CMPT 120

Topic: Introduction to Computing Science and Programming + Algorithm
Last Lecture

• i-clicker Practice Session
• Computing Science -> Problem Solving
• Steps in Problem Solving Process

Problem Solving Process:
1. State the problem
 • Figure out what the problem is and make sure we understand it
2. Design possible solutions
3. Select the “best” solution
4. Carry on the selected solution
5. Testing: has the selected solution solved the initial problem?

• Decomposition
 • Decompose the description of our solution into “finer” details
 • Example: *Buy 2 liters of organic 2% cow milk from Avalon*
Learning outcomes

At the end of this lecture, a student will be able to:

• Describe fundamental concepts pertaining to computing science
 • Algorithm
 • Computer program

At the end of this lecture, a student will have a better idea of what it means to solve a problem using a computer:

• State the problem
• Design an algorithm + analyze the data required
• Create a program
• Test a program
Today’s Menu

• Course Title: “Introduction to Computing Science and Programming 1”

• Illustrate the Problem Solving Process using a computer
 • Experience what it means to create a computer program
What is Programming?

• a.k.a. Software Development

• **Definition:**
 • Science and art of creating computer programs for the purpose of solving problems
Problem Solving Process using computers

1. State the problem
 - Figure out what the problem is and make sure we understand it

2. a) Design possible solution(s)
 - Solution is expressed as an algorithm

 b) Identify data
 - Input – identify data needed in order to solve problem
 - Structure the data and represent it in solution to problem
 - Output – identify data produced by solution to problem

3. Select the “best” solution
 - By analyzing algorithms
 - Which one is the most effective/efficient?

4. Implement the selected solution
 - We implement the algorithm into a computer program

5. Testing
 - Does the program execute?
 - Does it solve the problem?
Activity: Let’s solve another problem!

1. State the problem
 • Figure out what the problem is and make sure we understand it

Problem Statement:
Activity: Let’s solve another problem!

2. a) Design possible solution(s)
 • Solution is expressed as an algorithm

 b) Identify data
 • Input – identify data needed in order to solve problem
 • Structure the data and represent it in solution to problem
 • Output – identify data produced by solution to problem
Algorithm - Definition

- A **finite sequenced** set of **unambiguous** steps that, once executed, produces a **result**

 - **finite**: This set of steps executes in a finite amount of time i.e. it should finish at some point
 - **sequenced**: The steps must be executed in the order in which they are listed
 - **unambiguous**: Each step is clear
 - **result**: This result solves the initial problem
More about algorithm

• Please, see the video “Algorithms from Khan Academy” listed under Resources on our home course web page
How do we express an algorithm?

1. Use a natural language like English
 - Example:
 - Problem Statement: Let’s figure out our course final grade
 - Take all the grades we obtained in course activities (e.g., assignments, exams, etc…)
 - Compute each grade as a % of final grade
 - Total them and the sum is our final grade out of 100%
How do we express an algorithm?

2. Use a mix of natural language and computer language - > **pseudocode**
 - **Example:**
 - **Problem Statement:** Let’s figure out our course final grade
 - Set finalGrade to 0
 - For each grade
 - Input grade
 - Input gradedOutOf (the grade’s maximum - out of)
 - Input percentOfFinalGrade (the grade’s % of the final grade)
 - Compute newGrade -> (grade * percentOfFinalGrade) / gradedOutOf
 - finalGrade = finalGrade + newGrade (keep a running total)
 - Print finalGrade
How do we express an algorithm?

3. Use a flowchart

Legend:
- Start and end of algorithm
- Processing
- Input or Output
- Decision
- Flow of execution

Start
Set finalGrade to 0

All grades read yet?

Yes

End
Print finalGrade

No

Input grade
Input gradedOutOf
Input percentOfFinalGrade
Compute newGrade
Keep running total for finalGrade
How do we express an algorithm?

4. In a diagram
 - Please, see "Here is an awesome way of expressing an algorithm (Way #4)" listed under Resources on our home course web page

5. In a video (verbal instructions and pictures)
 - Please, see "Here is another awesome way of expressing an algorithm (Way #5)" listed under Resources on our home course web page
Why do we need algorithms?
Back to our activity!

3. Select the “best” solution
 • We select the “best” solution by analyzing algorithms
 • Which one is the most effective/efficient?

4. Implement the selected solution
 • We implement the algorithm into a computer program

5. Testing
 • Does the program execute?
 • Does it solve the problem?
Computer Program

• **Definition**: …

• Before coming up with a definition, let’s play a game
 • Let’s see what it means to “Implement algorithm into computer program” -> Step 4!
Warning!

• First of all, let’s be very clear about computers: Computers are ___________ and will only do what we tell them to do!

• So we need to give the computer ___ in order for it to do what we want it to do

• However, computers are very good at executing:
 • Very basic instructions e.g. calculations
 • Instructions very fast
 • Instructions on a very large amount of data
Activity: Let’s play at “programming” a computer!

1. We as human beings
 - Grab a piece of paper and draw a ___________

2. We as computers
 - Imagine we are computers, what instructions would we need in order to draw a ___________
So, what is a Computer Program?

- **Definition:**
 - A *finite sequenced* set of *computer programming language instructions*
 - These instructions tell the computer what to do
Summary

• Computing Science -> Problem solving
• Programming (software development)
 • Problem Solving using a computer
• Algorithm
 • How to express them -> 5 ways
 • Why do we need them
• Computer program
Next Lecture

- Definition of Programming language
- Evolution of programming languages
- Compiled versus interpreted programming languages
- Continue illustrate the Problem Solving Process

State problem \rightarrow Design algorithm + Identify data \rightarrow Implement algorithm into computer program \rightarrow Test it