=
Ay TSRS

DDoS Attack Analysis and
Prevention Measures

HTTP://WWW.SFU.CA/~AHMADA/ENSC427/MAIN.HTML

Group 5: Mohammad Ahmad (ahmada@sfu.ca), Ryadh
Almuaili (ralmuail@sfu.com) | ENSC 427 | March 19, 2017

Table of Contents

LASE Of FIGUIES.c..eeutitiiieeieeieesee ettt ettt ettt ettt ettt et et e st et e s st et e naeeneensesaeensens ii
LASE OF TADIES ..ttt ettt ettt e s bt et e be st et e beennennens iii
GLOSSATY .ttt ettt ettt et e e s b e h et e bt et te st et e e et e st e teentenbesneeneens iv
LADSETACE .ttt ettt et ettt et e s et e e bt e st e b e e st et e heen e e teeh e et e be et enbeeseentenaenaten 1
P30 § 318 (o Te 18 et [0) o BSOSO SRS 1
3.DD0S AttaCKk OVEIVIEW ..eceviiiiiiiiiiiiieiiieeeeie ettt sttt e sete e e et e et e e te e seessaesraessseesseesseeseeseessnas 3
4. TYPES OFf ALLACKS ..ottt ettt et et e e e st et e nbeeneeneas 4
5. AtEACK METROMAS ...oieeiciieieeee ettt ettt et e e ra e et e e beeraenaas 4
5.1 DOS AttaCk MEtROASoouviiiiiiieciicceeeee ettt st ve e sneas 4
5.2 DD0S Attack MethOdS.....ccouiiiuiiiiiieiiieiieieceeeecee ettt ve e sneas 5
6. Example of a DDoS Attack: BBC website attackccceeeeviereniiiiinieieiesceeceeeeeeene 6
7. Importance of analyzing DDo0OS Qttacksccecierieriirierienieiesieeiesieseee et 6
8. Prevention MethOdSooviiiiiiiceeecee et et e e eaee e et eenns 7
9. QUEUING AIGOTIERIMNS ...cuiiiiiiiiieieeee ettt sttt eneens 8
9.1 DIOPTAIL ..ttt sttt st 8
0.2 RED ettt et e s et e e s et e e e ettt e e e e abe e e e taeeeennbaeeeennreaeeanns 8
Lo T 3 1 2 LU URRURUSPRRN 9
10. Related WOTK.....c.oiiiieiiee ettt sttt st 10
1. STMUIATION 1.ttt ettt ettt et s b e et e b e sae e e st e eneetesseenseee 10
11.1 SIMUIAtiON TOPOLOZY ..evvenviriieiiriieieteee ettt st sttt st e s neeas 1
11.2 SIMUIAtion Parameters.........cocuivieieriirieierieeiesieeeeie ettt sttt et neeas 1
11.3 SIMUlation RUN TIME c..ccviiiiiiiciiceeeee ettt e e enes 12
1.4 ANALYSIS 1ttt ettt ettt ettt e h et n ettt e e e bt e neebeeaeentenbeennentens 14
11.4.1 System performance using DropTail queuing algorithmccccooceviivininiinnnnnn. 14
11.4.2 System performance using RED queuing algorithmccccooceveniniiinininnencnieene 16
11.4.3 System performance using SFQ queuing algorithm..........ccccooovevininiininiiiiine 17
11.4.4 DropTail vS RED VS SFQ ...cciiiiiiieiiiiieieeiteiesteeete sttt sttt st 17

12. SCOPE Of FULUT® WOTK ..ottt 21

13, CONCIUSION 1.ttt et e et e e be e taeeaaeenseenseesseesseesssessseesseenseenns 21
APPENDIX ..ottt ettt ettt et e e s e s e et e s s e s et ese e st es e eseesees et et entenneneeneeneesenns [
CODE LISTING .. .cottiteteieieieietteieeteetestestesseseaetesessessessessensensesseseeseesessessessensensensessenseseesessenss [
DROPTAIL ..ottt ettt ettt ettt st a et et e e st eseeseeseesess e sensensenseneeseeseesensan [
RED ..ottt ettt ettt sttt ettt a et e st e b et et et et et eneeneeneeaenaenten XIX

SFQ ettt h et et ettt et n e et e a e te et et et enneneenens XXXVIII

List of Figures

Figure 1: Conceptual diagram of DDOS [10]c.creiriiriiiiniiiiiie e 2
Figure 2 General structure of DDoS attack [1][2] . cceeviviiriririeieieieeeceeeese e 3
Figure 3 Expected number of connected devices between 2014 - 2021 [15] .cccecevvveeriienicnenne 7
Figure 4 DropTail Queue algorithm [13].....cccoeiiiiiiiiiii e 8
Figure 5 RED Queue algorithm [14]ccooveieieieieieieeeeeeee e 9
Figure 6 SFQ Queue algorithm [14]coceeieieieieieeieieeeeeee et 9
Figure 7 Simulation topology before attackcccoeveevieririieiinieieeceeee e 1
Figure 8 Simulation topology before attackccooveeiieriiiieninieieeceeceeee e 13
Figure 9 Simulation topology after attackcccevereeiieniinieereeees e 14
Figure 10 Simulation results when DropTail queuing is used..........cceeeeveevirieneniesieneeieens 15
Figurenn Simulation results when RED queuing is usedccecevivienieniniienenieieneeeens 16
Figure 12 Simulation results when SFQ queuing is usedcceceevvevereenieniniienenieieseeeeens 17
Figure 13 Client 4 simulation results using the three different queues...........ccccevuereeennen. 18

PAGE ii

List of Tables

Table 1 : Client 4 BW USING different QUEUES...........c.ceevereevereeresesesessesessesessesessesessesessesessssesesesnnes 20

PAGE iii

Glossary

DDoS: Distributed Denial of Service
DoS: Denial of Service

SFQ: Stochastic Fairness Queuing
RED: Random Early Detection
ICMP: Internet Control Message Protocol
IP: Internet Protocol

TCP: Transmission Control Protocol
SYN: Synchronize

ACK: Acknowledge

UDP: User Datagram Protocol

BW: Bandwidth

TFN: Tribe Flood Network

IoT: Internet of Things

FIFO: First In First Out

Mbps: Megabits per second

ns-2: Network Simulator 2

SFU: Simon Fraser University

UoC: University of Calgary

SPAWAR: Space and Naval Warfare Systems Command

PAGE iv

1.Abstract

Distributed Denial of Service (DDOS) attacks have become a major problem for
service providers. They undermine the capability to provide efficient and reliable
application and services. In this project, using ns-2 we simulated and analyzed a
DDOS attack which exploits the bandwidth limitations of a server. We then
implemented three different queuing algorithms to mitigate the BW loss to
legitimate users. We found that using SFQ queuing algorithm was most effective
in ensuring that users got their fair share of connection to the server. RED
queueing was second in our BW analysis and Droptail came in last. In future work
we suggest use of a bigger topology that is more consistent with an actual DDoS
attack and analysis of constant performance achieved by the first clients of each
router.

2.Introduction

Distributed denial-of-service (DDoS) attacks are becoming a global issue to
businesses nowadays. They are a constant threat to organizations and institutions
by threatening service performance and shutting down websites and mail servers.
DDoS attack is a type of DoS attack where multiple compromised systems are
being used to target a single system. The compromised systems traffic is flooded
which leads to service denial to legitimate users. There are different types of DDoS
attacks such as Traffic attacks, Bandwidth attacks and Application attacks.

1|Page

Zombies

Victim

Figure 1 : Conceptual diagram of DDoS [10]

In this project, we examined:

Various attacks methods

Approaches to their attacks

Prevention methods

Review attack on BBC website

Why DDoS is an important topic to address?

Previous work were DDoS attacks are analyzed
The main scope of this project we will be using ns-2 to:

e Simulate a bandwidth DDoS attack and analyze the effect and damages it
can cause to the services provided by a system

e Simulate the DDoS attack using DropTail, SFQ and RED queuing
algorithms under the same simulation parameters

e Compare the performance of the system after applying the three different
queuing algorithms

PAGE 2

3.DDoS Attack Overview

A real attacker deploys daemon attack programs in multiple host computers, and
deploys a master program, that controls and coordinate the daemons, in another
host computer. When the real attacker wants to launch an attack, an execute
command is sent to the control master program which will then execute all the
daemons under its control. After that, the daemons will attack the victim. The four
main components of an attack are:

A real attacker

A control master program

Attack daemon agents

The victim

The general structure of a DDoS attack is shown in Figure 2 below.

S W

Real Attacker

"execute”

Master

"execute” "execute”
"execute”
Daemon Daemon Daemon
attack attack attack
Victim

Figure 2 General structure of DDoS attack [1][2]

PAGE 3

4. Types of Attacks

There are various types of attack which target different services, such as

Flooding system traffic which leads to service denial to legitimate users

® Connection disruption between two machines, thereby preventing access to
a service

® Preventing a particular system or user from accessing a service

5. Attack Methods

In this section we will go over some the different methods of DoS and DDoS
attacks.

5.1 DoS Attack Methods

Different DoS attack methods make use of different protocols to exploit a system’s
weakness, some of which are:[2][3]

5.1.1 SMURF

Smurf -> ICMP: In smurf attack a large amount of Internet Control Message
Protocol (ICMP) echo traffic is sent to a number of Internet Protocol (IP)
broadcast addresses. The ICMP echo packets are carry a source address of the
target(spoofed address) [7]. Most systems on an IP network accept ICMP echo
requests [8] and reply to them with an echo reply to the source address of the
victim. This multiplies the traffic by the number of responding hosts. “ On a
broadcast network, there could potentially be hundreds of machines to reply to
each ICMP packet. The process of using a network to elicit many responses to a
single packet has been labeled as an amplifier. [2]”

5.1.2 SYN FLOOD

SYN Flood -> TCP handshake: SYN flood exploits the three way TCP handshake,
which is required to establish a connection before a service is made available to a
client. In a typical handshake a server receives an initial SYN request and replies
with a SYN/ACK and waits for an ACK. In a SYN Flood the server is flooded with

PAGE 4

SYN requests which are never acknowledged, this leads to the connection buffer of
the server getting filled up leaving no room to process any more incoming
connections. [2]

5.1.3 UDP FLOOD ATTACK

e The attacker uses forged UDP packets to connect attacker and the victim.
e Implemented exchange rate is designed to deplete the Bandwidth(BW)

provided by the victim

5.2 DDoS Attack Methods

When a DDoS attack is implemented it makes use of the aforementioned DoS
techniques to expand the attack and to facilitate communication between control
master program and the attacker. Some of the DDoS attack techniques are
discussed in this section.

5.2.1 TFN

ICMP -> (any DoS): in TFN command line interface is used to communicate
between the attacker and the control master program. Interaction among the
control master and attack daemons is achieved through ICMP echo reply packets.
TFN’s attack daemons can implement Smurf, SYN Flood, UDP Flood, and ICMP
Flood attacks. [2]

5.2.2 STACHELDRAHT
Stacheldraht is based on TFN except in place of ICMP it uses encrypted TCP

connection in the first stage. Control and communication between control master
and its daemons is done through TCP and ICMP.

PAGE 5

5.2.3 TRINOO

TCP -> UDP Flood: Trinoo uses TCP for connection between the main attacker
and the control master program and UDP for communication between the master
and attack daemons. It is used in UDP flood attacks.

There are other complex variations that incorporate various protocols at various
stages of an attack to make detection of the attack and tracing the attacker
difficult for the victim.

6. Example of a DDoS Attack: BBC website attack

Back on the new year’s eve of 2015, a group of hackers have launched a huge DDoS
attack on BBC’s website. The entire domain of BBC including television and radio
player were down for more than three hours. The tool that was used to deploy the
attackers was capable of generating up to 600 Gbps on BBC’s website. This attack
was believed to be one of the biggest DDoS attacks on history. [11][12]

7. Importance of analyzing DDoS attacks

The Internet of Things (IoT) sensors and devices are constantly increasing and the
world is expected to have around 28 billion connected devices by 2021 [15]. This
enormous increase in the connected devices and sensors will allow attackers to
compromise more connected devices to generate huge volume based attacks in an
increasing rates.

PAGE 6

THe INTERNET OF THINGS
Connected devices (billions)
_m e [25,
— Cellular loT 0.4 1.5 27%
o I 14.2 22%
L1 =5

2014 2015 2016 2017 2018 2019 2020 2021 2015 2021

30

25

20

Figure 3 Expected number of connected devices between 2014 - 2021 [15]

Studying DDoS attacks and their different prevention and attacking methods will
help us protecting intellectual properties and corporates as the world of
technology develops. DDoS attacks could lead to incredible loses such as[16]:

Hardware replacements
Customers trust
Personal information
Reputation lose

Reduce productivity
Downtime costs

8. Prevention Methods

Some ways to prevent a DDoS attack are:

Filtering Routers: Filtering all packets passing through the network,
protects from attacks conducted from neighboring networks, and prevents
the network itself from being an unaware attacker [3]
Disabling IP Broadcasts: By disabling IP broadcasts, host computers can no
longer be used as amplifiers in ICMP Flood and Smurf attacks
Other common ways: [2]

O Increase the size of the connection queue,

O Decrease the time-out waiting for the three-way handshake, and

0 Employ vendor software patches to detect and circumvent the

PAGE 7

problem.

O Modifying queuing algorithm in routers

9. Queuing Algorithms

Since the focus of this project is the use of queuing algorithms to analyse
performance we introduce here the algorithms that we used in the simulations.

9.1 DROPTAIL

Each packet is treated identically and when queue filled to its maximum capacity
the newly incoming packets are dropped until queue have sufficient space to
accept incoming traffic, finite FIFO. Figure 4 below illustrates the mechanism of
DropTail algorithm. [2]

Flow-in Flow-out

o
—

Drop-tail queue

Qmax

All flow weighted packet loss

Figure 4 DropTail Queue algorithm [13]

9.2 RED

It operates on the average queue size and drop packets on the basis of statistics
information. If the buffer is empty all incoming packets are acknowledged. As the
queue size increase the probability for discarding a packet also increase. When
buffer is full probability becomes equal to 1 and all incoming packets are dropped.
Figure 5 below illustrates the mechanism of RED algorithm. [5]

PAGE 8

Flow1 | | [| —

Fow? [I
Flows |
Fows [DN —

To interface

B N —

Drop?

N\

Figure 5 RED Queue algorithm [14]

9.3 SFQ

SFQ queuing algorithm provides fairness between the connected clients. Each
client is able to send data in turn, thus preventing any single user from drowning
out the rest. The fairness of this queuing algorithm is ensured by hashing
algorithm as well as round robin algorithm. Figure 6 below illustrates the
mechanism of SFQ algorithm.[5][14]

Subqueues

To interface
—

Hashing algorthm

Round-robin algorithm

Figure 6 SFQ Queue algorithm [14]

PAGE 9

10. Related Work

Two other projects that are comparable to ours are mentioned here. The first
paper[2] is published by professor Ljiljana Trajkovic and her peers in SFU, UoC
and SPAWAR systems Center in San Diego, CA. This paper analyzes the attacks
using different queueing algorithms. In this project the server or the victim is
connected directly to the clients and the attacker. We take a different approach
where the clients and attackers are connected to routers which are in turn
connected to a Gateway which is then connected to the victim. This typifies more
of how an actual connection is set up. The queuing algorithms are then applied to
all the links.

The second project was done by previous ENSC 427 students, from Spring 2015[9],
where they analyzed the effect of using a black hole on a topology similar to the
one used in this project. The testing in this report focused more on a black hole
solution then the effect of queuing algorithm.

11. Simulation

Our goal for this simulation is to simulate DDoS Scenario using the following:

® Software Tools
O ns-2 (network simulator)
O x-graph
O Excel
® Attack Method
o UDP Flood

B -~Trinoo DDoS Implementation

® Queuing algorithms:

m DropTail
m SFQ
m RED

An approximation of Trinoo DDoS implementation is used because we are only
interested in effect of the attack, namely interaction of daemons and the victim,
not the attacker and the control master program.

PAGE 10

11.1 Simulation Topology

The network topology consists of a server connected to a Gateway which is further
connected to three routers. Two of these routers have three legitimate clients each
and the third router is connected to 3 Zombies which are controlled by and
connected to an attacker. As seen in the following figure, figure-7 topology in nam.

Server

ienl
@
Attacks; Gatdway Routeg/™ lient
O (@®)
onbig Jient
® ®
Roulter
1 ient
@ ®@
clibnt
®@

Figure 7 Simulation topology before attack

11.2 SIMULATION PARAMETERS

The attack is done on a UDP to UDP connection. This is because we do not care
about the packets reaching their destination we are interested in filling up the
bandwidth. All the nodes are using UDP protocol. Traffic is generated by the six
clients and three attackers based on a CBR traffic model. There are two types of
sinks setup one is the main server which acts as a sink for all nine traffic
generating nodes. The second one is for the zombies which acts as a sink for the
attacker, when the attacker wants to initialize the attack.

PAGE 11

The link and traffic implementation is as follows,

® Attacking

® 1 Attacker
3 Zombies (Daemons)
Rate: 2.4Mbps / Zombie

Interval: 20ms

® (lients
® 6 legitimate clients
® Rate: 0.04 Mbps / client
® Interval: 200ms

® Routers

3 routers in total

2 routers connect legitimate clients to gateway
Total rate sent by clients: 0.24 Mbps /router

1 router connects zombies to Gateway

Total rate sent by zombies: 7.2 Mbps

® Links: 100ms delay and a bandwidth of 10Mbps for all links except gateway
to server the bandwidth is 5 Mbps.

Traces are collecting information on these sinks and plotting using X graph and
Excel.

11.3 SIMULATION RUN TIME

® t<o0.4s:
No data was sent

PAGE 12

® 0.4s5<t<4.8:
Clients sent packets at a rate of 0.04 Mbps

AN

\/ ;
lléﬁ

RIGD | et

it

@

Figure 8 Simulation topology before attack

® att=4.8s
Attack is initiated and Zombies started attacking at a rate of 2.4
Mbps/Zombie

® 48s<t<9.4s
the gateway was flooded and client’s packets were lost

PAGE 13

@(
Qi

Figure 9 Simulation topology after attack

® att=9.4s:
Zombies stopped the attack

® 09.4s<t<14.6s
System was back to behave normally

® ati14.8s
Simulation was ended

11.4 ANALYSIS

In this section we will analysis the behaviour of the system during the DDoS attack
while using DropTail, RED and SFQ queuing algorithms. At the end of this section
we will present a comparison between all the three different outputs we have.

11.4.1 SYSTEM PERFORMANCE USING DROPTAIL QUEUING ALGORITHM

As can be seen from figure 10 below, before 4.8 second every client was able to
have its desired bandwidth which is 0.04 Mbps. However, during the attack,
between 4.8s < t < 9.4s, most of the clients weren’t able to send packets to the
server.

PAGE 14

Bandwidth (Mbitsis)

DDoS attack (DropTail)

A
27/

% 0 %% % % % % % %9 % % % Y0l s o

"4 N N
D PP AP VP AP Ak a® PN P b ® © (@A a® D gh g b o O P PV O P P b G0 B L
&
A\\
TIME(S)
[——Client1 —— clients CliEMtf == DAEMONL == DAEMONZ = DAEMON3 == CliNt2 Client3 —— Client4 |

Figure 10 Simulation results when DropTail queuing is used

e (lient 2 & 6 were able to send their packets even under the attack, 4.8s < t <
9.4s, and we believe that this is happening because DropTail queuing is
FIFO based queuing. Client 2 &Client 6 were the first ones to capture the
queue and start their data transmission. It is possible that they continue to
transmit data because of the first in first out algorithm. However, to have a
fare comparison between the three queueing algorithms, we selected client
4 as a sample to compare between the queues algorithms later in section

10.4.4 .

PAGE 15

11.4.2 SYSTEM PERFORMANCE USING RED QUEUING ALGORITHM

DDoS attack (RED)

Bandwidi (Mbitsis)

0% %% %% %% %% ¢% %0l lelsletalstes 2% %

Z ') N

a ™
D oM ¥ A AP VAP g b a® PP P gV P Pt P AV A® T " P oV o® P gM PV oY Tt gt et e’ Yot oY

%
ES

TIME(S)

|——clients —— clients Cligt6 == DAEMONL = DAEMON2 = Daemon3 —— Client2 Clientd —— Ciient3|

Figuren Simulation results when RED queuing is used

As can be seen from figure 11 above, there is a noticeable improvement in the
performance of the system when we used RED queuing algorithm. Multiple clients
were able to send some packets during the attack, between 4.8s < t < 9.4s.
However, that is not the optimum queuing algorithm in this case since we can still
see a drop in the client’s packets during the attack.

PAGE 16

11.4.3 SYSTEM PERFORMANCE USING SFQ QUEUING ALGORITHM

DDosS attack (SFQ)

Bandwidh (Mbitsls)

Z '} N

a
oF o AF A2V ah 4T 0 a0 Bk 2 a0 0 b D) a0 B b o) O »0\9&'&%\»1\}‘0 .;1,\:"9-0%_0106 \b\“h\?‘%'@q{

%
4’6/0% % % %% %% %% +% 0l lelsletalsle o
Y

TME(S)

[—— clients —— clients CHent6 == DAeMON1 = DASMON2 == Daemon3 —— Client2 Client3 —— Clientd

Figure 12 Simulation results when SFQ queuing is used

As can be seen from figure 12 above, SFQ queuing algorithm has allowed all clients
to send their desired packets during the attack , between 4.8s < t < 9.4s, without
dropping any packets.

11.4.4 DROPTAIL vS RED vs SFQ

In this section we will compare client 4 over the three different queuing
algorithms. Figure 13, below shows the bandwidth of client 4 before, during and
after the attack.

PAGE 17

Bandwidt (Mbitsis)

N

SFQ VS Droptail VS RED (Clien 4 during DDoS attack)

0.1

0.08

0.06

SR T T T S

2, 9

S T - T VR S AR - S S SR, P S S S S S-S S, N S, PR K SR S S
©° RO

K O 0T NN T 7 Y o > 9 & o o7 AT A P > 97 @ hd RS h% ";"

1 6
R R

TIME(S)

| Client 4 (SFQ) Client 4 (RED)

Client 4 (DropTail) |

Figure 13 Client 4 simulation results using the three different queues

The red line shows the bandwidth utilized by client4 using DropTail
queuing. During the attack client 4 wasn’t able to transfer any packets.

The yellow line shows the bandwidth utilized by client4 using RED
queuing. During the attack client 4 was able to transfer some packets and
lost some.

The blue line shows the bandwidth utilized by client4 using SFQ queuing.
During the attack client 4 was able to transfer all packets without any
disruption from the attack

Based on our topology and simulation parameters this is the optimum
queuing algorithm among the other algorithms we used so far.

PAGE 18

Table 1 below shows the bandwidth of client 4 during the attack using different

queues.
Table 1 Client 4 BW using different queues
TIME DropTail RED SFQ
(Seconds) (Mbps) (Mbps) (Mbps)
4.8 0.04 0.04 0.04
5.0 0.04 0.04 0.04
5.2 0.04 0.04 0.04
5.3 0.0 0.04 0.04
5.4 0.0 0.0 0.04
5.6 0.0 0.0 0.04
5.8 0.0 0.0 0.04
6.0 0.0 0.0 0.04
6.2 0.0 0.0 0.04
6.4 0.0 0.0 0.04
6.6 0.0 0.0 0.04
6.8 0.0 0.0 0.04
7.0 0.0 0.0 0.04

PAGE 19

7.2 0.0 0.04 0.04
7.4 0.0 0.04 0.04
7.6 0.0 0.04 0.04
7.8 0.0 0.04 0.04
8.0 0.0 0.04 0.04
8.2 0.0 0.04 0.04
8.4 0.0 0.04 0.04
8.6 0.0 0.0 0.04
8.8 0.0 0.04 0.04
9.0 0.0 0.0 0.04
9.2 0.0 0.04 0.04
9.4 0.0 0.04 0.04
9.6 0.0 0.04 0.04
9.8 0.0 0.04 0.04

PAGE 20

12. Scope of Future Work

In future work we suggest use of a bigger topology that is more consistent with an
actual DDoS attack and analysis of constant performance achieved by the first
clients of each router. We will also implement different types of DDoS attacks as
well as different preventions techniques and determine which once are more
useful to implement in a giving application.

13. Conclusion

In this project we have learned about and analyzed DDoS. We have reviewed a
recent real life DDoS attack case that targeted BBC website. We have also
discussed why DDoS is an important topic to be addressed, and how I[oT could
play a role in increasing DDoS attacks risk. We also went over various DDoS
attacks methods and some prevention techniques. After that, we used ns-2
simulator to simulate a DDoS attack using three different queuing algorithms. We
found that DropTail algorithm didn’t allow clients to send their packets to the
server during the attack time. This is because droptail queue filled up very quickly,
and it drop all incoming packets. We have also tried using RED queuing and we
noticed an improvement in the system performance where some clients were able
to send some packets during the attack time. After that we tried the SFQ algorithm
and it allowed all clients to send their packets to the server without any packet
losses from clients. This is because SFQ ensures fairness in sending packets using
hashing algorithms as well as Round Robin algorithm. Based on our topology and
simulation parameters, we found that SFQ is the optimum amongst the other
queue types we have tried in this project.

PAGE 21

REFERENCES

[1]S. Bellovin, “Distributed denial of service attacks,” Feb.
2000,http://www.research.att.com/~smb/talks

[2]F. Lau, S. H. Rubin, M. H. Smith, and Lj. Trajkovic, "Distributed denial of
service attacks,” (invited paper) in Proc. IEEE Int. Conf. on Systems, Man,
and Cybernetics, SMC 2000, Nashville, TN, Oct. 2000, pp. 2275-2280

[3]D. Dittrich, “The DoS project's ‘Trinoo’ distributed denial of service
attack tool,” Oct. 1999; “The ‘Stacheldraht’ distributed denial of service
attack tool,” Dec. 1999; “The ‘Tribe Flood Network’ distributed denial of
service attack tool,” Oct. 1999, http://www.washington.edu/People/dad.

[4] P. Ferguson and D. Senie, “RFC 2267: Network ingress filtering:
defeating denial of service attacks which employ IP source address
spoofing,” Jan. 1998, http://info.internet.isi.edu/innotes/rfc/files/rfc2267.txt
[5] Kuznetsov, Alexey. "Tc-Sfq(8) - Linux Man Page". Linux man page. N.p.,
2017. Web. 3 Apr. 2017.

[6] "Working Mechanism Of FQ, RED, SFQ, DRR And Drop-Tail Queues -
Network Technologies (TCP/IP Suite)". Sites.google.com. N.p., 2017. Web. 3
Apr. 2017.

[7] Daemong, Infinity, and Route, “IP-spoofing demystified: trust-
relationship exploitation,” Phrack Mag., June
1996,http://www.fc.net/phrack/files/p48/p48-14.html.

[8] S. Bellovin, Ed., “The ICMP traceback message,” Network Working
Group Internet Draft, Mar. 2000,
http://www.research.att.com/~smb/papers/draft-bellovin-itrace-oo.txt.

[9] S. Chow, T. Sherpa and S. Hoque, “Performance analysis during a DDoS
attack”,
http://www.ensc.sfu.ca/~ljilja/ENSC427/Springi5/Projects/team8/ENSC427
_team8_report.pdf, April 2015.

[10] D. Bisson, "DDoSCoin - An Incentive to Launch DDoS Attacks?",
BleepingComputer, 2017. [Online]. Available:
https://www.bleepingcomputer.com/news/security/ddoscoin-an-incentive-
to-launch-ddos-attacks/. [Accessed: 15- Apr- 2017].

alPage

[] Z. Whittaker, "Biggest ever' web attack on BBC actually wasn't even
close | ZDNet", ZDNet, 2017. [Online]. Available:
http://www.zdnet.com/article/tango-down-bbc-was-this-the-largest-ddos-
web-attack/. [Accessed: 15- Apr- 2017].

[12] "3 Famous DDoS Attacks", Cyberdefense Hub, 2017. [Online]. Available:
http://www.cyberdefensehub.com/famous-ddos-attacks/. [Accessed: 15-
Apr- 2017].

[13] 2017. [Online]. Available:
https://www.researchgate.net/figure/275594356_fig7_Operation-of-a-drop-
tail-queue-under-the-fluid-model-simulation. [Accessed: 15- Apr- 2017].

[14] "3 Famous DDoS Attacks", Cyberdefense Hub, 2017. [Online]. Available:
http://www.cyberdefensehub.com/famous-ddos-attacks/. [Accessed: 15-
Apr- 2017].

[15] "Forbes Welcome", Forbes.com, 2017. [Online]. Available:
https://www.forbes.com/sites/louiscolumbus/2016/07/09/internet-of-
things-on-pace-to-replace-mobile-phones-as-most-connected-device-in-
2018/#32c42b3d732¢. [Accessed: 16- Apr- 2017].

[16] "DDoS Attacks: Bigger, Stronger, Scarier”, Symantec.com, 2017.
[Online]. Available: https://www.symantec.com/connect/blogs/ddos-
attacks-bigger-stronger-scarier. [Accessed: 16- Apr- 2017].

PAGEDb

APPENDIX

CODE LISTING
DROPTAIL

HHHH R . DropTail
HAHAHAHAHAHBHBHAHHH R R R HHH

#Create a simulator object

set ns [new Simulator]

#Tell the simulator to use dynamic routing

#$ns rtproto DV

#Open the nam trace file
set nf [open out.nam w]

$ns namtrace-all $nf

set fo [open outo.tr w]
set f1 [open out1.tr w]

set f2 [open out2.tr w]
set f3 [open out3.tr w]
set f4 [open out4.tr w]

set f5 [open outs.tr w]

I|Page

set f6 [open out6.tr w]
set f7 [open out7.tr w]
set f8 [open out8.tr w]
set during [open outfduring.tr w]
set before [open outfbefore.tr w]

set fafter [open outfafter.tr w]

#Define a 'finish' procedure
proc finish {} {
global ns nf fo fi f2 f3 f4 f5 {6 f7 f8 during before fafter
$ns flush-trace
#Close the trace file

close $nf

#Close the output files
close $fo
close $fi
close $f2
close $f3
close $f4
close $f5
close $f6

close $f7

PAGEII

close $f8
close $during
close sbefore
close sfafter
#Execute nam on the trace file
exec nam out.nam &
#Call xgraph to display the results

exec xgraph outo.tr outi.tr out2.tr out3.tr out4.tr outs.tr out6.tr out7y.tr
out8.tr -geometry 80ox400 &

exit o

#Create nine nodes

set Attacker [$ns node]
set Server [$ns node]
set Server2 [$ns node]
set Zombie1 [$ns node]
set Zombie2 [$ns node]
set Zombie3 [$ns node]
set Router [$ns node]
set Router2 [$ns node]
set Router3 [$ns node]

set Client1 [$ns node]

PAGE III

set Client2 [$ns node]
set Client3 [$ns node]
set Client4 [$ns node]
set Clients [$ns node]

set Client6 [$ns node]

#Colors

$Attacker color red
$Zombie1 color red
$Zombie2 color red
$Zombie3 color red
$Server color blue
$Server2 color blue
$Router color blue
$Router2 color blue

$Router3 color blue

Labelling

$ns at 0.0 "$Attacker label Attacker"
$ns at 0.0 "$Zombie1 label Zombie"
$ns at 0.0 "$Zombie2 label Zombie"
$ns at 0.0 "$Zombie3 label Zombie"
$ns at 0.0 "$Server label Gateway"

$ns at 0.0 "$Server2 label Server”
PAGE IV

$ns at 0.0 "$Router label Router”

$ns at 0.0 "$Router2 label Router”

$ns at 0.0 "$Router3 label Router”

$ns at 0.0 "$Client1 label client"

$ns at 0.0 "$Client2 label client"

$ns at 0.0 "$Client3 label client"

$ns at 0.0 "$Client4 label client"

$ns at 0.0 "$Clients label client”

$ns at 0.0 "$Client6 label client"

Shape

$Server shape square
$Server2 shape square
$Router shape hexagon
$Router2 shape hexagon

$Router3 shape hexagon

#Create links between the nodes

$ns duplex-link $Attacker
$ns duplex-link $Attacker
$ns duplex-link $Attacker
$ns duplex-link $Zombie1

$ns duplex-link $Zombie2

$Zombie1 10Mb 100ms DropTail
$Zombie2 10Mb 100ms DropTail
$Zombie3 10Mb 10oms DropTail
$Router2 10Mb 100ms DropTail

$Router2 10Mb 100ms DropTail

PAGEV

$ns duplex-link $Zombie3 $Router210Mb 100ms DropTail
$ns duplex-link $Router2 $Server 10Mb 10oms DropTail
$ns duplex-link $Router3 $Server 10Mb 100ms DropTail
$ns duplex-link $Server $Router 10Mb 100ms DropTail
$ns duplex-link $Server $Server2 sMb 10oms DropTail
$ns duplex-link $Router $Client1 10Mb 100ms DropTail
$ns duplex-link $Router $Client2 10Mb 100ms DropTail
$ns duplex-link $Router $Client3 10Mb 100ms DropTail
$ns duplex-link $sRouter3 $Client4 10Mb 100ms DropTail
$ns duplex-link $Router3 $Clients5 10Mb 100ms DropTail

$ns duplex-link $Router3 $Client6 10Mb 100ms DropTail

#queue limit

#$ns queue-limit $Server $Server2 50

Setting node position

$ns duplex-link-op $Attacker $Zombiei orient right-down
$ns duplex-link-op $Attacker $Zombie2 orient right

$ns duplex-link-op $Attacker $Zombie3 orient right-up
$ns duplex-link-op $Zombie1 $Router2 orient right-up
$ns duplex-link-op $Zombie2 $Router2 orient right

$ns duplex-link-op $Zombie3 $Router2 orient right-down
$ns duplex-link-op $Router2 $Server orient right

$ns duplex-link-op $Server $Router3 orient down

PAGE VI

$ns duplex-link-op $Server $Router orient right

$ns duplex-link-op $Server $Server2 orient up

$ns duplex-link-op $Router $Client1 orient right-down
$ns duplex-link-op $Router $Client2 orient right

$ns duplex-link-op $Router $Client3 orient right-up

$ns duplex-link-op $Router3 $Client4 orient right-down
$ns duplex-link-op $Router3 $Clients orient down

$ns duplex-link-op $Router3 $Client6 orient left-down

#Create a UDP agent and attach it to nodes
set udpattacker [new Agent/UDP]

$ns attach-agent $Attacker sudpattacker
set udpz1 [new Agent/UDP]

$ns attach-agent $Zombie1 $udpz1

set udpz2 [new Agent/UDP]

$ns attach-agent $Zombie2 sudpz2

set udpz3 [new Agent/UDP]

$ns attach-agent $Zombie3 $udpz3

set udpRouter [new Agent/UDP]

$ns attach-agent $Router sudpRouter

set udpRouter2 [new Agent/UDP]

PAGE VII

$ns attach-agent $Router2 sudpRouter2
set udpRouter3 [new Agent/UDP]

$ns attach-agent $Router3 sudpRouter3

set udpServer [new Agent/UDP]
$ns attach-agent $Server sudpServer
set udpci [new Agent/UDP]

$ns attach-agent $Client1 sudpci
set udpc2 [new Agent/UDP]

$ns attach-agent $Client2 $sudpc2
set udpc3 [new Agent/UDP]

$ns attach-agent $Client3 $udpc3
set udpc4 [new Agent/UDP]

$ns attach-agent $Client4 $udpc4
set udpcs [new Agent/UDP]

$ns attach-agent $Clients $sudpcs
set udpc6 [new Agent/UDP]

$ns attach-agent $Client6 $udpc6

Create a CBR traffic source and attach it to udp agents
set cbro [new Application/Traffic/CBR]

$cbro set packetSize_ 1000

$cbro set rate_ 0.2Mb

$cbro set interval 0.2
PAGE VIII

$cbro attach-agent $udpattacker

set cbr1 [new Application/Traffic/CBR]
$cbr set packetSize_ 6000

$cbr set rate_ 2.4Mb;#ignored if interval is specified else interval =
(packetsize*8)/rate

$cbri set interval _ 0.02
$cbr1 attach-agent $udpzi

#interval = .o1s/packet = 100packets/s, 3000 * 100 = 300000=.3MB/s * 8 = 2.4
Mb/sec

2.4 *3 zombies = 7.2 Mb/s

set cbrz [new Application/Traffic/CBR]
$cbr2 set packetSize_ 6000

$cbr2 set rate_ 2.4Mb

$cbr2 set interval _ 0.02

$cbr2 attach-agent $udpz2

set cbr3 [new Application/Traffic/CBR]
$cbr3 set packetSize_ 6000

$cbr3 set rate_ 2.4Mb

$cbr3 set interval_ 0.02

$cbr3 attach-agent sudpz3

set cbr4 [new Application/Traffic/CBR]

PAGE IX

$cbrg set packetSize_ 1000
$cbr4 set rate_ 0.2Mb
$cbry4 set interval_ 0.2

$cbrg attach-agent sudpRouter

set cbrg [new Application/Traffic/CBR]
$cbrs set packetSize_ 1000

$cbrs set rate_ 0.2Mb

$cbrs set interval _ 0.2

$cbrs attach-agent sudpServer

set cbr6 [new Application/Traffic/CBR]

$cbr6 set packetSize_ 1000

$cbr6 set rate_ 0.2Mb

$cbr6 set interval 0.2

$cbr6 attach-agent $udpci

8000 bits/packet , 0.2 s/packet , 8000/0.2 = 40k bits/s , 0.04 Mbits/s
set cbry [new Application/Traffic/CBR]

$cbry set packetSize_ 1000

$cbry set rate_ 0.04Mb

$cbr7 set interval_ 0.2

$cbr7 attach-agent $udpc2

set cbr8 [new Application/Traffic/CBR]
PAGE X

$cbr8 set packetSize_ 1000
$cbr8 set rate_ 0.2Mb
$cbr8 set interval 0.2

$cbr8 attach-agent $udpc3

set cbrg [new Application/Traffic/CBR]
$cbrg set packetSize_ 1000

$cbrg set rate_ 0.2Mb

$cbrg set interval_ 0.2

$cbrg attach-agent sudpcg4

set cbrio [new Application/Traffic/CBR]
$cbrio set packetSize_ 1000

$cbrio set rate_ 0.2Mb

$cbrio set interval 0.2

$cbrio attach-agent $udpcs

set cbrui1 [new Application/Traffic/CBR]
$cbru set packetSize_ 1000

$cbr11 set rate_ 0.2Mb

$cbrn set interval _ 0.2

$cbru attach-agent $udpc6

#Create a Null agent (a traffic sink) and attach it
PAGE XI

#set sinko [new Agent/Null]

#$ns attach-agent $Server2 gsinko

#for xgraph=====================
set sinko [new Agent/LossMonitor]
set sinki [new Agent/LossMonitor]
set sink2 [new Agent/LossMonitor]
set sink3 [new Agent/LossMonitor]
set sink4 [new Agent/LossMonitor]
set sinks [new Agent/LossMonitor]
set sink6 [new Agent/LossMonitor]
set sinky [new Agent/LossMonitor]
set sink8 [new Agent/LossMonitor]

Agent/LossMonitor objects as traffic sinks, since they store the amount of bytes
received, which can be used to calculate the bandwidth.

$ns attach-agent $Server2 gsinko
$ns attach-agent $Server2 $sinki
$ns attach-agent $Serverz $sink2
$ns attach-agent $Server2 $sink3
$ns attach-agent $Server2 $sinkgq
$ns attach-agent $Serverz $sinks
$ns attach-agent $Serverz $sink6
$ns attach-agent $Server2 $sinky

$ns attach-agent $Serverz $sink8

PAGE XII

set sinki [new Agent/Null]

$ns attach-agent $Server2 $sinki
set sink2 [new Agent/Null]

$ns attach-agent $Server2 $sink2
$ns connect $udpz1 $sinko

$ns connect $udpzz $sinki

$ns connect $udpz3 $sink2

$ns connect $udpci $sink3

$ns connect $udpc2 $sink4

$ns connect $udpc3 $sinks

$ns connect $sudpc4 $sink6

$ns connect $udpcs $sink7

$ns connect $udpc6 $sink8

#Color each flow id

#client 1-3 class
PAGE XIII

sudpc1 set class_ 1
sudpcz2 set class_ 1
sudpc3 set class_1
#client 4-6 class
sudpcyg set class_ 3
sudpcs set class_ 3
$udpc6 set class_ 3
#zombie class
sudpz1 set class_ 2
sudpz2 set class_ 2

sudpz3 set class_ 2

$ns color 1 Blue
$ns color 3 Green

$ns color 2 Red

set c_1_byte o
set c_2_byte o

set c_3_byte o

proc record {} {

PAGE XIV

global sinko sinki sink2 sink3 sink4 sinks sink6 sink7 sink8 fo fi f2 3 f4 f5 f6

f7 £8 during c_1_byte before fafter c_2_byte c_3_byte
#Get an instance of the simulator

set ns [Simulator instance]

#Set the time after which the procedure should be called again

set time 0.2
#How many bytes have been received by the traffic sinks?
set bwo [$sinko set bytes_]
set bwa [$sinki set bytes_|
set bw2 [¢sink2 set bytes_]
set bw3 [$sink3 set bytes_]
set bwy4 [$sink4 set bytes_]
set bws [$sinks set bytes_]
set bw6 [$sink6 set bytes_]
set bw7 [$sink7 set bytes_]
set bw8 [$sink8 set bytes_]
#Get the current time
set now [$ns now]
#Calculate the bandwidth (in MBit/s) and write it to the files
puts $fo "$now [expr $bwo/$time*8/1000000]"
puts $f1 "$now [expr $bw1/$time*8/1000000]"
puts $f2 "$now [expr $bw2/$time*8/1000000]"
puts $f3 "$now [expr $bw3/$time*8/1000000]"

puts $f4 "$now [expr $bw4/$time*8/1000000]"

PAGE XV

puts $f5 "$now [expr $bws/$time*8/1000000]"
puts $f6 "$now [expr $bw6/$time*8/1000000]"
puts $f7 "$now [expr $bw7/$time*8/1000000]"

n

puts $f8 "$now [expr $bw8/$time*8/1000000]

calculation

if {$now >= 4.8} {
if {$now <= 9.4} {
set c_1_byte [expr {$c_1_byte + $bw8}]
puts $during "$now $c_1_byte "

}

if {$now <= 4.8} {
if {$now >= 0.2} {
set c_2_byte [expr {$c_2_byte + $sbw8}]

puts sbefore "$now $c_2_byte

}

if {$now >= 9.4} {

PAGE XVI

if {$now <= 14.0} {
set ¢_3_byte [expr {$c_3_byte + $bw8}]

puts s$fafter "$now $c_3_byte
}

#Reset the bytes_ values on the traffic sinks
$sinko set bytes_ o
$sinki set bytes_ o
$sink2 set bytes_ o

$sink3 set bytes_ o
$sink4 set bytes_ o
$sinks set bytes_ o

$sink6 set bytes_ o
$sinky set bytes_ o
$sink8 set bytes_ o

#Re-schedule the procedure

$ns at [expr $now+$time] "record”

#Schedule events for the CBR agents

$ns at 0.0 "record”

PAGE XVII

#$ns at 0.3 "$cbro start
#$ns at 1.0 "$cbry start”

#$ns at 1.0 "$cbrs start”

#start client traffic c1-c6 respectively
$ns at 0.2 "$cbr6 start”

$ns at 0.2 "$cbry start”

$ns at 0.2 "$cbr8 start”

$ns at 0.2 "$cbrg start”

$ns at 0.2 "$cbrio start”

$ns at 0.2 "$cbru start”

#start zombie traffic z1-z3 respectively
$ns at 4.8 "$cbr1 start”
$ns at 4.8 "$cbr2 start”

$ns at 4.8 "$cbr3 start”

#stop zombies

$ns at 9.4 "$cbr3 stop”
$ns at 9.4 "$cbr2 stop”
$ns at 9.4 "$cbr1 stop”

T

$ns at 14.0 "$cbru stop'
PAGE XVIII

$ns at 14.0 "$cbrio stop”
$ns at 14.0 "$cbrg stop”
$ns at 14.0 "$cbr8 stop”
$ns at 14.0 "$cbry stop”
$ns at 14.0 "$cbr6 stop"
#$ns at 4.5 "$cbrs stop”

#$ns at 4.5 "$cbrg stop”

#$ns at 4.5 "$cbro stop”

#Call the finish procedure after 5 seconds of simulation time

$ns at 15.6 "finish"

#Run the simulation

$ns run

RED

HHHHHHHHHHHH T H A #E RED
HAHAHAHAHAHAHAHBHAHBHBHBHBH AR

PAGE XIX

#Create a simulator object

set ns [new Simulator]

#Tell the simulator to use dynamic routing

#$ns rtproto DV

#Open the nam trace file
set nf [open out.nam w]

$ns namtrace-all $nf

set fo [open outo.tr w]

set f1 [open out1.tr w]

set f2 [open out2.tr w]

set f3 [open out3.tr w]

set f4 [open out4.tr w]

set f5 [open outs.tr w]

set f6 [open out6.tr w]

set f7 [open out7.tr w]

set f8 [open out8.tr w]

set during [open outfduring.tr w]
set before [open outfbefore.tr w]

set fafter [open outfafter.tr w]

PAGE XX

#Define a 'finish' procedure
proc finish {} {
global ns nf fo fi f2 f3 f4 f5 {6 f7 f8 during before fafter
$ns flush-trace
#Close the trace file

close $nf

#Close the output files
close $fo
close $fi
close $f2
close $f3
close $f4
close $f5
close $f6
close $f7
close $f8
close $during
close sbefore
close sfafter
#Execute nam on the trace file
exec nam out.nam &
#Call xgraph to display the results

exec xgraph outo.tr outi.tr out2.tr outs.tr out4.tr outs.tr out6.tr outy.tr

PAGE XXI

out8.tr -geometry 800x400 &

exit o

#Create nine nodes

set Attacker [$ns node]
set Server [$ns node]
set Server2 [$ns node]
set Zombie1 [$ns node]
set Zombie2 [$ns node]
set Zombie3 [$ns node]
set Router [$ns node]
set Router2 [$ns node]
set Router3 [$ns node]
set Client1 [$ns node]
set Client2 [$ns node]
set Client3 [$ns node]
set Client4 [$ns node]
set Clients [$ns node]

set Client6 [$ns node]

#Colors

s$Attacker color red

PAGE XXII

$Zombie1 color red
$Zombie2 color red
$Zombie3 color red
$Server color blue
$Server2 color blue
$Router color blue
$Router2 color blue

$Router3 color blue

Labelling

$ns at 0.0 "$Attacker label Attacker"
$ns at 0.0 "$Zombie1 label Zombie"
$ns at 0.0 "$Zombie2 label Zombie"
$ns at 0.0 "$Zombie3 label Zombie"
$ns at 0.0 "$Server label Gateway"
$ns at 0.0 "$Server2 label Server"
$ns at 0.0 "$Router label Router”
$ns at 0.0 "$Router2 label Router”
$ns at 0.0 "$Router3 label Router"
$ns at 0.0 "$Client1 label client”

$ns at 0.0 "$Client2 label client”
$ns at 0.0 "$Client3 label client"
$ns at 0.0 "$Client4 label client"

$ns at 0.0 "$Clients label client”

PAGE XXIII

$ns at 0.0 "$Client6 label client"

Shape

$Server shape square
$Server2 shape square
$Router shape hexagon
$Router2 shape hexagon

$Router3 shape hexagon

#Create links between the nodes

$ns duplex-link $Attacker $Zombie1 10Mb 100ms RED
$ns duplex-link $Attacker $Zombie2 10Mb 100ms RED
$ns duplex-link $Attacker $Zombie3 10Mb 100ms RED
$ns duplex-link $Zombie1 $Router2 10Mb 100ms RED
$ns duplex-link $Zombie2 $Router2 10Mb 100ms RED
$ns duplex-link $Zombie3 $Router2 10Mb 10oms RED
$ns duplex-link $Router2 $Server 10Mb 10oms RED
$ns duplex-link $Router3 $Server 10Mb 100ms RED
$ns duplex-link $Server $Router 10Mb 100ms RED
$ns duplex-link $Server $Server2 sMb 10oms RED
$ns duplex-link $Router $Client1 10Mb 100ms RED
$ns duplex-link $Router $Client2 10Mb 100ms RED

$ns duplex-link $Router $Client3 10Mb 100ms RED

PAGE XXIV

$ns duplex-link $Router3 $Client4 10Mb 100ms RED
$ns duplex-link $Router3 $Client5 10Mb 100ms RED

$ns duplex-link $Router3 $Client6 10Mb 100ms RED

#queue limit

#$ns queue-limit $Server $Server2 50

Setting node position

$ns duplex-link-op $Attacker $Zombiei orient right-down
$ns duplex-link-op $Attacker $Zombie2 orient right

$ns duplex-link-op $Attacker $Zombie3 orient right-up
$ns duplex-link-op $Zombie1 $Router2 orient right-up
$ns duplex-link-op $Zombie2 $Router2 orient right

$ns duplex-link-op $Zombie3 $Router2 orient right-down
$ns duplex-link-op $Router2 $Server orient right

$ns duplex-link-op $Server $Router3 orient down

$ns duplex-link-op $Server $Router orient right

$ns duplex-link-op $Server $Server2 orient up

$ns duplex-link-op $Router $Client1 orient right-down
$ns duplex-link-op $Router $Client2 orient right

$ns duplex-link-op $Router $Client3 orient right-up

$ns duplex-link-op $Router3 $Client4 orient right-down

$ns duplex-link-op $Router3 $Clients orient down

PAGE XXV

$ns duplex-link-op $Router3 $Client6 orient left-down

#Create a UDP agent and attach it to nodes
set udpattacker [new Agent/UDP]

$ns attach-agent $Attacker sudpattacker
set udpz1 [new Agent/UDP]

$ns attach-agent $Zombie1 $udpz1

set udpz2 [new Agent/UDP]

$ns attach-agent $Zombie2 sudpz2

set udpz3 [new Agent/UDP]

$ns attach-agent $Zombie3 $udpz3

set udpRouter [new Agent/UDP]

$ns attach-agent $Router sudpRouter

set udpRouter2 [new Agent/UDP]
$ns attach-agent $Routerz sudpRouter2
set udpRouter3 [new Agent/UDP]

$ns attach-agent $Router3 sudpRouter3

set udpServer [new Agent/UDP]
$ns attach-agent $Server sudpServer
set udpci [new Agent/UDP]

$ns attach-agent $Client1 sudpci

PAGE XXVI

set udpc2 [new Agent/UDP]
$ns attach-agent $Client2 $sudpc2
set udpc3 [new Agent/UDP]
$ns attach-agent $Client3 $udpc3
set udpc4 [new Agent/UDP]
$ns attach-agent $Client4 $udpc4
set udpcs [new Agent/UDP]
$ns attach-agent $Clients $sudpcs
set udpc6 [new Agent/UDP]

$ns attach-agent $Client6 $udpc6

Create a CBR traffic source and attach it to udp agents
set cbro [new Application/Traffic/CBR]

$cbro set packetSize_ 1000

$cbro set rate_ 0.2Mb

$cbro set interval 0.2

$cbro attach-agent $udpattacker

set cbr1 [new Application/Traffic/CBR]
$cbr set packetSize_ 6000

$cbr set rate_ 2.4Mb;#ignored if interval is specified else interval =
(packetsize*8)/rate

$cbri set interval _ 0.02

$cbr1 attach-agent $udpz1

PAGE XXVII

#interval = .o1s/packet = 100packets/s, 3000 * 100 = 300000=.3MB/s * 8 = 2.4

Mb/sec

2.4 *3 zombies = 7.2 Mb/s

set cbrz [new Application/Traffic/CBR]
$cbr2 set packetSize_ 6000

$cbr2 set rate_ 2.4Mb

$cbr2 set interval _ 0.02

$cbr2 attach-agent $udpz2

set cbr3 [new Application/Traffic/CBR]
$cbr3 set packetSize_ 6000

$cbr3 set rate_ 2.4Mb

$cbr3 set interval_ 0.02

$cbr3 attach-agent sudpz3

set cbr4 [new Application/Traffic/CBR]
$cbrg set packetSize_ 1000

$cbr4 set rate_ 0.2Mb

$cbry4 set interval_ 0.2

$cbrg attach-agent sudpRouter

set cbrs [new Application/Traffic/CBR]
$cbrs set packetSize_ 1000

$cbrs set rate_ 0.2Mb

PAGE XXVIII

$cbrs set interval _ 0.2

$cbrs attach-agent sudpServer

set cbr6 [new Application/Traffic/CBR]

$cbr6 set packetSize_ 1000

$cbr6 set rate_ 0.2Mb

$cbr6 set interval 0.2

$cbr6 attach-agent $udpci

8000 bits/packet , 0.2 s/packet , 8000/0.2 = 40k bits/s , 0.04 Mbits/s
set cbry [new Application/Traffic/CBR]

$cbry set packetSize_ 1000

$cbry set rate_ 0.04Mb

$cbr7 set interval_ 0.2

$cbr7 attach-agent $udpc2

set cbr8 [new Application/Traffic/CBR]
$cbr8 set packetSize_ 1000

$cbr8 set rate_ 0.2Mb

$cbr8 set interval 0.2

$cbr8 attach-agent $udpc3

set cbrg [new Application/Traffic/CBR]
$cbrg set packetSize_ 1000

$cbrg set rate_ 0.2Mb
PAGE XXIX

$cbrg set interval_ 0.2

$cbrg attach-agent sudpcg4

set cbrio [new Application/Traffic/CBR]
$cbrio set packetSize_ 1000

$cbrio set rate_ 0.2Mb

$cbrio set interval 0.2

$cbrio attach-agent $udpcs

set cbrui1 [new Application/Traffic/CBR]
$cbru set packetSize_ 1000

$cbri1 set rate_ 0.2Mb

$cbrn set interval 0.2

$cbru attach-agent $udpc6

#Create a Null agent (a traffic sink) and attach it
#set sinko [new Agent/Null]

#$ns attach-agent $Server2 gsinko

#for xgraph=====================
set sinko [new Agent/LossMonitor]
set sinki [new Agent/LossMonitor]
set sink2 [new Agent/LossMonitor]

set sink3 [new Agent/LossMonitor]

PAGE XXX

set sink4 [new Agent/LossMonitor]
set sinks [new Agent/LossMonitor]
set sink6 [new Agent/LossMonitor]
set sinky [new Agent/LossMonitor]
set sink8 [new Agent/LossMonitor]

Agent/LossMonitor objects as traffic sinks, since they store the amount of bytes
received, which can be used to calculate the bandwidth.

$ns attach-agent $Server2 gsinko
$ns attach-agent $Serverz $sinki
$ns attach-agent $Server2 $sink2
$ns attach-agent $Server2 $sink3
$ns attach-agent $Server2 $sinkgq
$ns attach-agent $Serverz $sinks
$ns attach-agent $Serverz $sink6
$ns attach-agent $Server2 $sinky

$ns attach-agent $Serverz $sink8

set sinki [new Agent/Null]

$ns attach-agent $Server2 $sinki
set sink2 [new Agent/Null]

$ns attach-agent $Server2 $sink2
$ns connect $udpz1 $sinko

$ns connect $udpzz $sinki

PAGE XXXI

$ns connect $udpz3 $sink2
$ns connect $udpci $sink3
$ns connect $udpc2 $sink4
$ns connect $udpc3 $sinks
$ns connect $sudpc4 $sink6
$ns connect sudpcs $sink7

$ns connect $udpc6 $sink8

#Color each flow id
#client 1-3 class
sudpc1 set class_ 1
sudpcz2 set class_ 1
sudpc3 set class_1
#client 4-6 class
sudpcyg set class_3
sudpcs set class_ 3
$udpc6 set class_ 3

#zombie class

PAGE XXXII

sudpz1 set class_ 2
sudpz2 set class_ 2

sudpz3 set class_ 2

$ns color 1 Blue
$ns color 3 Green

$ns color 2 Red

set c_1_byte o
set c_2_byte o

set c_3_byte o

proc record {} {

global sinko sinki sink2 sink3 sink4 sinks sink6 sink7 sink8 fo fi f2 3 f4 f5 f6
f7 £8 during c_1_byte before fafter c_2_byte c_3_byte

#Get an instance of the simulator

set ns [Simulator instance]

#Set the time after which the procedure should be called again
set time 0.2

#How many bytes have been received by the traffic sinks?

set bwo [$sinko set bytes_]

PAGE XXXIII

set bwa [$sinki set bytes_|

set bw2 [gsink2 set bytes_]
set bw3 [$sink3 set bytes_]

set bwy4 [$sink4 set bytes_]

set bws [$sinks set bytes_]
set bw6 [$sink6 set bytes_]

set bw7 [$sink7 set bytes_]

set bw8 [$sink8 set bytes_]
#Get the current time

set now [$ns now]

#Calculate the bandwidth (in MBit/s) and write it to the files

puts $fo "$now [expr $bwo/$time*8/1000000]
puts $f1 "$now [expr $bw1/$time*8/1000000]"
puts $f2 "$now [expr $bw2/$time*8/1000000]
puts $f3 "$now [expr $bw3/$time*8/1000000]"
puts $f4 "$now [expr $bw4/$time*8/1000000]
puts $f5 "$now [expr $bws/$time*8/1000000]
puts $f6 "$now [expr $bw6/$time*8/1000000]"
puts $f7 "$now [expr $bw7/$time*8/1000000]

puts $f8 "$now [expr $bw8/$time*8/1000000]

calculation

if {$now >= 4.8} {

n

n

n

n

n

PAGE XXXIV

if {$now <= 9.4} {
set c_1_byte [expr {$c_1_byte + $bw8}]
puts $during "$now $c_1_byte "

}

if {$now <= 4.8} {
if {$now >= 0.2} {
set c_2_byte [expr {$c_2_byte + $sbw8}]

puts sbefore "$now $c_2_byte

}

if {$now >= 9.4} {
if {$now <= 14.0} {
set ¢_3_byte [expr {$c_3_byte + $bw8}]

puts s$fafter "$now $c_3_byte
}

#Reset the bytes_ values on the traffic sinks

PAGE XXXV

$sinko set bytes_ o

$sinki set bytes_ o

$sink2 set bytes_ o
$sink3 set bytes_ o

$sink4 set bytes_ o

$sinks set bytes_ o
$sink6 set bytes_ o

$sinky set bytes_ o

$sink8 set bytes_ o
#Re-schedule the procedure

$ns at [expr $now+$time] "record”

#Schedule events for the CBR agents

$ns at 0.0 "record”

#$ns at 0.3 "$cbro start”
#$ns at 1.0 "$cbry start”

#$ns at 1.0 "$cbrs start”

#start client traffic c1-c6 respectively
$ns at 0.2 "$cbr6 start”

$ns at 0.2 "$cbry start”
PAGE XXXVI

$ns at 0.2 "$cbr8 start”
$ns at 0.2 "$cbrg start”
$ns at 0.2 "$cbrio start”

$ns at 0.2 "$cbru start”

#start zombie traffic z1-z3 respectively
$ns at 4.8 "$cbr1 start”
$ns at 4.8 "$cbr2 start”

$ns at 4.8 "$cbr3 start”

#stop zombies
$ns at 9.4 "$cbr3 stop”
$ns at 9.4 "$cbr2 stop”

$ns at 9.4 "$cbr1 stop”

$ns at 14.0 "$cbru1 stop”
$ns at 14.0 "$cbrio stop”
$ns at 14.0 "$cbrg stop”
$ns at 14.0 "$cbr8 stop”
$ns at 14.0 "$cbry stop”
$ns at 14.0 "$cbr6 stop"
#$ns at 4.5 "$cbrs stop”

#$ns at 4.5 "$cbrg stop”

PAGE XXXVII

#$ns at 4.5 "$cbro stop”

#Call the finish procedure after 5 seconds of simulation time

$ns at 15.6 "finish"

#Run the simulation

$ns run

SFQ

HHHHHHHHHHHHHHHHH T H A #E RED
HAHAHAHAHAHAHAHBHAHBHBHBHBH AR

#Create a simulator object

set ns [new Simulator]

#Tell the simulator to use dynamic routing

#$ns rtproto DV

#Open the nam trace file

PAGE XXXVIII

set nf [open out.nam w]

$ns namtrace-all $nf

set fo [open outo.tr w]

set f1 [open out1.tr w]

set f2 [open out2.tr w]

set f3 [open out3.tr w]

set f4 [open out4.tr w]

set f5 [open outs.tr w]

set f6 [open out6.tr w]

set f7 [open out7.tr w]

set f8 [open out8.tr w]

set during [open outfduring.tr w]
set before [open outfbefore.tr w]

set fafter [open outfafter.tr w]

#Define a 'finish' procedure
proc finish {} {
global ns nf fo fi f2 f3 f4 f5 {6 f7 f8 during before fafter
$ns flush-trace
#Close the trace file

close $nf

PAGE XXXIX

#Close the output files
close $fo
close $fi
close $f2
close $f3
close $f4
close $f5
close $f6
close $f7
close $f8
close $during
close sbefore
close sfafter
#Execute nam on the trace file
exec nam out.nam &
#Call xgraph to display the results

exec xgraph outo.tr outi.tr out2.tr out3.tr out4.tr outs.tr out6.tr out7y.tr
out8.tr -geometry 80ox400 &

exit o

#Create nine nodes

set Attacker [$ns node]

PAGE XL

set Server [$ns node]
set Server2 [$ns node]
set Zombie1 [$ns node]
set Zombie2 [$ns node]
set Zombie3 [$ns node]
set Router [$ns node]
set Router2 [$ns node]
set Router3 [$ns node]
set Client1 [$ns node]
set Client2 [$ns node]
set Client3 [$ns node]
set Client4 [$ns node]
set Clients [$ns node]

set Client6 [$ns node]

#Colors

$Attacker color red
$Zombie1 color red
$Zombie2 color red
$Zombie3 color red
$Server color blue
$Server2 color blue
$Router color blue

$Router2 color blue

PAGE XLI

$Router3 color blue

Labelling

$ns at 0.0 "$Attacker label Attacker"
$ns at 0.0 "$Zombie1 label Zombie"
$ns at 0.0 "$Zombie2 label Zombie"
$ns at 0.0 "$Zombie3 label Zombie"
$ns at 0.0 "$Server label Gateway"
$ns at 0.0 "$Server2 label Server"
$ns at 0.0 "$Router label Router”
$ns at 0.0 "$Router2 label Router”
$ns at 0.0 "$Router3 label Router"
$ns at 0.0 "$Client1 label client”

$ns at 0.0 "$Client2 label client”
$ns at 0.0 "$Client3 label client"
$ns at 0.0 "$Client4 label client"
$ns at 0.0 "$Clients label client”

$ns at 0.0 "$Client6 label client"

Shape

$Server shape square
$Server2 shape square
$Router shape hexagon

$Router2 shape hexagon

PAGE XLII

$Router3 shape hexagon

#Create links between the nodes

$ns duplex-link $Attacker $Zombie1 10Mb 100ms RED

$ns duplex-link $Attacker $Zombie2 10Mb 100ms RED

$ns duplex-link $Attacker $Zombie3 10Mb 100ms RED

$ns duplex-link $Zombie1 $Router2 10Mb 100ms RED

$ns duplex-link $Zombie2 $Router2 10Mb 100ms RED

$ns duplex-link $Zombie3 $Router2 10Mb 10oms RED

$ns duplex-link $Router2 $Server 10Mb 10oms RED

$ns duplex-link $Router3
$ns duplex-link $Server
$ns duplex-link $Server
$ns duplex-link $Router
$ns duplex-link $Router
$ns duplex-link $Router
$ns duplex-link $Router3
$ns duplex-link $Router3

$ns duplex-link $Router3

#queue limit

#$ns queue-limit $Server

$Server 10Mb 10oms RED
$Router 10Mb 100ms RED
$Server2 sMb 100ms RED
$Client1 10Mb 100ms RED
$Client2 10Mb 100ms RED
$Client3 10Mb 100ms RED

$Client4 10Mb 100ms RED

$Client5 10Mb 100ms RED

$Client6 10Mb 100ms RED

$Server2 50

PAGE XLIII

Setting node position

$ns duplex-link-op $Attacker $Zombiei orient right-down
$ns duplex-link-op $Attacker $Zombie2 orient right

$ns duplex-link-op $Attacker $Zombie3 orient right-up
$ns duplex-link-op $Zombie1 $Router2 orient right-up
$ns duplex-link-op $Zombie2 $Router2 orient right

$ns duplex-link-op $Zombie3 $Router2 orient right-down
$ns duplex-link-op $Router2 $Server orient right

$ns duplex-link-op $Server $Router3 orient down

$ns duplex-link-op $Server $Router orient right

$ns duplex-link-op $Server $Server2 orient up

$ns duplex-link-op $Router $Client1 orient right-down
$ns duplex-link-op $Router $Client2 orient right

$ns duplex-link-op $Router $Client3 orient right-up

$ns duplex-link-op $Router3 $Client4 orient right-down
$ns duplex-link-op $Router3 $Clients orient down

$ns duplex-link-op $Router3 $Client6 orient left-down

#Create a UDP agent and attach it to nodes
set udpattacker [new Agent/UDP]
$ns attach-agent $Attacker sudpattacker

set udpz1 [new Agent/UDP]

PAGE XLIV

$ns attach-agent $Zombie1 $udpz1

set udpz2 [new Agent/UDP]

$ns attach-agent $Zombie2 sudpz2
set udpz3 [new Agent/UDP]

$ns attach-agent $Zombie3 $udpz3
set udpRouter [new Agent/UDP]

$ns attach-agent $Router sudpRouter

set udpRouter2 [new Agent/UDP]
$ns attach-agent $Routerz sudpRouter2
set udpRouter3 [new Agent/UDP]

$ns attach-agent $Router3 sudpRouter3

set udpServer [new Agent/UDP]

$ns attach-agent $Server sudpServer
set udpci [new Agent/UDP]

$ns attach-agent $Client1 sudpci

set udpc2 [new Agent/UDP]

$ns attach-agent $Client2 $sudpc2

set udpc3 [new Agent/UDP]

$ns attach-agent $Client3 $udpc3

set udpc4 [new Agent/UDP]

$ns attach-agent $Client4 $udpc4

set udpcs [new Agent/UDP]

PAGE XLV

$ns attach-agent $Clients sudpcs
set udpc6 [new Agent/UDP]

$ns attach-agent $Client6 $udpc6

Create a CBR traffic source and attach it to udp agents
set cbro [new Application/Traffic/CBR]

$cbro set packetSize_ 1000

$cbro set rate_ 0.2Mb

$cbro set interval 0.2

$cbro attach-agent $udpattacker

set cbr1 [new Application/Traffic/CBR]
$cbr set packetSize_ 6000

$cbr set rate_ 2.4Mb;#ignored if interval is specified else interval =
(packetsize*8)/rate

$cbri set interval _ 0.02
$cbr1 attach-agent $udpzi

#interval = .o1s/packet = 100packets/s, 3000 * 100 = 300000=.3MB/s * 8 = 2.4
Mb/sec

2.4 *3 zombies = 7.2 Mb/s

set cbrz [new Application/Traffic/CBR]
$cbr2 set packetSize_ 6000

$cbr2 set rate_ 2.4Mb

$cbr2 set interval _ 0.02

PAGE XLVI

$cbr2 attach-agent $udpz2

set cbr3 [new Application/Traffic/CBR]
$cbr3 set packetSize_ 6000

$cbr3 set rate_ 2.4Mb

$cbr3 set interval_ 0.02

$cbr3 attach-agent sudpz3

set cbr4 [new Application/Traffic/CBR]
$cbrg set packetSize_ 1000

$cbr4 set rate_ 0.2Mb

$cbry4 set interval_ 0.2

$cbrg attach-agent sudpRouter

set cbrs [new Application/Traffic/CBR]
$cbrs set packetSize_ 1000

$cbrs set rate_ 0.2Mb

$cbrs set interval _ 0.2

$cbrs attach-agent sudpServer

set cbr6 [new Application/Traffic/CBR]
$cbr6 set packetSize_ 1000
$cbr6 set rate_ 0.2Mb

$cbr6 set interval 0.2

PAGE XLVII

$cbr6 attach-agent $udpci

8000 bits/packet , 0.2 s/packet , 8000/0.2 = 40k bits/s , 0.04 Mbits/s
set cbry [new Application/Traffic/CBR]

$cbry set packetSize_ 1000

$cbry set rate_ 0.04Mb

$cbr7 set interval_ 0.2

$cbr7 attach-agent $udpc2

set cbr8 [new Application/Traffic/CBR]
$cbr8 set packetSize_ 1000

$cbr8 set rate_ 0.2Mb

$cbr8 set interval 0.2

$cbr8 attach-agent $udpc3

set cbrg [new Application/Traffic/CBR]
$cbrg set packetSize_ 1000

$cbrg set rate_ 0.2Mb

$cbrg set interval_ 0.2

$cbrg attach-agent sudpc4

set cbrio [new Application/Traffic/CBR]
$cbrio set packetSize_ 1000
$cbrio set rate_ 0.2Mb

$cbrio set interval 0.2
PAGE XLVIII

$cbrio attach-agent $udpcs

set cbru1 [new Application/Traffic/CBR]
$cbru set packetSize_ 1000

$cbri1 set rate_ 0.2Mb

$cbrn set interval _ 0.2

$cbru attach-agent $udpc6

#Create a Null agent (a traffic sink) and attach it
#set sinko [new Agent/Null]

#$ns attach-agent $Server2 gsinko

#for xgraph=====================
set sinko [new Agent/LossMonitor]
set sinki [new Agent/LossMonitor]
set sink2 [new Agent/LossMonitor]
set sink3 [new Agent/LossMonitor]
set sink4 [new Agent/LossMonitor]
set sinks [new Agent/LossMonitor]
set sink6 [new Agent/LossMonitor]
set sinky [new Agent/LossMonitor]
set sink8 [new Agent/LossMonitor]

Agent/LossMonitor objects as traffic sinks, since they store the amount of bytes
received, which can be used to calculate the bandwidth.

PAGE XLIX

$ns attach-agent $Serverz gsinko
$ns attach-agent $Server2 $sinki
$ns attach-agent $Server2 $sink2
$ns attach-agent $Server2 $sink3
$ns attach-agent $Server2 $sinkgq
$ns attach-agent $Serverz $sinks
$ns attach-agent $Serverz $sink6
$ns attach-agent $Server2 $sinky

$ns attach-agent $Serverz $sink8

set sinki [new Agent/Null]

$ns attach-agent $Server2 $sinki
set sink2 [new Agent/Null]

$ns attach-agent $Server2 $sink2
$ns connect $udpz1 $sinko

$ns connect $udpzz $sinki

$ns connect $udpz3 $sink2

$ns connect $udpci $sink3

$ns connect $udpc2 $sink4

$ns connect sudpc3 $sinks

$ns connect sudpc4 $sink6

$ns connect sudpcs $sink7

$ns connect $udpc6 $sink8

PAGE L

#Color each flow id
#client 1-3 class
sudpc1 set class_ 1
sudpcz2 set class_ 1
sudpc3 set class_1
#client 4-6 class
sudpcyg set class_3
sudpcs set class_ 3
$udpc6 set class_ 3
#zombie class
sudpz1 set class_ 2
sudpz2 set class_ 2

sudpz3 set class_ 2

$ns color 1 Blue
$ns color 3 Green

$ns color 2 Red

PAGE LI

set c_1_byte o
set c_2_byte o

set c_3_byte o

proc record {} {

global sinko sinki sink2 sink3 sink4 sinks sink6 sink7 sink8 fo fi f2 3 f4 f5 f6
f7 £8 during c_1_byte before fafter c_2_byte c_3_byte

#Get an instance of the simulator

set ns [Simulator instance]

#Set the time after which the procedure should be called again
set time 0.2

#How many bytes have been received by the traffic sinks?
set bwo [$sinko set bytes_]
set bwa [$sinki set bytes_|
set bw2 [¢sink2 set bytes_]

set bw3 [$sink3 set bytes_]
set bwy4 [$sink4 set bytes_]
set bws [$sinks set bytes_]

set bw6 [$sink6 set bytes_]

set bw7 [$sink7 set bytes_]

PAGE LII

set bw8 [$sink8 set bytes_]

#Get the current time
set now [$ns now]

#Calculate the bandwidth (in MBit/s) and write it to the files
puts $fo "$now [expr $bwo/$time*8/1000000]"
puts $f1 "$now [expr $bw1/$time*8/1000000]"
puts $f2 "$now [expr $bw2/$time*8/1000000]"

puts $f3 "$now [expr $bw3/$time*8/1000000]"
puts $f4 "$now [expr $bw4/$time*8/1000000]"
puts $f5 "$now [expr $bws/$time*8/1000000]"

puts $f6 "$now [expr $bw6/$time*8/1000000]"
puts $f7 "$now [expr $bw7/$time*8/1000000]"

puts $f8 "$now [expr $bw8/$time*8/1000000]"

calculation

if {$now >= 4.8} {
if {$now <= 9.4} {
set c_1_byte [expr {$c_1_byte + $bw8}]
puts $during "$now $c_1_byte "

}

PAGE LIII

if {$now <= 4.8} {
if {$now >= 0.2} {
set c_2_byte [expr {$c_2_byte + $sbw8}]

puts sbefore "$now $c_2_byte "

}

if {$now >= 9.4} {
if {$now <= 14.0} {
set ¢_3_byte [expr {$c_3_byte + $bw8}]

puts s$fafter "$now $c_3_byte "
}

#Reset the bytes_ values on the traffic sinks
$sinko set bytes_ o
$sinki set bytes_ o
$sink2 set bytes_ o
$sink3 set bytes_ o
$sink4 set bytes_ o
$sinks set bytes_ o

$sink6 set bytes_ o

PAGE LIV

$sinky set bytes_ o
$sink8 set bytes_ o
#Re-schedule the procedure

$ns at [expr $now+$time] "record”

#Schedule events for the CBR agents

$ns at 0.0 "record”

#$ns at 0.3 "$cbro start”
#$ns at 1.0 "$cbry start”

#$ns at 1.0 "$cbrs start”

#start client traffic c1-c6 respectively
$ns at 0.2 "$cbr6 start”

$ns at 0.2 "$cbry start”

$ns at 0.2 "$cbr8 start”

$ns at 0.2 "$cbrg start”

$ns at 0.2 "$cbrio start”

$ns at 0.2 "$cbru start”

#start zombie traffic z1-z3 respectively

$ns at 4.8 "$cbr1 start”

PAGE LV

$ns at 4.8 "$cbr2 start”

$ns at 4.8 "$cbr3 start”

#stop zombies
$ns at 9.4 "$cbr3 stop”
$ns at 9.4 "$cbr2 stop”

$ns at 9.4 "$cbr1 stop”

$ns at 14.0 "$cbr1 stop”
$ns at 14.0 "$cbrio stop”
$ns at 14.0 "$cbrg stop”
$ns at 14.0 "$cbr8 stop”
$ns at 14.0 "$cbry stop”
$ns at 14.0 "$cbr6 stop"
#$ns at 4.5 "$cbrs stop”

#$ns at 4.5 "$cbrg stop”

#$ns at 4.5 "$cbro stop”

#Call the finish procedure after 5 seconds of simulation time

$ns at 15.6 "finish"

#Run the simulation
PAGE LVI

$ns run

Hi R HHH ST T TS SE Q# R R T TR

HAHAHAHHS

#Create a simulator object

set ns [new Simulator]

#Tell the simulator to use dynamic routing

#$ns rtproto DV

#Open the nam trace file
set nf [open out.nam w]

$ns namtrace-all $nf

set fo [open outo.tr w]
set f1 [open out1.tr w]

set f2 [open out2.tr w]
set f3 [open out3.tr w]

set f4 [open out4.tr w]

PAGE LVII

set f5 [open outs.tr w]
set f6 [open out6.tr w]
set f7 [open out7.tr w]
set f8 [open out8.tr w]
set during [open outfduring.tr w]
set before [open outfbefore.tr w]

set fafter [open outfafter.tr w]

#Define a 'finish' procedure
proc finish {} {
global ns nf fo fi f2 f3 f4 f5 {6 f7 f8 during before fafter
$ns flush-trace
#Close the trace file

close $nf

#Close the output files
close $fo
close $fi
close $f2
close $f3
close $f4
close $f5

close $f6

PAGE LVIII

close $f7
close $f8
close $during
close sbefore
close sfafter
#Execute nam on the trace file
exec nam out.nam &
#Call xgraph to display the results

exec xgraph outo.tr outi.tr out2.tr out3.tr out4.tr outs.tr out6.tr out7y.tr
out8.tr -geometry 80ox400 &

exit o

#Create nine nodes

set Attacker [$ns node]
set Server [$ns node]
set Server2 [$ns node]
set Zombie1 [$ns node]
set Zombie2 [$ns node]
set Zombie3 [$ns node]
set Router [$ns node]
set Router2 [$ns node]

set Router3 [$ns node]

PAGE LIX

set Client1 [$ns node]
set Client2 [$ns node]
set Client3 [$ns node]
set Client4 [$ns node]
set Clients [$ns node]

set Client6 [$ns node]

#Colors

$Attacker color red
$Zombie1 color red
$Zombie2 color red
$Zombie3 color red
$Server color blue
$Server2 color blue
$Router color blue
$Router2 color blue

$Router3 color blue

Labelling

$ns at 0.0 "$Attacker label Attacker"
$ns at 0.0 "$Zombie1 label Zombie"
$ns at 0.0 "$Zombie2 label Zombie"
$ns at 0.0 "$Zombie3 label Zombie"

$ns at 0.0 "$Server label Gateway"

PAGE LX

$ns at 0.0 "$Server2 label Server"
$ns at 0.0 "$Router label Router”
$ns at 0.0 "$Router2 label Router”
$ns at 0.0 "$Router3 label Router"
$ns at 0.0 "$Client1 label client”
$ns at 0.0 "$Client2 label client"
$ns at 0.0 "$Client3 label client"
$ns at 0.0 "$Client4 label client"
$ns at 0.0 "$Clients label client”

$ns at 0.0 "$Client6 label client"

Shape

$Server shape square
$Server2 shape square
$Router shape hexagon
$Router2 shape hexagon

$Router3 shape hexagon

#Create links between the nodes

$ns duplex-link $Attacker $Zombie1 10Mb 100ms SFQ
$ns duplex-link $Attacker $Zombie2 10Mb 100ms SFQ
$ns duplex-link $Attacker $Zombie3 10Mb 100ms SFQ

$ns duplex-link $Zombie1 $Routerz 10Mb 100ms SFQ

PAGE LXI

$ns duplex-link $Zombiez $Router2 10Mb 100ms SFQ
$ns duplex-link $Zombie3 $Router2 10Mb 10oms SFQ
$ns duplex-link $Router2 $Server 10Mb 100ms SFQ
$ns duplex-link $Router3 $Server 10Mb 100ms SFQ
$ns duplex-link $Server $Router 10Mb 100ms SFQ
$ns duplex-link $Server $Server2 sMb 10oms SFQ
$ns duplex-link $Router $Client1 10Mb 100ms SFQ
$ns duplex-link $Router $Client2 10Mb 100ms SFQ
$ns duplex-link $Router $Client3 10Mb 100ms SFQ
$ns duplex-link $sRouter3 $Client4 10Mb 100ms SFQ
$ns duplex-link $sRouter3 $Client5 10Mb 100ms SFQ

$ns duplex-link $sRouter3 $Client6 10Mb 100ms SFQ

#queue limit

#$ns queue-limit $Server $Server2 50

Setting node position

$ns duplex-link-op $Attacker $Zombiei orient right-down
$ns duplex-link-op $Attacker $Zombie2 orient right

$ns duplex-link-op $Attacker $Zombie3 orient right-up
$ns duplex-link-op $Zombie1 $Router2 orient right-up
$ns duplex-link-op $Zombie2 $Router2 orient right

$ns duplex-link-op $Zombie3 $Router2 orient right-down

$ns duplex-link-op $Router2 $Server orient right
PAGE LXII

$ns duplex-link-op $Server $Router3 orient down

$ns duplex-link-op $Server $Router orient right

$ns duplex-link-op $Server $Server2 orient up

$ns duplex-link-op $Router $Client1 orient right-down
$ns duplex-link-op $Router $Client2 orient right

$ns duplex-link-op $Router $Client3 orient right-up

$ns duplex-link-op $Router3 $Client4 orient right-down
$ns duplex-link-op $Router3 $Clients orient down

$ns duplex-link-op $Router3 $Client6 orient left-down

#Create a UDP agent and attach it to nodes
set udpattacker [new Agent/UDP]

$ns attach-agent $Attacker sudpattacker
set udpz1 [new Agent/UDP]

$ns attach-agent $Zombie1 $udpz1

set udpz2 [new Agent/UDP]

$ns attach-agent $Zombie2 sudpz2

set udpz3 [new Agent/UDP]

$ns attach-agent $Zombie3 $udpz3

set udpRouter [new Agent/UDP]

$ns attach-agent $Router sudpRouter

PAGE LXIII

set udpRouter2 [new Agent/UDP]
$ns attach-agent $Routerz sudpRouter2
set udpRouter3 [new Agent/UDP]

$ns attach-agent $Router3 sudpRouter3

set udpServer [new Agent/UDP]
$ns attach-agent $Server sudpServer
set udpci [new Agent/UDP]

$ns attach-agent $Client1 sudpci
set udpc2 [new Agent/UDP]

$ns attach-agent $Client2 sudpc2
set udpc3 [new Agent/UDP]

$ns attach-agent $Client3 $udpc3
set udpc4 [new Agent/UDP]

$ns attach-agent $Client4 $udpc4
set udpcs [new Agent/UDP]

$ns attach-agent $Clients $sudpcs
set udpc6 [new Agent/UDP]

$ns attach-agent $Client6 $udpc6

Create a CBR traffic source and attach it to udp agents
set cbro [new Application/Traffic/CBR]
$cbro set packetSize_ 1000

$cbro set rate_ 0.2Mb

PAGE LXIV

$cbro set interval 0.2

$cbro attach-agent $udpattacker

set cbr1 [new Application/Traffic/CBR]
$cbr set packetSize_ 6000

$cbr set rate_ 2.4Mb;#ignored if interval is specified else interval =
(packetsize*8)/rate

$cbri set interval _ 0.02
$cbr1 attach-agent $udpz1

#interval = .o1s/packet = 100packets/s, 3000 * 100 = 300000=.3MB/s * 8 = 2.4
Mb/sec

2.4 *3 zombies = 7.2 Mb/s

set cbrz [new Application/Traffic/CBR]
$cbr2 set packetSize_ 6000

$cbr2 set rate_ 2.4Mb

$cbr2 set interval _ 0.02

$cbr2 attach-agent $udpz2

set cbr3 [new Application/Traffic/CBR]
$cbr3 set packetSize_ 6000

$cbr3 set rate_ 2.4Mb

$cbr3 set interval_ 0.02

$cbr3 attach-agent sudpz3

PAGE LXV

set cbr4 [new Application/Traffic/CBR]
$cbrg set packetSize_ 1000

$cbr4 set rate_ 0.2Mb

$cbry4 set interval_ 0.2

$cbrg attach-agent sudpRouter

set cbrs [new Application/Traffic/CBR]
$cbrs set packetSize_ 1000

$cbrs set rate_ 0.2Mb

$cbrs set interval _ 0.2

$cbrs attach-agent sudpServer

set cbr6 [new Application/Traffic/CBR]

$cbr6 set packetSize_ 1000

$cbr6 set rate_ 0.2Mb

$cbr6 set interval 0.2

$cbr6 attach-agent $udpci

8000 bits/packet , 0.2 s/packet , 8000/0.2 = 40k bits/s , 0.04 Mbits/s
set cbry [new Application/Traffic/CBR]

$cbry set packetSize_ 1000

$cbry set rate_ 0.04Mb

$cbr7 set interval_ 0.2

$cbr7 attach-agent $udpc2

PAGE LXVI

set cbr8 [new Application/Traffic/CBR]
$cbr8 set packetSize_ 1000

$cbr8 set rate_ 0.2Mb

$cbr8 set interval 0.2

$cbr8 attach-agent $udpc3

set cbrg [new Application/Traffic/CBR]
$cbrg set packetSize_ 1000

$cbrg set rate_ 0.2Mb

$cbrg set interval_ 0.2

$cbrg attach-agent sudpcg4

set cbrio [new Application/Traffic/CBR]
$cbrio set packetSize_ 1000

$cbrio set rate_ 0.2Mb

$cbrio set interval 0.2

$cbrio attach-agent $udpcs

set cbrui1 [new Application/Traffic/CBR]
$cbru set packetSize_ 1000

$cbri1 set rate_ 0.2Mb

$cbrn set interval _ 0.2

$cbru attach-agent $udpc6

PAGE LXVII

#Create a Null agent (a traffic sink) and attach it
#set sinko [new Agent/Null]

#$ns attach-agent $Server2 gsinko

#for xgraph=====================
set sinko [new Agent/LossMonitor]
set sinki [new Agent/LossMonitor]
set sink2 [new Agent/LossMonitor]
set sink3 [new Agent/LossMonitor]
set sink4 [new Agent/LossMonitor]
set sinks [new Agent/LossMonitor]
set sink6 [new Agent/LossMonitor]
set sinky [new Agent/LossMonitor]
set sink8 [new Agent/LossMonitor]

Agent/LossMonitor objects as traffic sinks, since they store the amount of bytes
received, which can be used to calculate the bandwidth.

$ns attach-agent $Server2 gsinko
$ns attach-agent $Serverz $sinki
$ns attach-agent $Server2 $sink2
$ns attach-agent $Server2 $sink3
$ns attach-agent $Server2 $sinkg
$ns attach-agent $Serverz $sinks
$ns attach-agent $Serverz $sink6

$ns attach-agent $Server2 $sinky

PAGE LXVIII

$ns attach-agent $Serverz $sink8

set sinki [new Agent/Null]

$ns attach-agent $Server2 $sinki
set sink2 [new Agent/Null]

$ns attach-agent $Server2 $sink2
$ns connect $udpz1 $sinko

$ns connect $udpzz $sinki

$ns connect $udpz3 $sink2

$ns connect $udpci $sink3

$ns connect $udpc2 $sink4

$ns connect $udpc3 $sinks

$ns connect sudpc4 $sink6

$ns connect $udpcs $sink7

$ns connect $udpc6 $sink8

#Color each flow id
PAGE LXIX

#client 1-3 class
sudpc1 set class_ 1
sudpcz2 set class_ 1
sudpc3 set class_1
#client 4-6 class
sudpcyg set class_3
sudpcs set class_ 3
$udpc6 set class_ 3
#zombie class
sudpz1 set class_ 2
sudpz2 set class_ 2

sudpz3 set class_ 2

$ns color 1 Blue
$ns color 3 Green

$ns color 2 Red

set c_1_byte o
set c_2_byte o

set c_3_byte o

proc record {} {

PAGE LXX

global sinko sinki sink2 sink3 sink4 sinks sink6 sink7 sink8 fo fi f2 f3 f4 f5 f6
f7 £8 during c_1_byte before fafter c_2_byte c_3_byte

#Get an instance of the simulator
set ns [Simulator instance]
#Set the time after which the procedure should be called again
set time 0.2
#How many bytes have been received by the traffic sinks?
set bwo [$sinko set bytes_]
set bwa [$sinki set bytes_|
set bw2 [¢sink2 set bytes_]
set bw3 [$sink3 set bytes_]
set bwy4 [$sink4 set bytes_]
set bws [$sinks set bytes_]
set bw6 [$sink6 set bytes_]
set bw7 [$sink7 set bytes_]
set bw8 [$sink8 set bytes_]
#Get the current time
set now [$ns now]
#Calculate the bandwidth (in MBit/s) and write it to the files
puts $fo "$now [expr $bwo/$time*8/1000000]"
puts $f1 "$now [expr $bw1/$time*8/1000000]"
puts $f2 "$now [expr $bw2/$time*8/1000000]"

puts $f3 "$now [expr $bw3/$time*8/1000000]"

PAGE LXXI

puts $f4 "$now [expr $bw4/$time*8/1000000]"

puts $f5 "$now [expr $bws/$time*8/1000000]"
puts $f6 "$now [expr $bw6/$time*8/1000000]"

puts $f7 "$now [expr $bw7/$time*8/1000000]"

n

puts $f8 "$now [expr $bw8/$time*8/1000000]

calculation

if {$now >= 4.8} {
if {$now <= 9.4} {
set c_1_byte [expr {$c_1_byte + $bw8}]
puts $during "$now $c_1_byte "

}

if {$now <= 4.8} {
if {$now >= 0.2} {
set c_2_byte [expr {$c_2_byte + $sbw8}]

puts sbefore "$now $c_2_byte

}

PAGE LXXII

if {$now >= 9.4} {
if {$now <= 14.0} {
set ¢_3_byte [expr {$c_3_byte + $bw8}]

puts s$fafter "$now $c_3_byte
}

#Reset the bytes_ values on the traffic sinks
$sinko set bytes_ o
$sinki set bytes_ o
$sink2 set bytes_ o

$sink3 set bytes_ o
$sink4 set bytes_ o
$sinks set bytes_ o

$sink6 set bytes_ o
$sinky set bytes_ o
$sink8 set bytes_ o

#Re-schedule the procedure

$ns at [expr $now+$time] "record”

#Schedule events for the CBR agents

PAGE LXXIII

$ns at 0.0 "record”

#$ns at 0.3 "$cbro start”
#$ns at 1.0 "$cbry start”

#$ns at 1.0 "$cbrs start”

#start client traffic c1-c6 respectively
$ns at 0.2 "$cbr6 start”

$ns at 0.2 "$cbry start”

$ns at 0.2 "$cbr8 start”

$ns at 0.2 "$cbrg start”

$ns at 0.2 "$cbrio start”

$ns at 0.2 "$cbru start”

#start zombie traffic z1-z3 respectively

$ns at 4.8 "$cbr1 start”
$ns at 4.8 "$cbr2 start”

$ns at 4.8 "$cbr3 start”

#stop zombies
$ns at 9.4 "$cbr3 stop”
$ns at 9.4 "$cbr2 stop”

$ns at 9.4 "$cbr1 stop”

PAGE LXXIV

$ns at 14.0 "$cbru1 stop”
$ns at 14.0 "$cbrio stop”
$ns at 14.0 "$cbrg stop”
$ns at 14.0 "$cbr8 stop”
$ns at 14.0 "$cbry stop”
$ns at 14.0 "$cbr6 stop"
#$ns at 4.5 "$cbrs stop”

#$ns at 4.5 "$cbrg stop”

#$ns at 4.5 "$cbro stop”

#Call the finish procedure after 5 seconds of simulation time

$ns at 15.6 "finish"

#Run the simulation

$ns run

PAGE LXXV

