Weekly Exercise 5 – Encryption-Decryption

• **Problem statement:**
 • Write your own encryption/decryption program

• **Requirements:**
 • You must create your own encryption/decryption algorithm (you cannot use the ones seen in class or anywhere else – textbooks, Internet, etc…)
 • You must encrypt the user’s message so that one cannot guess the plaintext by looking at the ciphertext
 • So, a solution like reversing the characters in the message won’t do!
 • You must use the **starter program** found on the next slide and you cannot modify its structure
 • You must create a function `encrypt()` and a function `decrypt()`, and implement them in the starter program
 • Note that the starter program asks the user to enter a message (plaintext) to encrypt/decrypt until the user wants to stop
 • All these requirements will be demonstrated in class this week in Lectures 12 and 13
Encryption/Decryption
Description: Encrypt plaintext and decrypt ciphertext using my own algorithm
Author:
Date:

function encrypt()
def encrypt(plain):
 # function decrypt()
def decrypt(cipher):

Main part of program
notFinished = True;
while notFinished:
 plainText = input("Please, enter a message to encrypt or S to stop: ")
 if plainText != 'S' and plainText != 's':
 # Call the encrypt function with plainText
 # The encrypt function returns ciphertext
 print("\tLet's encrypt your message ... ")
 cipherText = encrypt(plainText)

 # Print the ciphertext
 print("\t'{}' becomes '{}'.".format(plainText, cipherText))

 # Call the decrypt function with ciphertext
 # The decrypt function returns plaintext
 print("\tLet's decrypt your encrypted message ... ")
 plainText = decrypt(cipherText)

 # Print the ciphertext and plaintext
 print("\t'{}' becomes '{}'.".format(cipherText, plainText))
 else:
 notFinished = False;

print("Bye!")
How to proceed:

• Follow the process demonstrated in class:
 • Use Repl.it Python3
 • In the text editor
 • Write a complete header
 • Write an algorithm in English as Python comments
 • Translate your comments into Python 3 statements
 • Make sure your program solves the problem stated in the **Problem Statement** and satisfies the **Requirements**
 • Press the **Run** button to execute your program. Enter as many different responses to test as much of your code as possible

• Press the **Shared** button to get the link

• Submission: Copy and paste the link in **CourSys**

• Due this Thursday, June 6 at 3pm

• If you have any issues or questions, post them on Piazza or ask a TA during Open Lab hours or the instructor during her office hours

• You must work on your own.

• **No late submission** will be accepted!

• Make sure you test your link – if it does not work, the TA cannot mark your work and you get 0. 😞
A Note about CourSys

- You can submit your work as often as you wish on CourSys, i.e., you can make many submissions.
- The last submission is the one that is marked – make sure your last submission is not late!

- Your grade and comments can be found on CourSys:

Weekly Exercise 3

<table>
<thead>
<tr>
<th>Status</th>
<th>grades released</th>
</tr>
</thead>
<tbody>
<tr>
<td>Due date</td>
<td>Thu May 23 2019, 15:00</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.00%</td>
</tr>
<tr>
<td>Grade Status</td>
<td>graded</td>
</tr>
<tr>
<td>Your Grade</td>
<td>1.00/1.00 (100.00%) [Additional Marking Details]</td>
</tr>
</tbody>
</table>

Click here for comments!