Volume of a sphere with a hole drilled through its centre.
Andrew DeBenedictis.

In the diagram below a hole is drilled through the centre of the sphere. We know the length h ($2 h$ is the height of the removed cylinder) and nothing else!. The claim is that the volume of the remaining solid is $\frac{4}{3} \pi h^{3}$. i.e. the volume of a sphere of radius h !

Figure 1: We know the length h and nothing else. What's the volume of the remaining solid?

The volume element in cylindrical coordinates:

$$
\begin{gathered}
d V=r d \theta d r d z \\
0 \leq \theta<2 \pi, \quad r_{0} \leq r \leq \sqrt{R^{2}-z^{2}}, \quad-h \leq z \leq+h
\end{gathered}
$$

where R is the radius of the original sphere (a quantity we do not know). The quantity r_{0} is the radius of the bored out cylinder:

$$
\begin{equation*}
r_{0}=\sqrt{R^{2}-h^{2}} . \tag{1}
\end{equation*}
$$

Integrating over the upper-half of the solid and multiplying by two:

$$
\begin{aligned}
V & =2 \int_{z=0}^{h} \int_{r=r_{0}}^{\sqrt{R^{2}-z^{2}}} \int_{0}^{2 \pi} d V \\
& =2 \int_{z=0}^{h} \int_{r=r_{0}}^{\sqrt{R^{2}-z^{2}}} \int_{0}^{2 \pi} r d \theta d r d z \\
& =2 \pi h\left[R^{2}-\frac{h^{2}}{3}-r_{0}^{2}\right] .
\end{aligned}
$$

By putting in r_{0} from (1) we get

$$
V=\frac{4}{3} \pi h^{3} .
$$

