List of Figures

1.1	A chart (χ, U) and projection mappings	2
1.2	Two charts in M and a coordinate transformation	3
1.3	The polar coordinate chart.	4
1.4	Spherical polar coordinates.	5
1.5	Tangent vector in \mathbb{E}_3 and \mathbb{R}^3	6
1.6	A parametrized curve γ into M	12
1.7	Reparametrization of a curve.	13
1.8	The Jacobian mapping of tangent vectors	23
1.9	A vector field $\vec{\mathbf{U}}(x)$ along an integral curve $\xi(\cdot, x)$	36
1.10	A classification chart for manifolds endowed with metric	65
1.11	Parallel propagation of a vector along a curve.	75
1.12	Parallel transport along a closed curve.	76
1.13	Parallel transport along closed curves on several manifolds	76
1.14	Two-dimensional surface generated by geodesics.	79
1.15	Geodesic deviation between two neighboring longitudes	81
1.16	A circular helix in \mathbb{R}^3	83
1.17	A two-dimensional surface \sum_{2} embedded in \mathbb{R}^{3}	89
1.18	A smooth surface of revolution.	92
1.19	The image $\sum_{N=1}^{N}$ of a parametrized hypersurface ξ	94
1.20	Coordinate transformation and reparametrization of hypersurface ξ .	95
1.21	Change of normal vector due to the extrinsic curvature	99
9.1	A tangent vector $\vec{\tau}$ in M and its image $\vec{\tau}$ in \mathbb{D}^4	06
2.1	A tangent vector \mathbf{v}_{p_0} in M_4 and its image \mathbf{v}_{x_0} in \mathbb{R}	00
2.2	Null cone \mathcal{N}_{x_0} with vertex at x_0	.00
2.0	A Lorentz transformation inducing a mapping between two coordinate	00
9.4	primes. \dots	19
2.4	Images I_S, I_T , and I_N of a spacence, timelike, and a null curve I	12
2.0	ine three-dimensional hyper-hyperboloid representing the 4-velocity	15
26	A world tube and a sume conception a fluid stream line	10
2.0	A world tube and a curve representing a huld stream line	-19 -01
2.1	A doubly-sliced world tube of all extended body.	- 41
2.0	mapping of a rectangular coordinate grid into a curvillear grid in the	20
2.0	space-time mannoid	20
2.9	A coordinate transformation mapping nan-lines L_+ and L into half-	
	lines L_+ and L	30

List of Figures

0.1.1	Three massive particles falling freely in space under Earth's gravity.	140
2.11	Space and time trajectories of two geodesic particles freely falling to-	
	wards the Earth	141
2.12	Qualitative representation of a swarm of particles moving under the	
	influence of a gravitational field	142
2.13	Fig.a) shows the parallel transport along a non-geodesic curve.	
	Fig. b) depicts the F-W transport along the same curve	149
2.14	Measurement of a spacelike separation along the image Γ	151
2.15	A material world tube in the domain $D_{(b)}$	166
2.16	Analytic extension of solutions from the original domain $D_{(e)}$ into \widehat{D} .	170
2.17	Five two-dimensional surfaces with some peculiarities. \ldots \ldots \ldots	170
2.18	Fig. a) shows a material world tube. Fig. b) shows the continuous $\vec{\mathbf{U}}$	
	field over Σ	188
2.19	A doubly-sliced world tube of an isolated, extended material body	191
2.20	Domain $D := \mathbf{D}_{(0)} \times (0, t_1) \subset \mathbb{R}^4$ for the initial value problem	208
9.1	The line is a balance if 1 M of the Osher work it are time	941
ა.1 ვე	1 wo-dimensional submanifold M_2 of the Schwarzschild space-time	241
ა.⊿ ეე	Rosette motion of a planet and the perineiron shift	241
3.3	I he deflection of light around the Sun.	249
3.4	Two <i>t</i> -coordinate lines endowed with ideal clocks	250
3.5	Qualitative representation of a spherical body inside a concentric shell.	259
3.6	A convex domain D in a two-dimensional coordinate plane	270
4.1	The two-dimensional and the corresponding axially symmetric three-	
	dimensional domain.	000
		290
4.2	Two axially symmetric bodies in "Euclidean coordinate spaces"	290 293
$4.2 \\ 4.3$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body.	290 293 .320
$4.2 \\ 4.3$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body.	290 293 .320
4.24.35.1	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart	290 293 .320 367
4.24.35.15.2	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2 \dots \dots \dots$	290 293 .320 367 368
$ \begin{array}{r} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ \end{array} $	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$ The mapping X and its restrictions $X_{ }$	290 293 .320 367 368 374
$ \begin{array}{r} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ \end{array} $	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 .320 367 368 374 375
$\begin{array}{c} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$ The mapping X and its restrictions $X_{ }$	290 293 .320 367 368 374 375 377
$\begin{array}{c} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 .320 367 368 374 375 377 378
$\begin{array}{c} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$ The mapping X and its restrictions $X_{ }$	290 293 .320 367 368 374 375 377 378
$\begin{array}{c} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 .320 367 368 374 375 377 378 382
$\begin{array}{c} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$ The mapping X and its restrictions $X_{ }$	290 293 .320 367 368 374 375 377 378 382 383
$\begin{array}{c} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 .320 367 368 374 375 377 378 382 383 385
$\begin{array}{r} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$ The mapping X and its restrictions $X_{ }$	290 293 320 367 368 374 375 377 378 382 383 385
$\begin{array}{r} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 .320 367 368 374 375 377 378 382 383 385 385
$\begin{array}{r} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 .320 367 375 377 378 382 383 385 387 .388
$\begin{array}{r} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \\ 5.12 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 320 367 368 374 375 377 378 382 383 385 387 .388
$\begin{array}{r} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \\ 5.12 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 .320 367 368 374 375 377 378 382 383 385 387 .388 389
$\begin{array}{r} 4.2 \\ 4.3 \\ 5.1 \\ 5.2 \\ 5.3 \\ 5.4 \\ 5.5 \\ 5.6 \\ 5.7 \\ 5.8 \\ 5.9 \\ 5.10 \\ 5.11 \\ 5.12 \\ 5.13 \end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 .320 367 368 374 375 377 378 382 383 385 385 385 387 .388 389 390
$\begin{array}{r} 4.2\\ 4.3\\ 5.1\\ 5.2\\ 5.3\\ 5.4\\ 5.5\\ 5.6\\ 5.7\\ 5.8\\ 5.9\\ 5.10\\ 5.11\\ 5.12\\ 5.13\\ 5.14\end{array}$	Two axially symmetric bodies in "Euclidean coordinate spaces" A massive, charged particle at $\mathbf{x}_{(1)}$ and a point \mathbf{x} in the extended body. Qualitative picture depicting two mappings from the Lemaître chart The graph of the semi-cubical parabola $(\hat{r})^3 = (\hat{\nu})^2$	290 293 320 367 368 374 375 377 378 382 383 385 385 387 388 389 390

5.15	Locations of horizons, ergosphere, ring singularity etc. in the Kerr-	
	submanifold $x^4 = \text{const.} \dots \dots$	404
5.16	The region of validity for the metric in $(5.100iii)$ and (5.99)	410
5.17	The region of validity for the metric in (5.101)	411
5.18	The submanifold M_2^* and its two coordinate charts. \ldots \ldots \ldots	412
5.19	The maximally extended Kerr submanifold M_2^*	413
5.20	Qualitative representation of an exotic black hole in the T -domain and	
	the Kruskal-Szekeres chart.	423
5.21	Collapse into an exotic black hole depicted by four coordinate charts.	430
5.22	Qualitative graphs of $y = [\theta(s)]^{-1}$ and the straight line $y = \Omega(s) :=$	
	$y_0 + (1/3) \cdot (s - s_0)$	433
6.1	Qualitative graphs for the "radius of the universe" as a function of	
	time in three Friedmann (or standard) models. \ldots	440
6.2	Qualitative representation of a submanifold M_2 of the spatially closed	4 4 1
6.9	space-time M_4	441
0.3	Qualitative graphs of $y = [\theta(s)]$ and the straight line $y = y_0 + \frac{1}{3}(s - s_0)$.430
0.4	Comparison of the square of the cosmological scale factor, $a^{-}(t)$	407
0.0	Qualitative graphs of two functions $\zeta(\beta)$ and $z(\beta)$ corresponding to	176
66	the particular function $n(\beta) := \varepsilon \cdot \beta$	470
0.0 6.7	The quantative graph of the function $\zeta(\beta)$ for $0 < \beta < 1$	411
0.7	Qualitative graphs of a typical function $n(\beta)$ and the curve comprising of minima for the one parameter family of such functions	178
69	Or minima for the one-parameter family of such functions	410
0.8	Graphs of evolutions of functions depicting the scale factors	400
7.1	A tetrad field containing two spacelike and two null vector fields	484
8.1	A plot of the function in (8.39)	573
8.2	A plot of several solutions to the Emden equation.	576
8.3	The graph of the function $r = \coth x - 1 > 0$	580
8.4	Graphs of the eigenfunctions $U_{(0)}(x)$, $U_{(1)}(x)$ and $U_{(2)}(x)$	584
8.5	Properties of the solution $u_{(0)}(r)$	588
8.6	Qualitative plots of three null cones representing radial, null geodesics.	589
8.7	Properties of the solution $u_{(2)}(r)$	590
A1.1	Two twice-differentiable parametrized curves into \mathbb{R}^N	595
A1.2	The mappings corresponding to a tensor field $\phi^{(r+s)}(x)$	597
A1.3	Representative spacelike hypersurfaces in an ADM decomposition of	
	space-time.	607
A2.1	Classification diagram of p.d.e.s.	612
A2.2	Graphs of non-unique solutions.	627
A5.1	Quantities relevant in the solution of the linearized field equations.	650
A5.2	The $+$ and \times polarizations of gravitational waves	652
A5.3	Detection parameters of the LIGO and LISA detectors	653
A6.1	A possible picture for the space-time foam	655
A6.2	An inter-universe and intra-universe wormhole.	656

xvi

A6.3 A cross section of a wormhole profile curve and corresponding surface
of revolution
A6.4 A "top-hat" function
A6.5 The expansion of spatial volume elements in a warp-drive space-time. 661
A6.6 The distribution of energy density for a warp-drive space-time 662
A6.7 Two examples of closed timelike curves
A6.8 The embedding of anti-de Sitter space-time in a five dimensional flat
space-time with two dimensions suppressed
A6.9 The light-cone structure about an axis $\rho = 0$ in the Gödel space-time.665