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Abstract. It has now been convincingly demonstrated that ovarian car-
cinoma subtypes are not a single disease but comprise a heterogeneous
group of neoplasms. Whole slide images of tissue sections are used clini-
cally for diagnosing biologically distinct subtypes, as opposed to different
grades of the same disease. This new grading scheme for ovarian carcino-
mas results in a low to moderate interobserver agreement among pathol-
ogists. In practice, the majority of cases are diagnosed at advanced stages
and the overall prognosis is typically poor. In this work, we propose an
automatic system for the diagnosis of ovarian carcinoma subtypes from
large-scale histopathology images. Our novel approach uses an unsuper-
vised feature learning framework composed of a sparse tissue represen-
tation and a discriminative feature encoding scheme. We validate our
model on a challenging clinical dataset of 80 patients and demonstrate
its ability to diagnose whole slide images with an average accuracy of
91% using a linear support vector machine classifier.
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1 Introduction

Recent advances in epithelial ovarian cancer diagnosis have shown that morpho-
logic subtypes of ovarian carcinomas (OC) are associated with distinct pathologic
and molecular characteristics. This resulted in the introduction of a new grading
system for OC diagnosis [12,15]. The World Health Organization recommends
characterizing OC as five distinct tumour types: High Grade Serous Carcinoma,
Low Grade Serous Carcinoma, Endometrioid Carcinoma, Mucinous Carcinoma
and Clear Cell Carcinoma (HGSC, LGSC, EN, MC and CC). At present, tar-
geted therapies are being introduced for each subtype and successful treatments
are highly correlated with the accurate classification of these subtypes [13].
Pathologists diagnose OC from tumour biopsies (Fig. 1). Samples of the tu-
morous tissue are collected and examined using Hematoxylin & Eosin (H&E)
stained tissue sections at different microscope magnifications [10]. However, di-
agnosis from histopathology images is impaired by technical factors (e.g. light-
ing, staining variability, operator acquisition procedure) and by pathologists’
experience. Non-expert pathologists often end up performing additional costly
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Fig. 1: Ovarian carcinoma subtypes at different microscope resolutions. HGSC: High
Grade Serous Carcinoma, LGSC: Low Grade Serous Carcinoma, EN: Endometrioid
carcinoma, CC: Clear cell Carcinoma and MC: Mucinous Carcinoma. Each carcinoma
subtype is shown at 4x, 20x and 90x microscope zoom.

tests (e.g. immunohistochemistry) or asking for second opinions. The variability
among tissues coupled with the limited knowledge of ovarian carcinomas sub-
types translates into a moderate agreement among pathologists [11] and a high
mortality rate among patients [1].

A system capable of automatically classifying OC subtypes from whole slide
histopathology images would be valuable for several reasons. First, an automatic
system provides computational abilities enabling rapid screening and learning
from large scale multiresolution images (i.e. too large/detailed for a human ob-
server to examine thoroughly). Second, such an automated system may act as
a second reader while mimicking expert pathologists. Finally, it can benefit the
diagnostic procedure by minimizing the inter-observer variability among pathol-
ogists while adding robustness to the diagnosis.

There is a vast literature on classification and grading of cancer from histopathol-
ogy images [7, 8]. One widely used approach is to design a set of features, usually
based on texture (e.g. SIFT, Gabor filters) or segmentation [14, 4]. More recent
studies have applied unsupervised feature learning techniques to classify cancer-
ous from non-cancerous regions of tissues [9, 3]. For cancer typing from a tissue
section (i.e. classification of subtypes of ovarian cancer), the task has been shown
to be more challenging [16]. Xu et al. [16] proposed to classify subtypes of colon
cancer using multiple instance learning. This weakly-supervised framework uses
hand-designed features and annotated data to first classify a tissue section as
cancerous (or not). Then, a patch-based clustering is applied on cancerous tissue
slides to identify different subtypes of colon cancer at different spatial locations.
In OC diagnosis, this clustering framework is not fully suitable. In fact, differ-
ent regions of OC tissues do not correspond to a different type but to different
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grades of the same subtype, which increases the intra-class variablity. Thus,
OC diagnosis is a multiclass classification rather than a patch-based clustering
problem.

To the best of our knowledge, no existing work has addressed the automatic
typing of OC subtypes. The question we raise in this paper is whether it is possi-
ble to automate the analysis of OC subtypes despite the limited existing patho-
genetic understanding of the disease, the high variability among patients and
within tissues (in terms of staining and grades) and the low agreement between
pathologists. To this end we make the following contributions: (i) we design an
unsupervised feature learning technique based on a hybrid model combining a
sparse multiresolution representation of tissue sections with a discriminative fea-
ture encoding scheme; (ii) we demonstrate that our technique achieves a better
performance on OC than state-of-the-art unsupervised feature learning methods
proposed in histopathology image classification; (iii) we show that our unified
framework captures more complex and discriminative patterns of textures and
shapes that are more suitable for a multiclass typing of tissues. Ultimately, we
validate the proposed approach on real clinical data and show that our pipeline
provides marked improvements over existing techniques.

2 Approach

At a high level, our approach proceeds as follows. We represent a tissue slide X
with a set of unlabeled multiresolution patches [z1,...zp| extracted at different
spatial locations. For each patch x; we learn a new sparse image representa-
tion using a multi-layer deconvolution network (DN) [17]. This representation
is then used to encode a high-dimensional set of discriminative features ¥(x;)
via Fisher Vector Encoding (FVE) [5]. Finally, using a linear SVM, we pre-
dict a carcinoma subtype y; € Y where Y = {HGSC,CC,EN,MC,LGSC}
for each multi-resolution patch of a tissue section. To infer a final carcinoma for
the whole slide, we aggregate the classifiers’ prediction probabilities, P(y;|¢(z;)),
for all patches. Next, we provide the details of these methodological components.

Feature learning: To begin, our goal is to find a new image representation
more suitable for classification. This representation can then be used to extract
robust local image descriptors. This is specifically challenging for OC as the ap-
pearance of the tissue widely differs at different locations and among patients. To
overcome these challenges, we adopt an unsupervised feature learning approach
which has shown to produce more robust features in presence of wide technical
and biological variations [4]. Using a DN, we learn a set of filters that allow us to
reconstruct the original image from convolutions with feature maps (Fig. 2-a). A
feature map can be considered as an activation map where the values are filters’
responses. These filters and feature maps are estimated using a unified optimiza-
tion technique based on the convolutional decomposition of an image under a
sparsity constraint [17]. Feature maps are inferred in a hierarchical fashion (Fig.
2-b) by stacking layers of sparse convolutions to form a multi-layer DN.
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More concretely, a single layer DN decompose an RGB patch z; into a
linear sum of K; latent feature maps z, convolved with filters fy 1 where
k = [1,..., K;]. This reconstruction relies on optimizing the following energy
with respect to z and f:

K1
BE(z:) =MD 21 ® fra — 2ill3 — 1zl (1)
k=1

where the first term is the reconstruction error and the second term encour-
ages sparsity in the latent feature maps. A controls the balance between the
contributions of the reconstruction and sparsity. The sign ® corresponds to the
convolution operation. For a N x M image and filters fj of size H x H, the
resulting feature maps are of size (N + H — 1) x (M + H —1). To better capture
multiresolution patterns, we use a set of filters with adaptive sizes.

In practice, first layer filters of a DN f; 1 (learnt from minimizing E over all
training set) are Gabor-like filters and represent low-level visual information from
the image (Fig. 2-a). To capture more complex patterns, we learn a hierarchy of
filters by stacking multiple layers of deconvolutions. The hierarchy is formed by
treating the feature maps of layer [ — 1 as input to layer [. Each of these layers
attempts to directly minimize the reconstruction error of the input patch while
inferring sparse feature maps. During learning, we use the entire set of patches
to seek for latent feature maps for each image and learnt filters. At layer [, we
minimize the following energy function:

P K1 K; P K
Ei(e) =AY Y 1Y G ® fed) = 2l + Y > llzkalh (2)
i=1 j=1 k=1 i=1 k=1

where P is the total number of images, K;_; and K; are the total number of
feature maps at layer [—1 and [ respectively, zj; are the inferred feature maps at
layer [, and fj; are the learnt filters. Feature maps z; ;—1 are inferred at layer [—1.
A max-pooling operation is applied on feature maps between layers. The energy
function Ej(z;z, f) is biconvex with respect to z and f thus the optimization
is solved using an iterative procedure [17]. At inference, we set the optimal z
given a set of filters f and input images x. This corresponds to solving a convex
energy function with a sparsity constraint. This step is optimized via stochastic
gradient descent which showed to be efficient for large-scale problems [17].
Each patch is now represented by a hierarchical set of feature maps. We
densely construct local image descriptors by splitting each feature map into
overlapping quadrants of fixed size and pooling over the absolute value of ac-
tivations in each quadrant. This pooling procedure adds translation invariance
to the local descriptors [17]. We obtain a final set of local descriptors ¢(x;) by
concatenation of the pooled activations from each feature map (Fig. 2-c).

Fisher Vector Encoding: Encoding features from the local descriptors
¢(x;) is a critical step for designing discriminative features [6]. We use FVE to
define a mapping or “encoding” of the descriptors ¢ into a higher dimensional
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Fig. 2: Representation of a 2-layer DN. Feature maps Z; , convolved with learnt low
and mid-level filters, form a sparse representation of an image. K; and Ks refer to
the number of feature maps in each layer. Aggregation of the feature maps is used to
construct dense local descriptors ¢. In our implementation, we use a 3-layer DN.

feature space. Here, our assumption is that higher dimensional features facilitate
class-separation and enable us to use simple linear classifiers. To do this, we first
learn a codebook of Gaussian Mixture Models (GMM) from the total set of local
descriptors. Each Gaussian models the probability P(¢|0), where 6 = (ug, 04, 7 :
g = 1,...,G) are the parameters representing the mean, covariance and prior
probabilities of the Gaussian distribution. The GMM can be thought of as a soft
dictionary of words in a bag-of-words (BoW) scheme. To encode features from
dense local descriptors, we used FVE to compute the average first and second
order differences between descriptors and GMM centers. For each GMM ¢ and
descriptor d € ¢, we compute the following vectors:

D

_ 1 (d - Ng)
gﬂ;g - D\/ﬂ_—g —~ ’Yd(g) Jg ’
1 ¢ (d — 1)’ 3
ga,g*r %;W(g) {031} ) (3)
’)/d(g) — 7Tg./\[(d; Mgvog)

S N (d; iy 07)

D is the total number of local descriptors per patch and d represents one local
descriptor for patch x;. v4(g) is a weight for the g*" Gaussian distribution. We
note ¥(x;) = [Gu1s---,9u,6,G0,1,---,0s,c] the final feature vector for a given
patch in each training image. The dimensionality of the feature vector is 2xDx G
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where G is the codebook size (number of Gaussians).

Classification: Given the final feature representation for each patch in all
training images, we train a linear multiclass SVM classifier. When used with
high-dimensional feature vectors, linear SVM is more suitable than other non-
linear classifiers (e.g. Random Forests or Kernel SVM) as it has faster training
time and is less likely to overfit to the data. To predict a carcinoma subtype for
a novel tissue slide X, we extract the local descriptors ¢ for all patches z; of this
new tissue. Then, we encode features ¥ via FVE and classify these features using
the trained SVM. The classifier’s output probabilities P(y;|1(x;)) are aggregated
using geometric mean to infer a final tissue label P(y;]|X).

3 Experiments and Discussion

We evaluated our approach on a dataset composed of 80 patients (29 HGSC,
21 CC, 11 EN, 10 MC and 9 LGSC). Each tissue was labeled by two expert
pathologists [10]. We extracted 50 patches at 20x and 90x resolution on every
whole slide image. Using these colour patches, we trained a 3-layer DN with filter
sizes 7 x 7 for 20x patches and 10 x 10 for 90x patches, at each layer. In all our
experiments, the SVM classifier was trained on 40 patients (selected randomly)
and tested on the rest. We compared the different components of our method to
existing approaches used in histopathology image classification. All parameters
inherent to each technique were determined via cross-validation on the training
set. Table 1 reports our results for the following experiments.

Sparse tissue representation: We tested the discriminative ability of our
features. A sparse representation was obtained from the feature maps of a multi-
layer DN from which we densely constructed local descriptors. These descriptors
were then vector-quantized using a BoW representation [2] and used to classify
each patch. We used the traditional SIFT local descriptors and Sparse Coding
(SC) [3] as comparison. We extracted 16 x 16 multiresolution samples from each
image on a grid with step size 8 pixels to generate dense SIF'T descriptors and SC
dictionary. The same BoW quantization was applied on top of both descriptors.
We observe in Table 1 that our representation allows for better discrimination
between OC subtypes even when used with a simple quantization technique
(BoW). Additionally, we see that higher layers of the DN induce a discrimina-
tion gain. This is linked to the convolutional property of the DN, which enables
the model to learn more complex representations at higher layers (Fig. 3).

Feature Encoding: We also tested the performance of FVE compared to the
traditional BoW with Spatial Pyramid Matching (SPM) pooling technique [4].
Table 1 shows the significant gain achieved using FVE instead of BoW encodings.
Using a relatively small number of GMMs, FVE gives an accuracy of 92.1% . In
contrast, similar accuracy could not be achieved using BoW even with a larger
number of visual words (e.g. 1024).

Classification: We report the final multiclass accuracy after using the geo-
metric mean to aggregate the classifiers probabilities and predict a tissue label
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Fig. 3: Filters learnt using SC and multi-layer DN. We note how filters obtained with
DN are more diverse at higher layers and span different orientations more uniformly.

from multiresolution patches. We note how this fairly simple aggregation tech-
nique results in performance gain in all experiments. We also report the mean
Area Under ROC Curve (AUC) after one-against-all classification to better ap-
preciate the differences between methods.

Features |Encoding |Pooling |Dictionary|Accuracy Accuracy Mean AUC
Size (Patches) (Tissues) (Tissues)

SIFT BoW - 1024 32.5%+0.8 37.5%+0.6 |-

SIFT BoW SPM 512 57.5%40.5 61.5%+0.8 |-

SIFT FVE SPM 64 66.7%+0.5 68.5%+0.5 [0.67

SC BoW - 1024 57.5%+0.4 59.5%+0.5 |-

SC BoW SPM 1024 68.0+2.0 71.5%+1.5 |0.71
DN-1 BoW - 256 35%=+0.1 37.5%+0.8 |-

DN-2 BoW - 256 42.840.2 45.5%+0.8 |-

DN-3 BoW - 1024 48.0+0.8 51.5%+0.9 |-
DN(1-2) |FVE SPM 64 67.9£1.5 69.5%+1.2 |-
DN(2-3) |FVE SPM 64 83.7+1.2 85.0%+0.9 |-
DN(1-3) |FVE SPM 128 89.4%+1.7 91.0%+1.0 |0.86

Table 1: Performance of different methods on ovarian carcinomas dataset. We report
the average accuracy of prediction on patches and tissue sections. Experiments were re-
peated 3 times on shuffled training and test sets of 40 patients each. The best dictionary
size is shown for each experiment. Mean AUC is shown using one-against-all.

4 Conclusion

This paper is the first work to automate ovarian carcinomas subtypes classifi-
cation from histopathology images. We proposed a method that learns robust
features by capturing complex tissue patterns. The unsupervised nature of our
feature learning framework enabled us to discover discriminative patterns from
limited data. Our approach proved more suitable for the classification of OC and
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outperformed existing methods. Future work will focus on combining this hybrid
feature representation with latent classification models to discover discriminative
regions on tissues. We are also interested in experimenting with larger datasets,
as new problems arises when more data becomes available, which together mo-
tivate new solutions to be developed.
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