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Abstract. Most constraint-based learning systems do not make learning the identity of constraints 
operative in grammar a significant part of learning. We motivate and implement a connectionist 
learning system that does precisely this in the domain of phonotactics. In particular, we develop a 
multilayer feed-forward network that learns the constraints that underlie restrictions banning 
homorganic consonants, or ‘OCP effects’, in Arabic roots. The network is trained using standard 
learning procedures in connection science with a representative sample of Arabic roots. The 
trained network is shown to classify actual and novel Arabic roots in ways that are qualitatively 
parallel to psycholinguistic study of Arabic. Statistical analysis of network behavior also shows 
that activations of nodes in the hidden layer correspond well with violations of symbolic well-
formedness constraints familiar from generative phonology. In sum, it is shown that at least some 
constraints operative in phonotactic grammar can be learned from data and do not have to be 
stipulated in advance of learning. 
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1.	  Introduction	  
Much work in generative linguistics is nativist in the sense that the fundamental mechanisms for 
computing linguistic processes are assumed to be innate. In Optimality Theory (OT), for 
example, the building blocks for grammar, well-formedness constraints, are universal and innate 
((Prince and Smolensky, 1993/2004), (McCarthy and Prince, 1999)). Cross-linguistic differences 
are accounted for by reranking these fixed constraints. While it is fairly certain that some aspects 
of language are innate in humans, it is also far from clear which aspects are innate and which 
simply evolve in the natural course of language development. Results from a host of different 
research paradigms have shown that many language processes can be learned directly from the 
statistical structure of experience ((Elman et al., 1996), (Spencer et al., 2009)), including 
nontrivial ones like dependencies between nonadjacent elements ((Gomez, 2002), (Newport and 
Aslin, 2004)). Perhaps at least some of the constraints of OT grammars can be learned from 
experience too.  
In a sense, recent work in computational language learning in phonology anticipates this issue. 
Initial computational work in OT showed that, with a finite set of fixed constraints, complex 
linguistic systems can be learned within an OT architecture ((Tesar, 1995), (Tesar and 
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Smolensky, 2000)). Related research paradigms, including the Gradual Learning Algorithm 
((Boersma, 1998), (Boersma and Hayes, 2001)) and Harmonic Grammar ((Legendre et al., 
1990), (Pater, 2009)), modify how constraint-based grammars predict output forms, but they 
retain the assumption that the constraints themselves are given in advance of learning. More 
recently, however, (Hayes and Wilson, 2008) call into question this assumption. In their theory, 
constraints can be induced from the data by search heuristics that select a small number of highly 
predictive constraints from a quasi-infinite constraint set. While this approach is used more as an 
inductive baseline to motivate the introduction of more abstract structures, it is notable in that it 
makes learning the constraints themselves a nontrivial part of learning. 
We seek to continue this line of research by providing an additional mechanism of inducing 
constraints from data. In particular, we develop a connectionist architecture for learning 
phonotactic constraints. Below we motivate this cognitive architecture and apply it to the 
problem of learning root occurrence restrictions, or ‘OCP effects’, in Arabic. Arabic is chosen 
because large datasets exist, i.e., root lists and psycholinguistic experiments (Frisch et al., 2000), 
that enable strong tests of model performance. Also, Arabic exhibits graded phonotactic patterns 
that make it a good test case for any learning system designed to induce constraints. The 
principal result reported below is that the graded phonotactic patterns of Arabic consonant 
phonology can be learned as the gradual tuning of subsymbolic constraints in a connectionist 
network. Learning of OCP constraints in a connectionist network therefore presents a new way 
of inducing constraints from data. 

The rest of the article is organized as follows. The next section summarizes the Arabic data that 
we attempt to model, including some exceptional patterns that we document in some detail. 
Section 3 lays out the theoretical context for our model, including a comparison of connectionist 
learning models with the contemporary models of learning phonology mentioned above. Section 
4 lays out the principal assumptions of our connectionist network, and section 5 presents the 
learning results. The last section discusses some of the issues raised by the research.  

2.	  Root	  cooccurrence	  restrictions	  in	  Arabic	  
A root in Arabic is a discontinuous string of consonants that is interspersed with patterns of 
vowels to form stems. The number of consonants making up the root can be between two and 
five, but triconsonantal roots are by far the most common. Roots in a sense specify a narrow 
semantic field within which actual stems are realized. For example, the triconsonantal root k-t-b 
‘writing’ can be interlocked with the pattern for the active participle, CaaCiC, to form the noun 
kaatib ‘writer’. While standard reference grammars, e.g., (Ryding, 2005), tend to distinguish just 
these roots and patterns, work in contemporary theories of morphology and phonology has 
further decomposed some stem patterns into grammatical morphemes of two kinds: (i) 
discontinuous strings of vowels and, (ii) prosodic templates to which the consonantal root and 
vocalic morphemes are linked up ((McCarthy, 1979), (McCarthy and Prince, 1990)).  

Arabic roots exhibit a phonological pattern in which there is a strong tendency against two 
adjacent consonants having the same place of articulation. This generalization was first clarified 
in (Greenberg, 1950) and explored further in ((McCarthy, 1988), (McCarthy, 1994), and 
(Pierrehumbert, 1993)) with different root lists. The chart below, from (Frisch et al., 2004), 
organizes Arabic consonants into a set of homorgranic natural classes typically assumed in prior 
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work, following the autosegmental analysis of (McCarthy, 1988).1 We refer to these classes 
below (excluding the uvulars) as ‘same-place’ classes, because they are not co-extensive with the 
natural classes defined by major place features. As explained below, there are three separate 
coronal same-place classes, and uvulars are merged with both dorsal and pharyngeal classes. The 
rate of cooccurrence of two consonants in a root is quantified as a so-called O/E ratio, or the ratio 
of observed consonant pairs to the number of consonants that would be expected to occur by 
chance (Pierrehumbert, 1993). The O/E ratios for sequences of adjacent consonants in a root, i.e., 
the first two or last two consonants, are shown below in Table 1 from a dataset of 2674 triliteral 
verb roots compiled originally in (Pierrehumbert, 1993) and based on the Hans Wehr Arabic-
English Dictionary (Cowan, 1979).  

An O/E ratio of less than 1 indicates underrepresentation in the dataset, as shown in all the 
shaded cells below for all same-place consonant pairs. Uvulars are also significantly 
underrepresented when they combine with either dorsals or pharyngeals. For this reason, uvulars 
are generally assumed to be in both same-place classes. While not as strong an effect, coronal 
stop + fricative pairs are also underrepresented with an O/E of 0.52. Thus, after merging uvulars 
with dorsals and pharyngeals, there are six same-place classes in Arabic root phonotactics. 
Table 1. Co-occurrence of adjacent consonants in Arabic triliteral roots (from Frisch et al. 2004). 

 Lab Cor Stop Cor Fric Dorsal Uvular Phar Cor Son 

Labial [	  b	  f	  m	  ]	   0.00 1.37 1.31 1.15 1.35 1.17 1.18 

Cor Stop [	  t	  d	  tˁ	  dˁ	  ]	    0.14 0.52 0.80 1.43 1.25 1.23 

Cor Fric [	  θ	  ð	  s	  z	  sˁ	  zˁ	  ʃ	  ]	     0.04 1.16 1.41 1.26 1.21 

Dorsal [	  k	  g	  q	  ]	      0.02 0.07 1.04 1.48 

Uvular [	  χ	  ʁ	  ]	       0.00 0.07 1.39 

Pharyngeal [	  ħ	  ʕ	  h	  ʔ	  ]	        0.06 1.26 

Cor Son [	  l	  r	  n	  ]	         0.06 

This restriction against same-place pairs is also found in non-adjacent consonants, e.g., the first 
and third consonant of a triliteral root, but the effect is not as strong ((Greenberg, 1950), 
(Pierrehumbert, 1993), (Frisch et al., 2004); see also discussion below).  

The above data shows that roots that contain two same-place consonants are in general 
prohibited. However, two identical consonants are commonly found in the second and third 
consonantal positions in triliteral roots, e.g., madad ‘stretch’. Most prior work, and the table 
above, follow (McCarthy, 1986) in excluding roots with pairs of identical segments in counts of 
same-place consonant pairs because they assume an analysis in which the second and third 
consonants are derived in some sense (e.g., by autosegmental double-linking or reduplicative 
copying) from the same underlying consonant. So the two identical surface consonants do not 
actually constitute a consonant pair for the purpose of the restriction against homorganic 
consonants ((Coetzee and Pater, 2008), (Gafos, 1998), (Rose, 2000), (Frisch et al., 2004)). We 
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follow this work for the sake of concreteness, and exclude identical segments in C2C3 position 
from the set of patterns that our model is designed to account for.  

While the generalization banning homorganic consonants is clearly evident in Table 1, a closer 
look at the facts of consonant cooccurrence reveals many exceptional patterns that contain 
particular same-place segments in particular positions. For example, in his original 1950 article, 
Greenberg notes that, while pairs of pharyngeals and uvulars are in general significantly 
underrepresented in Arabic, most of the exceptions to this restriction are of the form /χCʕ/, which 
occur at a rate approaching chance. This example, which is typical of many others, gives 
additional structure to the description of Arabic phonotactics. While there is an over-arching 
constraint banning pairs of same-place consonants, there are pockets of consonant pairs that are 
not as underrepresented as one would expect from a blanket restriction against homorganic 
consonant pairs. We describe these exceptional patterns below to document this additional layer 
of phonotactic structure. In section 5, we also use this description to ask if our connectionist 
network learner is sensitive to this level of phonotactic detail.   

Our description draws on the data in the (Buckwalter, 1997) root list. This list contains 4,749 
roots, including both triliterals (three consonants) and quadraliterals (four consonants), but we 
exclude the quadraliterals for comparison with most prior work, which has an exclusive focus on 
triliterals. The triliteral root list contains 3,823 roots, of which 3,489 are not final geminate roots, 
i.e., roots of the form XYY. We choose to use the Buckwalter list because it contains both 
nominal and verbal roots, and also has far more triliterals than the Hans Wehr root list, so it is a 
more representative sample of the total population of Arabic roots. This choice is important for 
comparing our model with native speaker judgement data in section 5, because the larger sample 
is a better approximation of what native speakers are exposed to. The Buckwalter root list 
transcribed in IPA is available from the authors’ websites, together with a set of contingency 
tables documenting consonant cooccurrence. 

Table 2 below lists the counts of all exceptional patterns in the Buckwalter corpus to the 
homorganic cooccurrence restrictions of Arabic, sorted by the six same-place classes and 
consonantal position. We exclude examples with identical segments, i.e. roots of the form XXY, 
XYX. A count is given for both the exceptional pattern and the total number of exceptions in the 
same position and same-place class. For example, there are 2 roots that fit the pattern /dCt/, 
where /d/ occurs in C1 position, /t/ in C3, and any other consonant in C2 position. This pattern 
accounts for 2 of the 15 total number exceptions to the OCP for coronal stops in C1C3 pairings. 
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Table 2. Exceptional patterns in Arabic triliteral roots, sorted by same-place class and position 

  C1C2 C2C3 C1C3 

Labial fmC 1   bCf 1   
3×3     bCm 9   
     fCm 11   

 Totals  1  0    21 
Coronal stop dˤdC 1 Ctd 4 dCt 2 dˤCd 2 
4×4   Ctˤd 1 tˤCt 3 dCtˤ 1 
   Cdˤd 3 tCd 1 dˤCtˤ 3 
     tˤCd 2 dCdˤ 1 

Totals  1  8    15 
Coronal fricative sðC 2 Cʃz 1 ʃCθ 2   
7×7 ʃðC 4   ʃCð 1   
 ʃsC 1   ʃCs 3   
 ʃzC 1   ʃCsˤ 1   
 ʃsˤC 2   ʃCzˤ 1   
 ʃzˤC 2       

Totals  12  1    8 
Dorsal gkC 1 Cqg 1 gCk 1 ʁCq 6 
5×5 χgC 1 Cgq 2 χCk 1 kCχ 3 
 ʁgC 1 Cχq 1 kCg 1 gCχ 2 
 χqC 1   qCg 4   
 ʁqC 1   χCg 5   
 kχC 1   ʁCg 1   
 gχC 2   gCq 2   
 kʁC 3   χCq 5   

Totals  11  4    31 
Pharyngeal ʔχC 4 Cχʕ 2 ʔCχ 1 ʔCh 3 
6×6 ʔħC 3   ʔCħ 1 χCʔ 5 
 ʕhC 4   χCʕ 9 ʁCʔ 1 
 ʔhC 2   hCʕ 8 ħCʔ 3 
 hʔC 1   ʔCʕ 1 ʕCʔ 1 
     ʕCh 5 hCʔ 6 

Totals  14  2    44 
Coronal sonorant nrC 1 Crl 2 rCl 14   
3×3 rnC 7 Cnl 1 nCl 22   
   Clr 1 nCr 23   
   Cnr 7 lCn 11   

   Cln 5 rCn 15   
   Crn 9     

Totals:  8  25    85 
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These patterns support and extend some of the observations made in prior work. For example, if 
one distinguishes these patterns by their position in the root, the number of attested pairings of 
non-adjacent same-place consonants (C1C3) comes to 45 (from 204 roots), which far 
outnumbers exceptional patterns in both initial C1C2 (= 23 patterns from 47 roots) and final 
C2C3 (=14 patterns from 40 roots) pairs. This fact is consistent with the observation that non-
adjacent consonant pairs are less restricted than adjacent pairs ((Greenberg, 1950), (McCarthy, 
1994), (Pierrehumbert, 1993)). The exceptions to the constraint against two coronal fricatives 
also reveals a static generalization that Greenberg mentions in passing, namely that most of these 
exceptions involve /ʃ/ as an initial member of the consonant pair. Finally, these exceptional 
patterns also often differ in whether they are the lone examples in an otherwise exceptionless 
pairing of same-place consonants, or they are instead one exceptional pattern among many. For 
example, there is just one exceptional pattern to the restriction against two pharyngeals in C2C3 
pairs, /Cχʕ/, but there are 5 distinct patterns in C1C2 pairs and 12 in C1C3 pairs. The facts above 
give richer structure to Arabic phonotactics, and we use this as a way of testing how well our 
learning model has learned the restrictions on homorganic consonants. 
We can summarize these facts with some guiding assumptions from Autosegmental Phonology. 
The Obligatory Contour Principle (OCP; (Leben, 1973), (Goldsmith, 1976), (McCarthy, 1986)), 
and extensions of it in Optimality Theory ((Myers, 1997), (Suzuki, 1998)), provide a means of 
formalizing specific consonant cooccurrence restrictions described above ((McCarthy, 1988), 
(Yip, 1989), (Padgett, 1995)). OCP-Place constraints effectively ban two segments that have 
identical specifications for the major place features, e.g., OCP-Labial bans a form with two labial 
segments. In many languages, as in Arabic, additional ‘subsidiary’ features are needed to further 
specify the set of features that must be identical. Thus, (Padgett, 1995) argues for three sets of 
OCP-Coronal constraints in Arabic, OCP-[Coronal, +son], OCP[Coronal, -son, -cont], 
OCP[Coronal, -son, +cont], to account for the basic fact that the same-place classes of Arabic 
subdivide the coronals into three classes: sonorants, stops, and fricatives. To these, we add 
OCP[labial], OCP[dorsal], and OCP[pharyngeal], to cover the course-grained constraints 
exhibited in the O/E patterns in Table 1.  

In addition, two other factors are important: proximity, because non-adjacent consonants have 
weaker restrictions, and phonological similarity. In Table 1, for example, we see that there is a 
stronger restriction of two coronal stops than a coronal stop and fricative, because in the latter 
case, the segments differ in continuancy and are therefore less similar phonologically. In section 
5, we review psycholinguistic evidence of the fact that phonological similarity is a factor in 
native speakers’ intuitions about these restrictions. Finally, while we do not know if native 
speakers have robust intuitions about the exceptional patterns in Table 2, we may also ask if our 
analysis can discriminate these fine-grained exceptions, essentially on a segment-by-segment 
basis, to the OCP constraints. 

3.	  The	  context	  of	  connectionist	  grammars	  in	  generative	  phonology	  
Connectionist networks (c-nets) compute input-output processes by sending information through 
a web of simple processing units. C-nets are often said to be neurally-inspired, but connectionist 
researchers generally do not claim that c-nets are entirely brainlike in the way they process 
information, and nor do we. The important point is that providing a model of this micro-structure 
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constitutes a theory that makes new predictions, which we explore below in the context of the 
problem of constraint induction.2 

Information is passed through a c-net by computing the activation states of simple processing 
units. The flow of this information is neurally-inspired in the sense that the computation of these 
states is done in parallel, and the activation state of one unit is affected by the activation state of 
other units connected to it in the network. As shown below, units are often organized into distinct 
layers corresponding to different types of representations. For example, input and output layers 
are distinguished from the hidden layer, an internal representation that restructures the input 
representation as a function of the first set of connection weights. The activation state of any 
particular unit is a function of the weighted sum of the activation states of all units sending 
information to it. Thus, in the enlarged fragment of unit m on the right of Fig. 1, m’s activation is 
the weighted sum of the activation values from all units sending information to m, transformed 
by an activation function. A commonly used activation function is the sigmoid logistic function, 
which has the effect of squishing the sums of input activation states into a fixed range. 

 
Figure 1. Information processing in a multilayer network.  

C-nets and their training are characterized by a host of additional parameters (e.g., bias units that 
establish thresholds for activation states, plasticity parameters in adjusting connection strengths, 
etc.) and assumptions about the overall network architecture (number of layers, nature of 
representations, feed-forward vs. recurrent), and we flesh out these parameters for our c-net 
below in section 4.  
Connectionist grammars are information processing models that take inputs and generate 
outputs, and so they can be compared with symbol-manipulating grammars as generative models. 
The well-known analysis of the English past tense in (McClelland and Rumelhart, 1986), for 
example, generates past tense forms from English present forms by computing representations 
for inflectional morphology through a multilayer node network. C-nets have also been developed 
                                                
2 See ((McLeod et al., 1998), (Mitchell, 1997), and (Thomas and McClelland, 2008)) for more thorough 
introductions to connectionist networks that go beyond this crisp overview.  
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that capture the facts of traditional problems in phonology. For example, (Hare, 1990) designed a 
sequential network to capture some of the core facts of Hungarian vowel harmony. Hare showed 
that by using a context layer, which in a sense remembers the structure of preceding elements 
((Jordan, 1991), (Elman, 1990)), the c-net could explain the effect of similarity and proximity on 
vowel harmony, i.e., the fact that the more similar and closer the target and trigger are, the 
stronger assimilatory effect; see also (Wayment, 2009) on attractor networks producing similar 
effects for a wider set of facts. Another example is the c-net developed in (Legendre et al., 2006) 
to account for the now classic OT analysis of Tashlhyt Berber syllabification (see (Prince and 
Smolensky, 1993/2004)); see also (Smolensky et al., To appear) for the next generation of 
connectionist models that resolves some of the problems of this particular approach. We sketch 
the model of this last example, dubbed Brbrnet, in order to introduce some of the parallels 
between micro- and macro-structure learning below.  

 
Figure 2. Brbrnet: Syllabifier for Imdlawn Tashlhiyt Berber (Legendre et al., 2006) 

The input to Brbrnet is a sequence of segments comprising a word. Each segment is encoded 
in terms of its sonority, which is fed into the network as the activation state of an input node. 
Brbrnet computes the syllabification of these segments as a pattern of activation across an 
output layer. This output layer consists of a string of nodes each linked to a corresponding input 
node by an excitatory connection (=positive connection weight). Each output unit is also linked 
to the output nodes adjacent to it by an inhibitory connection (=negative connection weight). 
Brbrnet is a recurrent network in the sense that the output nodes are fed back onto themselves 
until a stable state is reached. Output nodes thus compete with each other to determine syllabic 
roles such that the closer an output node is to being active (= syllable peak), the greater the 
pressure on adjacent nodes to not be active (= syllable margin).  
Besides illustrating complex phonological behavior at the micro-structure level, this example 
provides a way of distinguishing the symbolic constraints of standard OT and subsymbolic 
constraints of c-nets. The symbolic constraints of OT express some requirement on output form 
and inspect outputs for how many times this requirement is violated. Onset, for example, is a 
symbolic constraint that requires syllables to begin with consonants.  
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One can also view the dynamic computation of activation patterns in a c-net as constraint 
satisfaction, but satisfaction of subsymbolic constraints rather than symbolic constraints 
((Smolensky, 1988), (Smolensky and Legendre, 2006b)).3 Subsymbolic constraints are defined 
as the connection weights between nodes. A subsymbolic constraint can be a single connection, 
or sets of connections within the larger node network. If the connection between two units is 
positive, the unit sending information tries to put the unit immediately downstream into the same 
positive state it is in. The constraint is in a sense satisfied if the state of the receiving node 
resembles the state of the sending node. If the connection is negative, the sending unit tries to put 
the receiving unit in the opposite state, so negative weights are satisfied by inducing opposite 
activation states downstream. Like constraint satisfaction in OT, not all constraints can be 
satisfied in c-nets. But as activity flows through the network, or cycles through recurrent 
networks, the activation values of individual units will change in a way that better satisfies these 
positive and negative constraints. This is the principle of Harmony Maximization of ((Legendre 
et al., 1990), (Smolensky and Legendre, 2006a)).  

The analogue to the symbolic constraint Onset in Brbrnet is the set of all connections between 
output nodes in Figure 2 (Legendre et al., 2006). These connections are negative numbers, so, 
over time, as certain output nodes get higher activity values, they push their neighbors into states 
with low activity, i.e., they force them to be margins. Subsymbolic constraints are therefore not 
global assessments of some property of a macrostructure representation, like whether the syllable 
initial position is filled with a consonant. They are the combined effect of microstructure links 
that can be scattered across the network. This has important consequences for constraint 
induction, because the problem of ‘learning the constraints’ is characterized more precisely as a 
problem of learning the correct configuration of connection weights.  

Contrast this analysis of the learning problem with contemporary approaches to learning 
constraint-based grammars. In most constraint based learning systems, the function computed by 
a constraint is not learned at all. Instead, its importance in the grammar, i.e., its rank in a 
constraint hierarchy or its weight in the system, is learned in isolation. For example, in Harmonic 
Grammar, (Coetzee and Pater, 2008) model the learning of cooccurrence restrictions similar to 
the ones discussed here using a standard gradient descent algorithm for learning constraint 
weights. In particular, they provide their learner a set of 24 symbolic constraints on feature 
cooccurrence that prohibit consonant pairs with the same Place specification and also match on 
other features. The weights of these 24 constraints, plus faithfulness for feature realizations, are 
gradually adjusted in response to errors. Thus, like many other contemporary models of learning 
constraint-based grammars, e.g., Multi-Recursive Constraint Demotion ((Tesar, 1995), (Tesar 
and Smolensky, 2000)) and the Gradual Learning Algorithm ((Boersma, 1998), (Boersma and 
Hayes, 2001)), the actual functions computed by grammatical constraints are not part of 
learning.4  

A recent notable exception to this state of affairs is the Maximum Entropy (MaxEnt) model for 
learning phonotactics (Hayes and Wilson, 2008). This model, while it shares some important 
                                                
3 We avoid the distinction between hard and soft constraints often used in comparing connectionist networks and 
symbolic-computational systems because hard constraints are often understood as unviolated constraints. OT uses 
symbolic constraints that are not hard constraints in this sense, because they can be violated if this leads to 
satisfaction of a higher ranking constraint. 
4 But see Pater (2009) for discussion anticipating this issue and a conjecture on how constraint induction can be 
guided by principles of phonetic grounding. 



 10 

properties with Harmonic Grammar, includes a mechanism for selecting the constraints operative 
in the target grammar by using some well-known search heuristics in machine learning, i.e., the 
accuracy and generality of a constraint. Given input data, and given a minimal set of assumptions 
about the form of phonotactic constraints (i.e., SPE feature matrices and constraint schema for 
banning and requiring combinations), the search heuristics select a set of highly predictive 
constraints from a vast universe of well-formedness constraints.  

This selection mechanism generates what Hayes and Wilson call an ‘inductive baseline’, or a 
minimal constraint system derived essentially from the data. The inductive baseline is used 
primarily in (Hayes and Wilson, 2008) as a tool for theory comparison and motivating certain 
kinds of theoretical assumptions, like nonlinear tone and prosodic structure. We agree that 
identifying an inductive baseline is a useful way of identifying problem spaces and show in 
section 6 how c-nets can produce a different kind of inductive baseline. We also believe that the 
success of Hayes and Wilson’s approach in cases like English onsets provides additional 
motivation for exploring it as a central theory of where well-formedness constraints might come 
from. In their study of English onsets, for example, search heuristics selected 23 phonotactic 
constraints. When weighted in the larger MaxEnt grammar, the resulting grammar predicted 
grammaticality judgments that correlate rather well with behavioral data on English. Indeed, 
Hayes and Wilson show that their induced constraints fare as well as five other contemporary 
models of English onsets in which the grammatical constraints were given in advance. In other 
words, for English onset phonotactics, it is hard to find a better grammar than a MaxEnt 
grammar derived from data. 
We accept that this style of constraint induction has its limits, but given this success, we choose 
to explore the idea that certain constraints in phonotactic systems could emerge in the natural 
course of language learning. Connectionist networks have a number of properties that make them 
suitable for this kind of investigation. First, a number of learning protocols exist for modeling 
learning as the gradual adjustment of connection weights. We illustrate below with standard 
backpropagation learning (Rumelhart et al., 1986a) how knowledge of the phonotactic system 
can be gradually accrued through incremental exposure to language forms. Second, many 
phonological generalizations are gradient in nature, characterized both by their distributions in 
lexicons and native speaker intuitions of these generalizations. C-nets are capable of describing 
gradient trends in the data because of the continuous nature of the functions they compute 
((Rumelhart et al., 1986b), (Bybee and McClelland, 2005)). Third, c-nets are sensitive to fine-
grained similarity structure (Rumelhart et al., 1986b), which is again indispensible to the analysis 
of language which is often sensitive to similarity structure. Fourth, c-nets have been shown to 
extract over-arching generalizations in tandem with well-defined exceptions to these 
generalizations, e.g., (McClelland and Rumelhart, 1986). Finally, as demonstrated above, c-nets 
can be conceptualized as constraint-based systems that optimize over a set of subsymbolic 
constraints embedded in the c-net. It is therefore possible to scrutinize the performance of the 
network and analyzing the behavior of specific constraints in the model. All of these properties 
are relevant to analyzing Arabic root phonotactics ((Greenberg, 1950), (Frisch, 1996), (Frisch et 
al., 2004)). 
In the context laid out above, we establish that a connectionist learning system can ‘learn the 
constraints’ by learning the correct configuration of connection weights. This assumption should 
not be confused with the characterization frequently given to connectionist approaches to 
cognitive processes, namely that c-nets are a complete ‘blank slate’ that is completely free of 
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bias and a priori assumptions. Clearly, there are some assumptions that we make about the initial 
state of learning, described in detail below, and there are also assumptions about the model that 
do not change in response to data. For example, we assume a default set of initial values for 
connection weights, and specific plasticity and damping parameters relevant to learning. We also 
assume a fixed number of hidden layer units, though we vary this number in testing to find the 
right number of hidden layer nodes for the data. Furthermore, we use a set of phonological 
features in representing input forms, which constitutes a substantive hypothesis about the range 
of natural classes the model can be sensitive to after training. Most of these assumptions are 
operational in nature and we think that they do not affect model performance enough to matter 
for our argument. The number of hidden layer nodes is crucial, however, because the right 
number is necessary to force the network to make the right generalizations. While it is true that 
we do not make the number of hidden nodes a part of the learning problem in this study, we very 
easily could, because there are known protocols for pruning and sprouting hidden layer nodes in 
c-nets (Mitchell, 1997).  

The larger point, however, is that the range of possible constraints for assessing consonant 
combinations is largely free. For any given set of connections in our network, the set of possible 
constraints these connections can compute is uncountably infinite. This is because the connection 
weights are assigned on a continuous scale, so, given that subsymbolic constraints are (sets of) 
connections, there are an infinite set of constraints that are expressible in our network. The open 
range for constraint definition in this model therefore makes the problem of learning the 
constraints a non-trivial one.  

4.	  A	  connectionist	  model	  for	  Arabic	  root	  cooccurrence	  restrictions	  
The principal goal of this work is to develop a connectionist network that, after training, has 
induced the constraints that characterize the OCP constraints of Arabic roots. The assumptions 
about the larger cognitive architecture are specifically tailored to this goal, which we flesh out in 
detail below. 

4.1	  Functional	  overview	  of	  the	  network	  
The c-net grammar/learner is composed of two modules, an Autoassociator module and an 
Assessor module, as depicted in Figure 3. The Autoassociator is a single layer c-net that 
constitutes a simplified production module. It takes as input a triliteral root and attempts to 
output an identical root. Like human language production, the Autoassociator is noisy in the 
sense that random variation in the activation patterns may cause it to produce non-identical roots 
by replacing some or all of the consonants with another Arabic consonant. The output is 
therefore either a root identical to the input, or a non-identical root that may accidentally 
correspond to another attested Arabic root or is not an attested root.  

The role of the Autoassociator in learning is like the role of production modules in many 
constraint-based learning systems. In constraint-ranking algorithms in OT ((Tesar and 
Smolensky, 2000), (Tesar, 2004)), for example, Production-Driven Parsing produces forms that 
are either correct or incorrect with respect to the target grammar. These incorrect forms, or 
‘errors’, are important evidence in grammar learning because the learner compares these errors 
with target forms and uses this comparison as a way of revising the grammar. The 
Autoassociator plays a parallel role: it generates forms that can be used as evidence in grammar 
learning, which we outline in detail below.  
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It should be said that the Autoassociator does not constitute a realistic psycholinguistic model of 
speech production. For example, its errors do not have the same structure as human speech 
errors, nor do they occur at the same frequency (see for example (Goldrick and Daland, 2009) on 
the error structure and phonological markedness). It is rather an algorithm that transforms actual 
forms of the target language and supplies these outputs as evidence to a learning system. In this 
way, the Autoassociator plays a role that is similar to production systems in other learning 
systems, and it should be evaluated as such.  
The Assessor model takes a triliteral root as input and assesses it by assigning an acceptability 
score ranging from -1 to 1. The acceptability score is a gradient measure of the overall well-
formedness of the root, and so the Assessor is a grammatical model in the sense that it classifies 
input forms for acceptability. As an analogy, the Assessor can be compared to a model of truth-
functional semantics that evaluates sentences and facts about the world and assigns a number 0 
or 1 to the sentence as its Boolean-valued interpretation (see, e.g., (Ramsey et al., 1990), who 
developed a connectionist network that computes exactly this type of function). The output of the 
Assessor, or the activation state of the final output node, is comparable to the relativized 
acceptability score of Harmonic Grammar (Coetzee and Pater, 2008) and the maxent values of 
MaxEnt Grammar (Hayes and Wilson, 2008).  
The Assessor only makes sensible classifications of the data when it has been trained, which 
requires the interface depicted in Figure 3 between the two modules. The training regime is 
described in more detail below, but in essence, the Assessor trains on the output of the 
Autoassociator. If the Autoassociator gives the Assessor a form that coincides with the input to 
the Autoassociator (and is therefore an attested root), all connection weights and biases in the 
Assessor module are adjusted such that the Assessor gets closer to outputting a ‘1’. If instead the 
Autoassociator gives the Assessor a form that differs from the input to the Autoassociator 
(usually, but not always, an unattested root), then all connection weights and biases in the 
Assessor module are adjusted such that the Assessor gets closer to outputting a ‘-1’.  
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Figure 3. A feed-forward error-generating production module (Autoassociator) and a phonotactic learner 
(Assessor). 

The roots are represented in the two modules using two different representational schemes. The 
Autoassociator uses a so-called ‘localist’ representation, meaning that, for each consonantal slot, 
there is a single active unit that represents that consonant of Arabic in the input representation. 
For example, when C1 is /b/ the first unit of a sequence of 28 units is ‘1’ and all others are ‘0’. 
Though there are arguments for using localist representations for problems like the 
representation of concepts (see e.g., (Bowers, 2009)), our motivation is purely operational. The 
output of the Autoassociator needs to provide unattested but logically possible roots in Arabic. 
Local encoding gives the required output control because the output layer can only represent 
roots with Arabic consonants. Alternative representation schemes do not give us this control. 
The Assessor module, on the other hand, necessarily uses features-based distributed 
representations, rather like distinctive feature representations commonplace in generative 
phonology. Distributed representations are simply nonlocal representations. This means that 
information may be distributed across the representation (= the string of units for a consonant), 
and the one-to-one relationship between unit activation and consonant type in localist encoding 
is not guaranteed. Distributed representations are required in the Assessor module because the 
goal of this module is to capture feature-based generalizations about consonant cooccurrence 
restrictions. It is simply impossible to achieve this goal unless the activation states of units 
correspond to phonological feature values, values that are shared among consonants in a natural 
class. These assumptions therefore require that the interface between the Autoassociator and the 
Assessor have a conversion process that takes the locally encoded Autoassociator root and 
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converts it to the equivalent distributed representation. This is a simple conversion process and 
has no function other than making it possible for the Autoassociator to ‘talk to’ the Assessor.  

One aspect of this model that is different from some constraint-based models that use symbolic 
constraints, e.g., classical OT and Harmonic Grammar, is that the module responsible for 
language production (Autoassociator) is separate from the module responsible for calculating 
well-formedness judgments (Assessor). In classical OT, for example, an OT grammar is both a 
production module in generalized sense (see discusson of Production-Driven Parsing above) and 
an analysis of the phonotactics.5 One might reasonably object, therefore, to the overall structure 
of our model for this reason on the grounds that models that unify these two functions are more 
parsimonious.  

Two points can be made here. First, the separation of production and assessment of phonotactics 
is more a matter of convenience here than an assumption required on principled grounds, as our 
real focus is on studying the learning of phonotactics at the micro-structure level. It seems 
plausible that the two modules could be unified in a revised model. Second, it may be the case 
that there are empirical reasons for separating the two modules functionally, as argued in Hayes 
and Wilson (2008) for MaxEnt grammars. These authors draw attention to the existence of 
alternations that are not phonotactically motivated, which suggests the existence of a module for 
learning alternations that is distinct from phonotactics. In addition to this evidence, (Zamuner et 
al., 2006) argue for the functional separation of phonotactics and alternations on the basis of a 
‘reverse-wug’ test done with phonotactically-aware Dutch children. When asked to form 
singulars from novel plurals like sladen, experimental participants do not reply with slat, which 
would imply knowledge of phonotactics. Instead, they have more difficulty in general with such 
singular-plural pairs when compared with pairs like slaten/slat that do not require devoicing. 
Thus, while our c-net model does have a production module separate from the phonotactic 
module, this is mostly a matter of convenience and also consistent with the rather preliminary 
understanding of this issue in the literature.  

4.2	  Assessor	  architecture	  
The next two subsections flesh out the details of the network architecture. The Matlab program 
that we developed to implement the network is also available on the authors’ webpages for 
further scrutiny and extension to new datasets. The Assessor is a feed-forward neural network 
with an input layer consisting of 51 nodes, a hidden layer consisting of 5 nodes, and an output 
layer consisting of 1 node (Figure 3). Every node in the input layer is connected to every node in 
the hidden layer, and every node in the hidden layer is connected to the output node. Each of 
these connections has a weight associated with it. The output node and each of the hidden nodes 
has a bias. These weights and biases are what is modified when the Assessor is being trained 
(details below). The input layer of 51 units represents a sequence of three consonants, i.e., a 
triliteral root, as a phonological-feature based distributed representation. We used the 
phonological features of (Frisch et al., 2004) for Arabic, which is essentially a variant of the 
widely used feature set from (Clements and Hume, 1995), but adapted for Arabic. The properties 
of this system relevant to Arabic consonant phonology are (i) it uses primary place features, 

                                                
5 While classical OT simply classifies input-output mappings into two categories, ‘grammatical’ and 
‘ungrammatical’, which cannot directly characterize gradient patterns, the use of the notion of relative harmony in 
Harmonic Grammar supports the calculation of gradient acceptability scores by subtracting the harmony of some 
representation from the harmony of its most harmonic competitor (Coetzee and Pater, 2008). 
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[labial], [coronal], [dorsal], and [pharyngeal], to designate the places of articulation in Arabic, 
and, like most prior work, (ii) uvulars are both primary [dorsal] and [pharyngeal], because they 
are restricted in both of these major place classes. There are 17 phonological features in total, so, 
since each node encodes a single feature value, a sequence of three consonants can be 
represented with 51 nodes.  
Unit activation states correspond to traditional feature values in the following way: ‘+’ = +1, ‘-’ 
= -1, and all trivially redundant features, i.e., features not specified for a particular segment, 
receive a 0. These input activations, the weights on the connections between the input layer and 
the hidden layer, and the biases on the hidden nodes, determine the activation of the hidden 
nodes. Then, the activation of the hidden nodes, together with the weights on the connections 
between the hidden layer and the output node, and the bias of the output node, determine the 
activation of the output node. The computation of activation states through the network is 
calculated as show below. 
(1) Activation in the Assessor module 

Let 

€ 

inpi  indicate the activation of the input nodes for 

€ 

i =1,...,51, 

€ 

hi indicate the activation of the 
hidden node for 

€ 

i =1,...,5, and 

€ 

out  indicate the activation of the output node. The relation 
between these activations are: 
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where 
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W1,ij  is the weight on the connection between the 

€ 

j th input node and the 

€ 

i th hidden node 

€ 

W2,i  is the weight on the connection between the 

€ 

i th hidden node and the output node 

€ 

bi is the bias on the 

€ 

i th hidden node 

€ 

bout is the bias on the output node 

€ 

σ is a sigmoid logistic function with 

€ 

σ −∞( ) = −1, 

€ 

σ ∞( ) =1. 

4.3	  Autoassociator	  architecture	  
The Autoassociator is a feed-forward network with no hidden layer (Figure 3). There are 84 
input nodes and 84 output nodes (=3 slots × 28 consonants), and each input node is connected to 
all output nodes with some weight. Each output node has a bias, and also receives a random 
Gaussian input that is regenerated every time a new root is input to the network. Because of this 
noise, the Autoassociator does not give the same output each time a fixed input is given, even 
when the weights are held constant. When a root is input to the Autoassociator, the output nodes 
are activated. Due to the noise in the system, the output activations are not all 1 or 0, as would be 
required for the output to be a root itself. The output is therefore converted to a root by taking the 
largest activation value for each of the three consonant slots and choosing the consonant 
corresponding to highest activation value. 
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The output activation of the 

€ 

i th output node of the Autoassociator is given below. 
(2) Output activation patterns in the Autoassociator 

€ 

outi = Wa,ijinp j
j
∑ + bi +η × randi  

where  

€ 

Wa,ij  is the weight on the connection between the 

€ 

j th input node and the 

€ 

i th output node, 

€ 

bi is the bias on the 

€ 

i th output node 

€ 

randi  is a random number drawn from a standard normal distribution each time the 
output is computed 

€ 

η is a fixed parameter which specifies the amount of noise in the network. We chose 

€ 

η=0.325. 
This value yielded a mature network that gave an attested root about half the time and an error 
root about half the time. We have chosen an error rate of 50% for the Autoassociator for reasons 
of convenience only. Similar results can be obtained for a much lower error rate at the cost of 
running for more epochs and making the rate of Assessor training greater for errors than for non-
errors. This latter modification would reasonable assuming that the fewer the errors the learner is 
exposed to, the more salient they are. 
The vector out is not in the same format as the input vectors, since its elements will not typically 
be either 0 or 1. The output is converted to the input form by, for each group of 28 nodes, 
selecting the most active and setting its activation to 1, and then setting all other nodes in that 
group to zero activation. This procedure could be implemented by introducing inhibitory 
connections between the output nodes belonging to the same consonant slot, but we have chosen 
this simpler idealization. This result of this rounding procedure is dubbed 

€ 

roundout  below. 

4.4	  Training	  
The Autoassociator is trained using the Delta rule, a standard method in machine learning for 
simple one-layer networks (McLeod et al., 1998). The input is randomly selected from the list of 
attested roots. The network computes an output from the input activations and the randomly 
generated values 

€ 

randi  as described above. The output is then compared to the input. The 
weights and biases are modified based on the difference between the input and the output, as 
shown below.  

(3) Delta rule for updating the Autoassociator weights and biases 

 

€ 

bi = bi +δ × roundouti − inpi( )  

 

€ 

Wa,ij =Wa,ij −δ × (outi − inpi) × inp j  

The effect of the Delta rule is to change the weights and biases so that the actual output given the 
particular input is closer to the target output. In our simulations, the variables in 

€ 

b and 

€ 

Wa  were 
all initialized to 0. The training consisted of 105 epochs. In each epoch an attested root was 
randomly selected from the root list and input to the network. 

€ 

randi  was generated for each node 
and 

€ 

out  and 

€ 

roundoutwere computed. The expressions above were used to update 

€ 

b and 

€ 

Wa . 
Additionally, the weights were then reduced by a factor of 

€ 

1−αδ  with every epoch, where 

€ 

α= 
0.001. This is a standard technique to prevent overfitting by the network (Hastie et al., 2009). 
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Finally, 

€ 

δ  was chosen to vary with time so that 

€ 

δ  was 0.1 at the beginning of the training and 
0.0001 at the end of the training.  

Once the Autoassociator was trained, the Autoassociator weights and biases were fixed and this 
module was then used to generate training data for the Assessor. The Assessor weights and 
biases were initialized to small random values before the training. Training consisted of 107 
epochs. At each epoch of the training the Assessor, a root was randomly selected from the list of 
attested roots. The root was then passed through the Autoassociator to generate an output root. If 
the input root and the output root were identical, the target was chosen to be 1. If the input root 
and the output root were different, the target was chosen to be -1. The output root was then input 
to the Assessor. Based on the difference between the output from the Assessor and the target, the 
weights and biases of the Assessor were updated using one step of backpropagation.  
Backpropagation is a method for training feed-forward neural networks with one or more hidden 
layers (Hastie et al., 2009). For our network, backpropagation first updates 

€ 

W2 and 

€ 

bout  exactly 
as in learning by the Delta rule, with the goal of making the output closer to the desired target. 
Additionally, the activations of the hidden nodes are modified, also with the goal of bringing the 
value of the output closer to the target. Finally, 

€ 

W1 and 

€ 

b are modified as with the Delta rule, so 
that the actual activation of the hidden nodes with the given input is closer to the new hidden 
node activations. As with training the Autoassociator, there is a parameter 

€ 

δ  that controls the 
rate of learning, which was varied from 

€ 

δ=1 at the beginning of the training to 

€ 

δ=0.1 at the end.  
To reduce overfitting, weights and biases were decreased by a factor 

€ 

1−αδ  with every step, 
where 

€ 

α= 10-5. 

5.	  Results	  
We describe below the performance of the model after training by comparing the Assessor’s 
output to psycholinguistic data (5.1), presenting statistical analyses of the behavior of the hidden 
layer nodes (5.2), and evaluating how well the Assessor module captures exceptional patterns 
(5.3). 

5.1	  Statistical	  effects	  of	  the	  OCP	  on	  acceptability	  
Because of its design, the trained Assessor module rates triliteral roots in a way that can be 
compared to human ratings of acceptability. Before we compare Assessor ratings to the 
judgement data from (Frisch and Zawaydeh, 2001), we give an overview of the module’s 
performance by showing how it classifies all possible roots. Figure 4 below illustrates the rating 
results for an Assessor network with five hidden layer units, given input trained on the 
Buckwalter root list (see section 2). The first observation to make is that, while the ratings for the 
actual roots (a) overlap with the ratings for all possible roots (b) (n = 283 = 21,952), the ratings 
for the middle 50% of the actual words is centered around the top of the middle 50% of the 
ratings for all possible roots (compare the first and second boxplots), indicating that network has 
learned to assign higher scores to the words that it has been exposed to. Second, the opposition 
between the third (OCP compliant roots (c), from Frisch et al’s Experiment 1) and fourth 
boxplots (OCP violating roots (d), same source) shows that the network has effectively learned 
the OCP. The middle 50% of the ratings for the OCP compliant roots is well above the middle 
50% of the ratings for the OCP violating roots. Thus, when we look at OCP-Place restrictions 
globally, the Assessor has a strong tendency to rank roots that violate the OCP lower than those 
that do not. 
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Figure 4. Acceptability scores for one trial of Assessor module with five hidden nodes. Box plots indicate 
minimum, first quartile, median, third quartile and maximum scores for (a) all attested roots, (b) all possible 
roots, (c) OCP compliant roots, (d) OCP violating roots. 

We can now examine the Assessor’s performance by comparing the Assessor’s output for the 
same data presented to experimental participants in (Frisch and Zawaydeh, 2001). This is a 
strong test of the model because we can perform the same statistical tests and examine the effect 
of the same factors considered in Frisch and Zawaydeh’s study. To do so, we must first 
summarize briefly the design and results of their study.  
Frisch and Zawaydeh (2001) used a wordlikeness experiment to probe the psychological reality 
of the OCP with 24 native speakers of Jordanian Arabic. Native speaker participants were given 
a set of inflected nonsense words containing triliteral roots that were manipulated for the 
following variables: number of OCP violations, expected probability, neighborhood density, 
bigram probability, and phonological similarity of OCP-violating consonant pairs.6 Participants 
were asked to rate words on a seven-point scale for overall acceptability as a word of Arabic, 
which was the dependent measure on all experiments. The larger finding was that the OCP had a 
significant effect on subjects’ ratings that in general could not be attributed to these lexico-

                                                
6 The terms used in the experiment are defined as follows. ‘Expected probability’ (abbreviated exp.prob.) is the probability of 
independent combinations of the segments that make up a form, given their frequency in the lexicon; it is the product of 
monogram probabilities when more than one segment is considered. ‘Neighborhood density’ (density) in triliteral roots is the 
number of existing roots that share two of the three consonants in the appropriate serial positions. Bigram probability with respect 
to a given two locations in the root is the number of existing roots that have matching consonants in those locations. Similarity of 
two phonological segments is defined in (Frisch et al., 2004) as the number of shared natural classes over the sum of shared 
natural classes plus the non-shared natural classes.  
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statistical effects or accidental gaps. Furthermore, subjects’ ratings of these words did fall on a 
gradient that correlates with featural similarity of the two consonants, as shown in the snapshots 
of the three experiments below.  

Summary of Results of Frisch and Zawaydeh 2001. 

Experiment 1. Is the OCP psychologically real, and not just an effect of lexical statistics? 
• independent variables: OCP violations, expected probability, neighborhood density 
• results/conclusion: significant effect of OCP found on wordlikeness ratings, no other effects 

found and no interactions; OCP accounts for approximately 30% of subject variability 
Experiment 2. Do subject ratings distinguish between systematic gaps (OCP violations) and 
accidental gaps (non-OCP violating, rare consonant combinations)? 
• balanced variables: expected probability, neighborhood density, bigram probability 
• independent variable: OCP violation or not 
• result/conclusion: OCP had a significant effect on wordlikeness ratings, accounting for 

approximately 21% of subject variability; so subjects distinguish between systematic and 
accidental gaps 

Experiment 3. Do subject acceptability judgments of OCP violations correlate with different 
degrees of featural similarity? 
• balanced variables: expected probability, neighborhood density, and bigram probability 
• independent variable: phonological similarity of homorganic consonants 
• result/conclusion: similarity had a significant effect on wordlikeness rating (approximately 

20% of subject variability); OCP is gradient 
The Assessor module assigns acceptability scores to nonactual roots, so its assessment of 
nonsense words can be compared directly to the native speakers’ judgments of nonsense words. 
To do this, we conducted the same tests from (Frisch and Zawaydeh, 2001), but substituted 
Assessor module acceptability ratings for their wordlikeness ratings. The hidden layer of the 
Assessor module can have any number of nodes, but we have investigated learning with hidden 
layers of between 1 and 10 hidden layer units and found that a range between 2 and 5 units 
produces effects parallel to the judgment data. Table 3 gives the results of a 5 unit hidden layer 
on three separate learning trials. All effects with significance at p < .05 are reported with the 
percentage of the variation accounted for by this effect. Under the Experiment 1 column, which 
used most of the stimuli, the correlation coefficients between Assessor outputs and Frisch and 
Zawaydeh’s wordlikeness data (mean rating) is given as a gross measure of the correlation 
between the two datasets. 
Table 3. Significant effects on acceptability from factors in Frisch & Zawaydeh 2001 experiments; cells show 
factor, percentage explained, and for experiment 1, correlation with the wordlikeness judgement data; 
network trained on Buckwalter 1997 corpus. 

 Experiment 1, p<0.001 Experiment 2, p<0.001 Experiment 3, p<0.05 

Trial 1 OCP 44%; 0.37 OCP 47% similarity 5% (not sig.) 

Trial 2 OCP 47%; 0.48 OCP 43%  similarity 9%  

Trial 3 OCP 48%, 0.40 OCP 31% similarity 17% 
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These results are qualitatively parallel to the Frisch and Zawaydeh’s findings. In particular, in 
Frisch and Zawaydeh’s experiment 1, OCP violation was the only statistically significant factor 
on wordlikeness and it still had a significant effect when bigram probability was controlled for in 
experiment 2. The results shown in Table 3 are therefore consistent with all these experimental 
findings, as OCP violation was the only significant factor in experiments 1 and 2, and similarity 
was a significant factor in two of the three trials of experiment 3. We note that the percentage of 
the acceptability explained by the OCP is slightly higher than with the judgement data in 
experiments 1 and 2, but we believe that a perfect match of the two datasets is not required to 
demonstrate induction of OCP constraints. A c-net model and learning protocol could be 
constructed to produce a better quantitative match with the experimental data through 
manipulation of model parameters and additional training, but we believe that such an effect 
would not be particularly revealing in this case. The important finding is therefore that a 
relatively simple set of parameters reproduces all of the statistically significant generalizations in 
the behavioral data. 

5.2	  Analysis	  of	  the	  hidden	  layer	  units	  	  
Up to this point, we have shown that our c-net learner can acquire a set of weights that allow it to 
approximate judgments of Arabic native speakers. At the symbolic level these judgments are 
described as knowledge of certain OCP-Place constraints (see section 2). Here, we illustrate that 
these constraints can be isolated as connectionist units in the hidden layer of the Assessor 
network. In doing so we demonstrate how the effects of symbolic constraints can be achieved 
through subsymbolic learning, i.e., the macro-structure constraints are psychologically real, but 
can be learned at the level of micro-structure. 
When we know the architecture and weight matrices for a mature c-net, we can very easily 
compute the output for any input we choose, as we repeatedly do when training and testing the 
network. Interpreting at the symbolic level what this computation consists of is considerably 
more difficult, but nonetheless important to addressing the problem of constraint induction. One 
way to extract rule-like symbolic behavior from the rich dataset provided by our c-net is to use 
Classification and Regression Trees (CART). CART analysis is a commonly used statistical 
technique for imposing categorical structure on large and ‘messy’ datasets. For example, CARTs 
are used to make categorical medical decisions that are based on a patient’s DNA make-up, a 
structure that is far too rich for analysis by hand. CART analysis provides a categorical analysis 
by constructing a decision tree for this large dataset. In particular, it takes a dataset consisting of 
input variables and output variables and constructs a decision tree that attempts to predict the 
outputs from the inputs. The tree produced is not guaranteed to be optimal, but heuristics are 
used to obtain a tree that fits the data well (Hastie et al., 2009). 

We applied the following method to produce CART trees for the five-node network described 
above. For each hidden node in the trained network, we applied the classregtree function 
of Matlab in order to produce decision trees that would predict the output from the input. The 
inputs for CART analysis were the 21,952 possible triliteral roots (i.e., both actual and nonactual 
roots). The specific variables for these inputs were just the 51 feature specifications used by the 
c-net to describe each triliteral root (i.e., distributed representations for 3 segments × 17 
features). The output variables were the activation values for a particular hidden node, rounded 
to -1 or 1, a ‘1’ meaning that the node judges the form favorably, ‘-1’ unfavorably. This process 
produced five trees for the five hidden layer nodes.  
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The algorithm begins by identifying the single input variable, i.e., a phonological feature in a 
particular position, that does best at predicting the outputs. The data is then partitioned into two 
sets based on the value of this input feature. This procedure is then repeated recursively on each 
of the two sets, selecting a new input variable (=another feature in a C slot) to partition each set. 
We set the algorithm to stop when a set has fewer than 1,000 roots or else when all the output 
variables in a set are identical. At this point each terminal node is labeled either a ‘-1’ or a ‘1’, 
depending on which output variable predominates in the node. Once this is complete, the tree can 
be used to predict the output for a given input by descending the tree according to the input 
variables and then using the label for the resulting terminal node. For each hidden node, the 
CART tree did not have pure terminal nodes, meaning that the tree imperfectly predicted the 
output of the node over all the data. However, this coarse-graining effect on the function 
computed by the hidden layer nodes is helpful in interpreting the dominant trends in its behavior. 

 
Figure 5. CART visualization of hidden layer node approximating OCP-pharyngeal. Circled nodes represent 
decisions about feature realization for a specified consonant, and boxed nodes represent predominant 
acceptable (checked) and marginal (starred) triliterals. 

We applied this procedure of generating CARTs for all five hidden layer nodes, for three 
different trials. With one exception, each of the hidden nodes implements an approximation of 
one of the six OCP-Place coocurrence restrictions active in Arabic, i.e., OCP-labial, OCP-
coronal/sonorant, OCP-coronal/fricative, OCP-dorsal, and OCP-pharyngeal (the latter two 
overlap with uvulars, as expected). In other words, in virtually all cases, the hidden layer nodes 
compute symbolic-like OCP constraints. As an example, Fig. 5 shows the CART tree for the fifth 
hidden layer node of the 1st trial. This node approximates the OCP for [pharyngeal] 
specification. 
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Two observations can be made about the CART visualization above for the OCP-pharyngeal 
node, and these observations are typical of the rest of the CARTs. First, this particular hidden 
layer node does a reasonably good job of predicting the nonoccurrence of triliterals that contain 
two pharyngeals. As we descend down the tree in Fig. 3, all triliterals (the boxed terminal nodes) 
that do not have two [phar] specifications (shown with at least two ∅) are allowed, and all but 
two of the schematic roots that have two [phar] are starred. These two apparent exceptions 
involve the segment /q/ in either C1 or C3. Recall that, to be consistent with prior work, all 
uvulars, including /q/, have a [pharyngeal] specification. These apparent exceptions reveal an 
important descriptive generalization in the dataset. While roots with two pharyngeals have low 
O/E values, most of the exceptions to OCP-pharyngeal, which again includes all uvulars, involve 
roots that contain /q/. There are 132 roots that contain /q/ and another pharyngeal consonant in 
the Buckwalter corpus, including 15 roots fitting the exempted pattern /q + Pharyngeal + C/ and 
28 matching the pattern /Pharyngeal + C + q/. This fact is why /q/ is traditionally grouped with 
velars in descriptive statements of consonant cooccurrence (Greenberg, 1950). To summarize, 
the hidden nodes are capable of approximating the functions of symbolic constraints, even when 
segment-level exceptions exist. In the next section, we investigate the c-net’s sensitivity to a host 
of segment-level exceptions that are far less robust statistically.  

The CART trees above are useful for visualizing the coarse-grained nature of the functions 
computed by the hidden layer units. But since the CART only approximates the output of the c-
net, it does not give an exact description of the behavior of a given node. To precisely quantify 
the relationship between the activations of hidden layer units and the OCP, the following method 
was used. First, we computed, for all possible triliteral roots, the violations of the specific OCP-
place restrictions documented in Table 1. In particular, a violation of OCP-place requires 
adjacent segments of the same class in one of the same-place classes given below in Table 5. We 
assign a score of ‘-1’ for that root and that class if there is an OCP violation, and a ‘1’ otherwise. 
To correlate these facts with the behavior of the hidden layer, we computed the output of each 
hidden layer node times the weight of the connection leading out of it, for each root. This gives 
the acceptability of that root, as assessed by a specific hidden layer node. A positive acceptability 
indicates that the node thinks the word is well-formed; a negative value corresponds to ill-
formedness. We then compute the correlation coefficient of each OCP value and each hidden 
node’s acceptability. These correlations are shown for Trial 1 in Table 5 below (the same trial 
used for CART visualization in Figure 5). Results are qualitatively similar for the other trials. In 
Table 5 a value of ‘1’ under a node column would indicate that a node does a perfect job of 
determing whether there is an OCP violation, and ‘-1’ indicates the opposite. The final column 
shows the correlation between the activation of the output node and the various OCP violations. 
This last column gives an idea of how well the entire network approximates the OCP with 
respect to each place of articulation. All of the cells in the last column are positive (as they are 
for all three trials), showing that the network assigns on average lower acceptability scores for 
roots that violate these specific OCP constraints than otherwise.  
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Table 5. Correlations between OCP violation (differentiated by place class) and weighted activations of five 
hidden nodes and the output node. Results from Trial 1 with training on the Buckwalter corpus. Correlations 
greater than 0.1 are highlighted. 

Class Node 1 Node 2 Node 3 Node 4 Node 5 Output 

OCP-labial 0.0829   -0.0850     0.0583     0.1138   -0.0645 0.0950 

OCP-cor/stop 0.0635     0.0214     0.0616     0.1621   -0.0859 0.1455 

OCP-cor/fric -0.1272    0.4420     0.0945     0.2860   -0.1517 0.3356 

OCP-dorsal 0.0245   -0.1277     0.0948   -0.0929     0.2544 0.0764 

OCP-phar 0.1727   -0.1408     0.1160   -0.3814     0.7191 0.1798 

OCP-cor/son 0.0852   -0.0555   -0.0062     0.1212   -0.0645 0.0744 

For all rows, there is a positive correlation greater than .1 between a specific OCP violation and 
node activation (the bold-boxed cells). In some cases, a particular node stands out as doing the 
work of a specific OCP-place constraint, like node 5 for OCP-dorsal. In others, the effect of the 
OCP for a specific place class is spread over more than one node, for example, OCP-
coronal/fricative. Furthermore, there are no strong negative correlations found in the other nodes 
that overpower these constraints. The highest negative correlation for the trial shown here is -
0.3814 for node 4, a real outlier compared to the other negative values. But this is not strong 
enough to trump the effect of nodes 1, 3, and 5 in this network, which collectively approximate 
OCP-pharyngeal quite well.  

5.3	  Exceptional	  patterns	  

In section 2, we documented exceptions to the OCP in Arabic with a set of consonant specific 
patterns. The finding is that, for a pair of particular consonants, in a particular position, the 
distribution of the exceptions is not random. Rather, the exceptions tend to occur in specific 
bigram templates. For example, out of the 21 exceptions to the rule *Labial-C-Labial, 9 are 
/bCm/ and 11 are /fCm/. Only 1 is /bCf/, and there are none from /mCf/, /mCb/, or /fCb/. A 
natural question to ask, given the network’s ability to extract out /q/ from OCP-Pharyngeal 
constraints, is whether our c-net is sensitive to these more fine-grained exceptional patterns. 
We investigate this question by comparing the Assessor’s score for the exceptional patterns we 
have identified in Table 2 (i.e., OCP-violating patterns that occur in the lexicon), with sets of 
roots that violate the OCP and that do not occur in Arabic. For example, to see if the network is 
sensitive to exceptions of the form /fCm/, versus other similar OCP[Lab] violations, we compute 
the acceptability scores for all 28 roots of the form /fCm/ (28 because there are 28 consonants 
that could replace C), and compare them with the scores for all roots of the form XCY where X 
and Y are non-identical labials, and excluding all /fCm/ forms. There are 5×28 of these 
nonexceptional roots, because there are five other logically possible combinations of the three 
non-identical labials. For each consonant pair, we take the average of the score for all roots with 
the exceptional pair, minus the average score for all roots that violate the OCP in the same way, 
but with a different consonant pair. For each consonant pair and each of one of three trails of the 
Assessor, we get a difference in means.  
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The results show that there was no clear pattern to the differences between the exceptional 
patterns and the logically possible but unattested patterns. Thus, in each trial approximately 30 
out of 81 of the exceptional patterns in Table 2 were viewed less favorably than the comparable 
non-exceptional pattern, contrary to the hypothesis that the network might not view (attested) 
exceptional patterns as violators of the OCP. Averaging the difference over all exceptional pairs 
yielded a mean difference of acceptability score of approximately 0.05, which is quite small 
relative to the difference in score between OCP-violating and OCP-compliant roots. In sum, our 
c-net after training does not seem to be sensitive to the fine-grained exceptional patterns in Table 
2 as a whole.  
Just because a pattern exists in the lexicon, however, does not mean that it is part of a native 
speaker’s phonotactic intuitions. For example, in the English lexicon there are no instances of 
diphthongs before palato-alveolar fricatives, but when speakers are tested for awareness of this 
constraint, (for example, by comparing foushert with fousert) there is no statistically significant 
difference in their rankings (Hayes, 2010). We cannot directly answer the question of whether 
native speakers of Arabic are sensitive to the patterns in Table 2 because the experiments in 
(Frisch and Zawaydeh, 2001) were not designed to answer this question. But the pilot data 
available from this study does not seem to provide any support for the contention that speakers 
have strong intuitions of the exceptional patterns. Thus, there were 19 nonsense roots in Frisch 
and Zawaydeh’s study that fit the templates for exceptional patterns in Table 2, and the mean of 
these averaged wordlikeness scores is 2.6936. The mean of mean ratings of roots (n=64) that do 
not fit these patterns is slightly lower at 2.4591. This is consistent with the hypothesis that native 
speakers rate higher the roots that fit the attested exceptional patterns, but it is impossible to tell 
if this difference is meaningful, given the small number of examples and inability to pair the 
roots.  

It is possible to group classes of roots, namely certain place classes that fit the exceptional 
patterns, and compare their means with the means of roots that fit nonexceptional patterns. Table 
6 lists the mean ratings for three non-coronal place groups (there were too few examples of roots 
with coronal pairs) and shows the mean ratings for exceptional vs. nonexceptional roots and the 
difference of means. Except perhaps for dorsals, the data again does not show a significant trend.  
Table 6. Mean wordlikeness judgments of roots with exceptional and non-exceptional OCP violating roots 
aggregated by select place classes. 

 Labial Dorsal Pharyngeal Totals 
Exceptional 2.9583 2.9275 2.455 2.7803 
Non-expectional 3.1403 1.9028 2.1034 2.3822 
Differences -0.182 1.0248 0.3216  

While it is possible that native speakers are sensitive to a subset of the exceptional patterns in 
Table 2, we believe that the lack of evidence for a trend in this pilot data supports a conjecture 
that native speakers are in fact not sensitive to many of the facts at this level of phonotactic 
detail. This is consistent with other findings, e.g., ((Hayes, 2010), (Becker et al., 2011)), and 
establishes a clear set of patterns that can be investigated in future experimental research. This 
conjecture is also consistent with our modeling results. 

6.	  Discussion	  
This article has provided a cognitive architecture that makes learning the identity of grammatical 
constraints a significant part of learning. The web of connections in the Assessor module is a 
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space of possible constraints, or a search space in the sense commonly used machine learning. 
Different configurations of connection weights constitute different subsymbolic constraint 
systems. When the correct configurations are learned, the larger network can be said to have 
learned the target constraint system. We have shown that a two layer feed-forward network can 
learn the phonotactic constraints of Arabic root phonotactics by properly setting the connection 
weights leading into and out of a set of hidden layer units. In other words, we have shown that 
the functions computed by these hidden layer units after training approximate quite well the 
functions computed by symbolic OCP-Place constraints familiar from generative phonology. The 
hidden layer units do not exactly compute OCP-Place constraints, but this finding is consistent 
with the data because Arabic cooccurrence restrictions are gradient in nature and have many 
exceptions. The larger finding is thus that the identity of phonotactic constraints themselves can 
be learned from data in this case, and do not have to be stipulated in advance.  

This result sets our connectionist learning system apart from many contemporary approaches to 
learning phonotactics. As summarized above, most constraint-ranking algorithms can find the 
correct ranking of constraints, given the right data and a reasonable amount of time ((Tesar, 
2004), (Prince and Tesar, 2004); (Boersma, 1998), (Boersma and Hayes, 2001); (Pater, 2009)). 
But these investigations do not make learning the constraints themselves part of the learning 
problem. Furthermore, it has been conjectured that there is a close parallelism between the 
macro-structure of OT grammars and the micro-structure of connectionist networks (Smolensky 
and Legendre, 2006b). However, as stated at the outset of this important work (chapter 1, section 
2), the connectionist implementations of OT constraint systems have not yet shown how 
behavior resembling symbolic constraint interaction can be learned at this level of explanation. 
Our contribution to Smolensky and Legendre’s research paradigm is thus to show that at least 
one kind of phonological pattern, place-based cooccurrence restrictions, can be learned at the 
micro-structure level.  
The finding that constraints can be learned from data supports a comparison of our model to the 
MaxEnt phonotactic learning paradigm. Both approaches use principles of statistical learning to 
search a vast constraint space and provide the constraints that give a good approximation of the 
target grammar. As such, both rely heavily on a suitably large and representative data sample. 
Another similarity is that both approaches produce inductive baselines, or simple systems 
derived from data. These systems have limits, for example, the generalizations involving 
suprasegmentals that Hayes and Wilson document in their study. We have explored select 
problems in Arabic consonant phonology that extend the core system we document here, and 
have found that there are also certain limits to our simple two layer system. For example, it is a 
basic fact of Arabic that partially similar segments are avoided, but identical segments in C2C3 
position slip by the OCP constraints. This is a kind of nonlinear function that a multilayer c-net 
ought to be able to learn and compute. Compare its non linear separability (e.g., *p-b, *b-p vs p-
p, b-b) with that of exclusive ‘or’ (0-1, 1-0 vs 0-0, 1-1). Yet even after extensive parameter 
switching with our Assessor module, pairs of identical segments are not assessed correctly if we 
treat them as triliterals. These simulations support the conclusions of (Berent and Shimron, 
1997), based on similar data from Hebrew, that linguistic constituency is necessary to express the 
generalization about final geminates. Similarly, the segment pair templates documented in 
section 2 seem to be too fine-grained for our basic system to learn, though at present we do not 
know if native speakers also have intuitions of these templates. 
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We do not take these findings as insurmountable obstacles for connectionist learning models. 
Rather, like Hayes & Wilson, we believe they motivate additional theoretical assumptions and 
structure in our model. Indeed, our network is about as simple as it can get, short of a one-layer 
perceptron, and could be extended in a host of ways. For example, inputs could be endowed with 
constituency (syllables, feature classes, etc.) with tensor product representations ((Smolensky, 
1990), (Smolensky and Legendre, 2006a)) to allow for generalization based on the role of an 
element in a constituent. Other extensions of our basic system are inclusion of a context layer in 
a sequential network architecture (as employed by (Hare, 1990)), recurrent connections for 
modeling problems that are time-based and therefore require more detailed dynamics, and simply 
including a larger number of hidden layers. 

How does our c-net model differ from the MaxEnt approach generally? A basic distinction can 
be made by pointing out that the MaxEnt approach uses symbolic constraints and c-nets use 
subsymbolic constraints. In theory, this difference has empirical consequences, because the c-net 
constraint space is uncountably infinite and so it is richer. We actually do not believe that this 
formal difference has empirical consequences that matter for the study of language. The 
difference between a constraint space of e.g., 300,000 symbolic constraints and an infinite set of 
subsymbolic constraints is not likely to matter for most problems in generative linguistics once 
constraint weights are assigned to the constraints selected in a MaxEnt grammar. One might also 
remark that c-net learning is inherently gradual in that adjustments are made to the whole 
network after processing each form, while MaxEnt learning, at least as it is implemented, 
involves processing whole sets of language forms collectively. We also do not think this is a 
theoretical difference of much significance, as there is nothing in principle that prevents an on-
line version of MaxEnt learning. Indeed, Colin Wilson (personal communication) informs that 
such an algorithm exists.  

We think that one aspect of our approach that sets it apart from other paradigms, however, is the 
potential for integration with psycholinguistic models of production and perception. In the 
spreading interactive model of (Dell, 1986), for example, selection of a word in the mental 
lexicon is simulated as the spreading of activation through a lexical network of many linguistic 
layers (i.e., morphological and phonological constituents). While there are important features of 
this model that differ from our c-net, e.g., bidirectional spreading and rich linguistic 
representations, an important point is that lexical selection is the result of activation spreading, 
an output pattern predicted by parallel processing of micro-elements. Another important model is 
the TRACE theory of word recognition (McClelland and Elman, 1986), which uses spreading 
activation and parallel distributed processing to work in the other direction, predicting word 
forms from phonetic attributes. These models have been tremendously influential and provided a 
set of assumptions shared with many contemporary theories of speech production and 
perception. We believe that the parallel-distributed processing principles at the core of these two 
influential theories and our c-net may allow for a more natural integration of the functions of our 
c-net within these models. Furthermore, this integration is highly desirable in the case of 
dissimilatory phenomena, like Arabic OCP-Place constraints. As shown in detail in (Frisch, 
1996), (Frisch et al., 2004), (Frisch, 2004), and (Martin, 2007), many of the properties of 
dissimilatory patterns can be explained as the long term diachronic effects of constraints on 
speech production and perception.  
A step in this direction was made in (Frisch, 1996) by showing a close mathematical relationship 
between his natural class similarity model of English and Arabic and the similarity structure 
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predicted by spreading activation in a Dell-style production system. Indeed, the natural class 
model is used in this work as a closed form approximation of a connectionist network, with the 
hope that future research will develop mathematically accessible connectionist models of native 
speaker intuitions. The present work makes a further step by showing how grammatical 
constraints can be represented and learned in a two-layer feed-forward network. However, 
problems not specific to connectionism preclude a realization of Frisch’s original vision. We 
have already mentioned in section 3 the problem of separating production and assessment of 
phonotactic intuitions. The consequence of our decision to separate the two modules is that our 
Assessor module produces acceptability scores, not linguistic representations, like the two 
foundational theories above. These psycholinguistic models therefore compute different 
functions, which must be addressed to bring our c-net closer to these models.  
Another central problem is the encoding of serial order and the formalization of competitive 
inhibition in language processing. Our model is non-sequential in the sense that it feeds the 
Autoassociator and Assessor modules a preordered string of consonants. Our network is similar 
to the spreading activation and TRACE models, but it distinguishes it from other connectionist 
networks that model serial order as sequential output conditioned by a context layer ((Jordan, 
1991), (Elman, 1990)); see also (Dell et al., 1997). Again, our network is non-sequential because 
we simply do not address the serial order problem here, but several important psycholinguistic 
effects depend on a competition between nodes that results with a formalization of sequences 
(Frisch, 2004). We hope that future research can relate our findings on constraint induction to the 
proper characterization of serial order in respective domains of language processing. 
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