has an average classification accuracy of 20% on

our 5-class dataset. We test whether our classifiers output predictions are statistically different

from a random predictor using a paired Fisher exact test in which the null hypothesis assumes

there is no non-random association between our classifier and a random predictor. We reject this

null hypothesis with a p-value of 5e�24, confirming that our classifiers predictions are significantly

different from the result of a pure chance predictor. We also obtain a correlation coefficient of

0.88 (p=0.0001) between the classifiers predicted classes and the ground truth labels. Again, these

results attest of the statistical significance of our method compared to random predictions.

Class Confusion

We show the (asymmetric) confusion matrix (Figure 5-b) to better visualize which carcinoma

classes (subtypes) are being confused with each other by our system. The automatic classifier’s
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confusion agrees with clinicians’ confusion1 for complex serous carcinoma cases. Moreover to

test our classifier’s robustness against class imbalance during training, we repeatedly performed a

series of leave-one-out cross-validations. We used a test set of five patients (1 per class) and grad-

ually increased the imbalance between the classes in the training data. Each experiment involved

randomly selecting the training and test set from the total dataset. The distribution of classes in

the training set was chosen to create imbalance ratios of 1:1 (balanced), 1:2, 1:3 and 1:7 between

the most and least represented classes. We carried 1000 repetitions of each experiment. We obtain

an average multiclass classification accuracy of 70.0%, 66.9%, 66.7% and 66.8% for training set

imbalance ratios of 1:1, 1:2, 1:3 and 1:7, respectively.

While we expect the class imbalance to affect the average multiclass accuracy (the classifi-

cation drops by 3.1% when training on imbalanced datasets), this effect did not increase with the

increase of imbalance between classes. In particular, the classification accuracy stabilizes despite

of the increase in class imbalance (66% for an imbalance ratio of 1:2, 1:3 and 1:7). These results

may be attributed to the SVM classifiers ability to be robust to highly imbalanced training datasets.

Figure 5-a shows samples of the misclassified subjects from the multi-class experiment. We

can observe the highly diverse phenotypic variability in each class, which is to be expected since

the dataset presents high variability of staining, tissue morphology and screening conditions that

adds to the complexity of the task.

Uncertainty of Prediction

As a second experiment, we trained 20 (5 ⇥ 4) binary classifiers for each subtype pairs

(HGSC vs. CC; HGSC vs. EN; HGSC vs. MC; etc.) in order to quantify how well the proposed

features discriminate between subtypes. In this case the training set was composed of half of the

subjects of both classes involved and the other remaining half comprised the test set. We present

the accuracy for each binary classifier in Table 3. In addition, we report a measure of prediction

uncertainty20 in Table 4.

These pairwise classification accuracy results (ranging from 100% for HGSC vs CC to 55%

for LGSC vs MC and EN) highlight the complexity of ovarian carcinoma diagnosis. In fact, due to
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the high imbalance between HGSC and most of the other subtypes, binary classifiers tend to overfit

to the most represented class. As observed in Table 3, HGSC cases, which are the most frequent

among patients (comprising 36.25% of our 5-class data) yet generally clinically misdiagnosed, can

be successfully identified from all other subtypes (average of 88% accuracy for HGSC vs. others

and no confusion with other subtypes. However, MC and LGSC are more often misclassified by the

SVM classifier (average of 66.5% accuracy for MC vs. others and 73.75% for LGSC vs. others).

These results also show that the set of features used in this study seem to be relevant for HGSC, EN

and CC carcinoma (which are usually characterized by the abundance of nuclei, cellular structures

grouped to form island shapes) but might not be sufficient to discriminate MC, and LGSC.

Conclusion

In this study, we examined the performance of an automatic classification system in predicting

ovarian carcinoma subtypes on a clinically-derived dataset of 80 patients. In contrast to other stud-

ies, this work is the first attempt of automating ovarian carcinoma subtypes classification from

histopathology images. The automatic classifier was designed based on the combination of expert

knowledge on ovarian carcinomas and state-of-the-art computer-vision techniques for histopathol-

ogy image analysis, eliminating the subjectivity that usually affects the diagnostic procedure. Our

automatic system achieved an average accuracy of 95.0% on a multi-class classification of ovarian

epithelial subtypes. The proposed pipeline is fully automatic with a quasi instantaneous test phase

( 1 second on an Intel CPU, E8400 @ 3.00GHz machine).

The results reported in this study are promising but are so far only pre-clinical. Further

investigations should be made on larger cohorts of patients and using independent test sets in

order to make any conclusive comments about the suitability of such automatic systems in clinical

practice.

It should be pointed out that the proposed automatic prediction approach has some draw-

backs. As highlighted in the results, the automatic systems’ performance can be negatively af-

fected by heterogeneous processing and staining, severe or atypical cases and digitization occlu-
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sions. Moreover, as this work is a first attempt to evaluate the performance of an automatic system

for ovarian carcinoma diagnosis, further investigations must be performed on larger cohorts with

an independent test set to fully evaluate the potential of such systems in real practice.

Also, while exploration of more advanced automatic feature learning (e.g. auto-encoders)

and machine learning models (e.g. deep learning) may improve the classification accuracy and is

an important future work, it may also result in a less intuitive automatic pipeline (not biologically or

clinically-inspired) and raises the question of whether such well-performing black-box techniques

will be trusted and useful to pathologists and clinicians. Future work should explore leveraging

histopathology image classification methods that were not designed for ovarian carcinoma.

Finally, although robustness toward the heterogeneous appearance of tissue slides is likely to

be achieved by training the system on larger datasets or adding user supervision during the patch

extraction, handling the class-imbalance intrinsic to ovarian carcinoma diagnosis might require the

design of more elaborate class-specific features. This will be the focus of our future works.
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Figure 1 (a) Tissue samples of the five main recognized ovarian carcinoma types.

HGSC: High Grade Serous Carcinoma; EN: Endometrioid; MC: Mucinous; CC: Clear

Cell and LGSC: Low Grade Serous Carcinoma. (b) Low-resolution (20x) patch extrac-

tion. 20 non-overlapping patches were extracted automatically from each whole tissue

slide. (c) High-resolution (40x) patch extraction. 100 patches were extracted from each

low-resolution patch.

Figure 2 Overview of the proposed automatic ovarian carcinoma classification pipeline.

Figure 3 (a) Segmentation output. The image is partitioned into clusters of similar

color to detect the principal tissue components. We create a mask of each tissue compo-

nent: nuclei (blue), cytoplasm (green), stroma (yellow) and background (white). (b) Nuclei

shape analysis using ellipse (green) fitting. The ellipse shape approximates each nucleus

radius, elongation and area.

Figure 4 (a) Glandular patterns characteristic of each cell-type. (b) Automatic gland

detection on images from tissue slides and features extracted from glands. The glandular

network representing neighboring glands is formed by nodes (blue X) corresponding to

detected glands and edges linking neighboring glands (yellow lines).

Figure 5 Multi-class classification performance. (a) Misclassified tissue samples. The

first row corresponds to sample images from the training set. The final row shows the

predicted class labels. We observe a high range of color, tissue and staining variability

in the misclassified samples. (b) Confusion matrix after leave-one-out cross validation.

Each column of the matrix represents the predicted class, while each row represents the

ground truth class.
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Figure 1: Patch extraction from tissue sections.
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Figure 2: Pipeline of the automatic system.
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Figure 3: Segmentation results.
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Figure 4: Glands analysis.
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Figure 5: Class-confusion.
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Magnification Feature Type Dimensionality Biological Appearance

Low
(4x)

Color 14 Blue VS Red/Pink

Texture 138 Organizad VS Disorganized

High
(20x)

Morphology 5 Nuclei Size, Appearance, density

Cytology 22 Glandular organization: Hierar-
chical VS Non-Hierarchical

Table 1: Features used for classification.
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All features with ... Accuracy(%) Specificity Sensitivity Precision

— 61.2±2.1 0.75 0.51 0.42

Dissimilarity matrix 71.2±1.97 0.78 0.62 0.69

Feature selection 90.5±1.91 0.79 0.85 0.87

Dimensionality reduction 92.5 ±1.98 0.87 0.96 0.93

Table 2: Multi-class classification performance.
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Accuracy (%) HGSC CC EN MC LGSC

LGSC 70 74.3 56.5 64

MC 76 79 54.5

EN 72.5 73.1

CC 99.8

HGSC

Table 3: Binary classification accuracy results.
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Classes HGSC CC EN MC LGSC

Uncertainty (%) 24 23 13 3 25

Table 4: Uncertainty of prediction per carcinoma subtype.
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