Energy balance

Energy input vs. Energy output

- (output > input) Negative: weight loss
- (+ input > output) Positive: weight gain
- Special implications
 - Childhood, Elderly, Illness, Pregnancy & Lactation, Sports...

Energy input: kcal/g: 4 carb, 4 protein, 9 fat, (7 alcohol)

Factors affecting energy input

- neuro-endocrine factors (neurotransmitters, hormones; complex regulation involving many factors)
- filling/distention of stomach (dietaryfibre)
- social/psychological factors (e.g., anxiety, depression)
- · food availability and appeal
- illness, drugs, alcohol...

>NEURO-ENDOCRINE factors influence both feeding behaviour and the production/secretion of other hormones

apoA IV (chylomicron component)

HYPOTHALAMUS: central integrator of circulatory signals (hormones) and neural signals from other brain areas...to eat or not to eat?

Some factors & some of their functional associations involved in the control of food intake...replace ? with \uparrow or \downarrow , start at \rightarrow

Factors affecting energy output

- A. Basic (or Resting) energy expenditure (BEE, REE): ~65%
 Minimal amount of calories used by body when awake, resting, fasting, in warm, quiet (low stress) environment
 - REE easier to measure (less rigorous conditions, e.g., 4 vs. 12 h fast)

FACTOR	REE
↑ body size	1
body comp.	\uparrow lean body mass
older age	↑
gender	↑ men
hormone status	thyroxine: ↑
fasting	Ļ
fever	1
pregnancy/lact.	1

B. Thermic effect of food (TEF): ~10% Acute increase in energy expenditure after meal (above REE)

Can be influenced by meal size, spices such as chili peppers/mustard, macronutrient composition (e.g., relative TEF 1 fat < 1.5 carb < 3 protein)

Often lower TEF associated with obesity (lower insulin sensitivity..)

C. Physical activity: ~25% (highly variable; sometimes divided into components such as NEAT and Exercise)

Influences on Energy Balance...complex

- Genetic and physiological factors
 e.g., leptin production; TEF and insulin sensitivity; adipocyte number
- Environmental factors
- - e.g., availability or appeal of food
- Psycho-social factors – e.g., emotional state, economics, religion

What contribution does genetics make to obesity risk?

Assessment of body mass and fat:

- Body mass index (BMI) = weight (kg) \div height² (m²) e.g., 70 kg person of height 175 cm: 70/(1.75)² = 23
- Many methods to estimate body fat (BF)
 - skin-fold thickness
 - underwater weight

Lean body mass LBM = body weight - BF

• Fat: usually > 78%

-adipose TG

- Mobilizable protein: often about 20%
 Muscle
- Carbohydrate: usually < 2%
 glycogen

body is efficient at storing fat

...survival in (past) times of low energy availability ...but metabolic problems in (modern) times of high energy availability

- Why large increase in obesity over last few decades?

 ↑ availability of high energy foods; ↓ physical activity; both in context of genetic predisposition
- ~1:3 Canadians is overweight
- ~8:10 Canadians don't get enough exercise
- when weight is lost, only ~1:20 can maintain the loss over 5y

BMI > 25: weight-associated health risks, *esp. males*BMI: ≥30 obesity

- Obese: body fat > 25% (men), > 35% (women)

Circumference measurements

Waist to Hip ratio

- good indicator of obesity & co-morbidities

- Waist circumference
 - if > 100 cm for ∂, 90 cm for ♀,
 - 50% have health problems

 cholesterol, blood pressure, or glucose (metabolic syndrome)

Essential

- around vital organs, nerves, bone marrow (~3%)

2 Types of fat

- women: breasts, pelvic (~9%)
- storage (non-essential)
 - subcutaneous, visceral
 - can build up body fat even with low-fat diet....carbohydrates/amino acids can be used to make fatty acids

Types of fat distribution

- Visceral <u>vs.</u> Subcutaneous
- Upper ('apple'; android) <u>vs.</u> Lower ('pear'; gynoid) body fat
 android, high waist: hip ratio:
 ⁺ risk of type 2 diabetes, CVD, etc
- Visceral (intra-abdominal) fat: more strongly associated with components of metabolic syndrome...(atherogenic dyslipidemia, poor glucose control, hypertension)
- · Obesity co-morbidities:
 - Structural/shape: visceral vs. subcut.; android vs. gynoid
 - Chronological: earlier age of obesity, \uparrow risks
 - · Gender: men typically have more visceral fat

Associated health risks (BMI >30)

- type 2 diabetes (esp. visceral)
- hypertension
- heart disease & stroke (dyslipidemia, hypertension)
- some cancers
- joint disease (e.g., knee)
- INFLAMMATION chronic low-level....cvd/some cancers

- Satiety: neural state that leads one to , or stop eating (loss of drive or desire to eat)
- Hunger: physiological drive to get food and eat
- · Appetite: psychological desire to eat (more conditional than hunger)

Other concepts...

> balancing response to over/underfeeding

- > set point theory of body weight
- ...complex regulation not yet well understood

Management of obesity

...three components for most strategies

changes in diet (D) that can be maintained over time
 e.g., weight loss of ~10% over about 6 months

 nutritional education; changes in food choices (large, radical changes are typically less likely to be maintained over time; large sudden changes can ↓ REE, ↓ leptin, ↓ TH)

• increased physical activity (P)

- e.g., 30 min/d; 4-7d/w (high intensity, or 1h/d moderate; also \uparrow NEAT)

• changes in behaviour (B)

 e.g., slowing eating activity; don't eat while distracted by other activities such as TV

Energy-restricted diets—general principles

intake

- fewer calories than required to meet output
 - e.g., 500-1000 kcal deficit/day

• ensure

- adequate nutrient intake (incl. dietary fibre)
 - micronutrient supplements? especially if <1800 kcal/d males, or <1200 for females
- adequate physical activity

- adequate fibre...(PYY)

- combine with
 - "life-style" changes (behavioural)
 - e.g., avoid keeping stores of unhealthy foods; inlcude extra vegetables/high fibre foods in meal; read labels of prepared foods; increase walking activity on weekends

Macronutrient guide (% total daily calories)

Example of macronutrient-balanced, energy-restricted diet

AMDR accept macronutr.distrib.ranges

- 54% carbohydrate (range 45-65)
- 18% protein (range 10-35)
- 28% fat (range 20-35)

e.g., 28% fat on 2000 kcal diet represents about 62 g fat: 1-2 big burgers, 2-3 large slices of pizza...both high SFA

Consider not only % calories for each macronutrient, but also very important are the types of each consumed (e.g., saturated vs. monounsat fats; complex vs. simple carbohydrates; dietary fibres)

Some Diet Categories and examples of daily caloric intake

· moderate calorie-deficient

• ~1200 kcal ♀, ~1500 ♂

• ~ 1000 kcal ♀, ~1100 ♂

very low calorie, VLCD

low calorie diet, LCD

- ~800 kcal/d (health benefits of <800 not well established)
- when BMI > 32 or lower BMI with co-morbidities

> Typically calorie-restricted diets start with very moderate caloric deficits....calories decreased as necessary over time, e.g., after 10% weight loss over 6 mo., emphasis over next 6 months is weight maintenance > Typically the greater the caloric restriction, the greater is the risk of micronutrient deficiencies and macronutrient imbalances

VLCDs

- · Examples
 - Protein-sparing modified fast
 - Liquid diet (based on milk or egg protein)
- In general, modern VLCDs
 - ensure sufficiency of essential nutrients
 - replace normal food
 - are used for about 4 months under medical supervision
 - used for those with BMI over 30
 - benefits over LCDs?
- · Some potential problems
 - unbalanced macronutrients
 - fatigue, nervousness, GI problems...
 - possible CVD complications? In extreme cases...long time period, unbalanced, esp. if no micronutrient supplementattion

Fad diets & weight loss aids

- Beware...
 - unbalanced macronutrients (in terms of % calories)

e.g., very low carb: ketosis, low intake of fruit/veg or whole-grain foods
e.g., very high protein intake: high saturated fat foods, red meats *both of the above often associated with high intake of SFA/animal products*

- exclusion (or near exclusion) of a major food group...if fruit/veg, miss the benefits of a most healthy food group
- promises of fast results with minimal effort

- replacement of normal foods with supplements/pills ...medical supervision
- lack of emphasis on increased physical activity

Variety - different foods from each group Balance – foods from different groups Moderation – small enough serving sizes to facilitate variety & balance

High calorie foods whose consumption has increased in last few decades (number of servings and/or serving size)

Complex interactions that can offset energy balance and promote overfat/obesity *UK Government Foresight Program: Factors classified into the following groups*

1.Psychology

Social, e.g., influence of media and social networks
 Individual, e.g., confidence in terms of achieving outcomes

2.Food

Production, e.g., foods that are cheap to produce & sought by consumers
 Consumption, e.g., demand for convenience foods vs. cooking at home

3.Physical Activity

- Environment, e.g., environment that promotes walking vs. driving
 Individual, e.g., exercise program & activity required for daily living
- 4.Physiology, e.g., neuroendocrine eating signals & metabolic reactions,

genetic & epigenetic factors

Childhood Obesity

- A special problem...some differences in treatment relative to adult obesity
 - about half of those obese at age 6 are likely to be obese as adults
 - low physical activity problem ... combined with high energy foods
 - management
 - healthy eating & exercise
 - usually involves controlled weith gain, not loss...

Estimated weight gain/yr =

[(est. adult weight +/- 10%) – (current child weight)] / (yrs to adulthood) e.g., 8 yr old boy, 40 kg, with estimated ideal adult weight of about 60 kg: (54-40)/10=1.4 kg/yr, (66-40)/10=2.6 kg/yr...thus, 2.0 +/- 0.6 kg/yr ...but rates of growth vary over childhood/youth