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low type’s preferred structuring in which the full asset is securitized as riskless debt and lev-
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cisely when investors most value liquidity. However, a government supplying relatively small
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A fundamental question in securities markets, posed by Holmström and Tirole (1998), is whether

there will be an adequate private supply of stores of value, or whether the government should

augment this supply. For example, the U.K. government recently introduced “ultra gilts” in response

to a perceived shortage of safe long-term assets preferred by pension funds and insurers. As argued

by Tirole (2011), the recent financial crises, and resulting flights-to-quality, have refocused attention

on the supply of such riskless stores of value at various investment horizons.

The supply of such riskless stores of value, i.e. liquidity, has important implications for social

welfare. For example, if issuers instead supply risky securities, speculators will exert socially costly

effort. Further, in the absence of sufficient liquidity, uninformed investors face adverse selection

as they trade in competitive securities markets, as shown by Kyle (1985). Although Kyle and

many subsequent papers have treated uninformed trading as exogenous, it is natural to expect such

investors to distort their portfolios in order to reduce trading losses when facing adverse selection.

As in Akerlof (1970), such distortions will reduce social welfare as some Pareto-improving trades

are not exploited.

This paper analyzes the private incentive to supply riskless claims, and the potential welfare

arguments for government-supplied public liquidity. We consider the following setting. An owner

chooses the design of asset-backed securities (ABS) to be marketed in order to fund a scalable

positive NPV investment. The payoff on the underlying asset-in-place is  or  and is privately

known by the ABS issuer. There is a continuum of risk-averse uninformed investors facing a future

endowment shock who would like to save using an information-insensitive store of value. They face

a speculator who can exert costly effort to acquire a noisy signal regarding the asset payoff. The

issuer can signal positive information via retention of cash flow rights or the two types can pool,

with competitive market-makers then setting prices in a noisy rational expectations equilibrium à

la Kyle (1985). Critically, we depart from Kyle and an extant market microstructure literature by

treating security design and uninformed trade as endogenous. Endogenous uninformed trading is

the key causal mechanism—and it is this mechanism that underpins novel implications of the model.

2



First-best social welfare would be achieved if the types were to pool at the structure preferred by

the owner of a low value asset (the “low type”): full securitization of the underlying asset bifurcated

(i.e. split) into riskless senior debt and junior levered equity. The uninformed investors would use the

riskless debt to save and the speculator would not exert costly effort given the absence of uninformed

trading to cover her orders in the risky equity market. However, this socially preferred structure

is not generally in the set of perfect Bayesian equilibria (PBE), and never satisfies the Intuitive

Criterion of Cho and Kreps (1987). Intuitively, the high type has a strong incentive to deviate from

such a pooling equilibrium since the absence of informed trading implies severe underpricing of his

marketed equity tranche.

The set of PBE always includes the Low Information Intensity Optimum (LIIO), and also in-

cludes those pooling allocations weakly Pareto dominating the LIIO from the perspective of the two

issuer types.1 The LIIO is the incentive compatible, profitable type-by-type, allocation maximizing

the high type’s utility.2 In the LIIO, the two issuer types only sell riskless debt with face value ,

retaining all risk on their own balance sheets. Consequently, the speculator does not exert costly

effort and uninformed investors are supplied with the riskless store of value they prefer. The only

deadweight loss in the LIIO is that high type investment is below first-best.

The high type can potentially improve upon his LIIO payoff. In his preferred pooling equilibrium,

the high type chooses the structuring that maximizes speculator effort since this drives prices closer

to fundamentals. This is accomplished by bifurcating the cash flow stream into a risky senior

debt claim and a residual equity claim. The rational uninformed investors only buy the senior debt

claim. The speculator hides behind uninformed demand in the risky debt market, and this is her only

source of trading gains. To maximize speculator effort, the optimal information-sensitivity of the

senior debt trades off higher per-unit speculator profit against endogenous decreases in uninformed

demand.

The high type’s preferred pooling equilibrium has an attractive feature socially in that expected

1This is an application of a general result from Maskin and Tirole (1992).
2See Tirole (2005), Chapter 6, for definitions.

3



investment is first-best since the entire asset is securitized. However, the speculator acquires costly

information and uninformed investors distort their portfolios since they face adverse selection. Thus,

from a social welfare perspective the LIIO dominates the high type’s preferred pooling equilibrium

when risk sharing is sufficiently important, e.g. when uninformed investors face large endowment

shocks or when they have high risk-aversion. It is interesting that the LIIO can dominate pooling

equilibria since in the traditional corporate finance signaling framework, e.g. Myers and Majluf

(1984), it is socially preferable for issuers to invest at first-best, with transfers across types having no

direct social cost. However, the traditional argument in favor of pooling abstracts from speculative

markets and thus ignores the possibility for costly informed speculation and concomitant distortions

in uninformed investors’ portfolios.

A striking implication of the model is that the privately informed owner may fail to implement the

LIIO, featuring riskless debt, precisely when uninformed investors have high liquidity demand. And

this is precisely when a social planner would prefer the LIIO on risk-sharing grounds. To see this,

suppose the high type is considering pooling. He knows that when uninformed investors face large

endowment shocks (or are highly risk-averse) they are more willing to trade despite facing adverse

selection. The higher level of uninformed demand allows the speculator to place larger non-revealing

trades, raising her gains. This increases speculator effort and drives prices closer to fundamentals in

pooling equilibria. It follows that the high type is better off in a pooling equilibrium cum risky debt

precisely when uninformed investors have high liquidity demand. Essentially, the privately informed

owner fails to internalize the negative externality he imposes on uninformed investors when he issues

risky debt rather than safe debt. Strikingly, the larger this negative externality, the more willing

the high type owner is to impose it.

The model also delivers a novel and subtle prediction regarding the role of government-supplied

riskless debt, i.e. public liquidity, in increasing social welfare. We extend the baseline model by

considering a setting in which the government can issue some riskless debt, but has insufficient

debt capacity to satisfy uninformed demand for liquidity. Even in this setting, the government can
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potentially ensure adequate aggregate liquidity. By issuing riskless debt, the government siphons

uninformed demand away from any risky security market. But in light of such an endogenous decline

in uninformed demand for risky claims, the high type anticipates deeper underpricing if he were

to market risky claims, implying he may be better off at the LIIO in which all types market only

safe debt. Thus, the model shows that public and private liquidity are strategic complements, with

public liquidity crowding-in private liquidity.

Holmström and Tirole (1998) analyze the social welfare benefits of public liquidity in a setting

where limits on income verifiability constrain the private supply of stores of value.3 They consider

a setting with hidden action and potential production inefficiencies while we consider a setting with

hidden information and potentially inefficient risk sharing. In their model the role of public liquidity

is a direct one, in that it increases aggregate liquidity dollar for dollar. In our model public liquidity

can have a disproportionate multiplier effect by crowding-in private liquidity.

Gorton and Pennacchi (1990) also analyze the equilibrium supply of riskless claims in a setting

where uninformed investors prefer safe storage. However, in their model the issuer does not have

private information and it is the uninformed investors who exercise effective control over an inter-

mediary’s financial structure. In their setting, uninformed investors carve out a safe debt claim for

themselves. In contrast, we show a privately informed issuer has diametrically opposing incentives:

He can switch from riskless to risky debt precisely when uninformed investors have high demand for

safe storage. Further, while both papers posit a direct benefit to safe government debt as a store of

value, we show public liquidity can actually change equilibrium security design and crowd-in private

liquidity.

Dang, Gorton and Holmström (2010) also analyze the interplay between security design and

risk sharing. They predict privately optimal security design minimizes incentives for information

acquisition. In contrast, we show a privately-informed owner may have an incentive to promote

information acquisition by speculators since this drives prices closer to fundamentals in noisy rational

expectations equilibria.

3Tirole (2011) provides a recent survey.
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Boot and Thakor (1993) also argue security design can be used to stimulate informed trading.4

However, the models differ in key assumptions and predictions. First, they assume uninformed

investors are pure noise traders, ruling out welfare analysis and our key causal mechanism. In our

model, the issuer seeks to utilize endogenous changes in uninformed demand. And the liquidity-

multiplier effect of public liquidity operates via this mechanism. Second, in their model bifurcation

into riskless debt and levered equity stimulates informed speculation because noise traders do not

optimize. In our model, such a bifurcation leads to zero information production since rational

uninformed investors would boycott the equity market. Third, their equilibrium set is narrower

since they rule out signaling via retentions.

In the model of DeMarzo and Duffie (1999), the issuer chooses security design before observing

asset value. After the structure is locked-in, the issuer observes asset value and decides how much

to sell. Under technical conditions, e.g. monotonicity, debt is an optimal security since its low

information-sensitivity results in low price impact. In contrast, we consider a setting where the

issuer knows the asset value before choosing security design and retentions. Further, we allow for a

speculator to acquire information. Finally, the model of DeMarzo and Duffie is silent on risk sharing

since they assume universal risk-neutrality.

Nachman and Noe (1994) analyze a setting, like ours, where the issuer is privately informed

at the time the security is designed. In their setting, the scale of investment is fixed, and there

is no possibility for separating equilibria. Further, they rule out informed speculation and assume

risk-neutral investors. Under technical conditions, e.g. monotonicity, they show firms will pool at a

debt contract, since debt minimizes cross-subsidies from high to low types.

Allen and Gale (1988) evaluate optimal security design in a setting with endogenously incomplete

asset-backed securities markets. They assume symmetric information, but firms incur a cost for

introducing a security. In their economy, equilibrium is constrained Pareto optimal. In the signaling

game we consider, equilibrium need not be Pareto optimal.

Our model of price formation extends the tractable models of Maug (1998) and Faure-Grimaud

4See also Fulghieri and Lukin (2001).
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and Gromb (2004), for example. However, these papers assume pure noise-trading of shares in an

all-equity firm. Such setups preclude welfare analysis and rule out our central causal mechanism—

endogenous changes in uninformed demand arising from tranching and/or public liquidity.

The remainder of the paper is as follows. Section I describes the economic setting. Section

II analyzes the market-making process. Section III determines the structuring preferred by each

type. Section IV describes the equilibrium set. Section V compares social welfare across equilibria.

Section VI analyzes the effect of public liquidity.

I. Economic Setting

This section describes preferences, endowments, information sets, and timing of the game.

A. Preferences and Endowments

There are three periods, 1, 2, and 3, and a single nonstorable consumption good. Agents receive

income endowments and consume in periods 2 and 3. The perishability of the consumption good

creates the potential for liquidity scarcity as investors desire stores of value across periods 2 and 3.

There is a tangible real asset with type  ∈ {}, with its original owner (“Owner” below) being

the only party endowed with perfect knowledge of the asset type. The asset delivers  units of the

consumption good in period 3 with probability one, with  ∈ (0) The prior probability that

 =  is  ∈ (0 1)

Owner can sell asset-backed securities, since the asset payoff is verifiable. However, income

endowments are not verifiable. Thus, the other agents cannot use their income endowments as

collateral for borrowing, short-selling or securities flotations. Allen and Gale (1988) and Holmström

and Tirole (1998) also rule out unsecured credit based on limited verifiability of income.

Section VI relaxes assumptions as in Holmström and Tirole (1998). There we analyze an exten-

sion in which the government has a unique capability to verify and tax a fraction of the final period

income endowments. Under this alternative assumption, the treasury can borrow against future tax
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receipts, with government bonds serving as a public source of liquidity. Of particular interest will be

how the introduction of public liquidity affects privately optimal security design and social welfare.

There is a continuum of uninformed investors (UI below) of measure one. By construction, UI

are analogous to the “liquidity traders” in the model of Gorton and Pennacchi (1990). They are akin

to pension funds and insurance companies in that they are risk-averse and prefer informationally-

insensitive stores of value. UI are sufficiently wealthy to buy the underlying asset since each has a

period 2 endowment 2 ≥  Each UI has an uncertain period 3 endowment 3 ∈ {− } where

 ≥  The fraction of UI drawing 3 =  −  is an independent random variable  ∈ { } with

0 ≤    ≤ 1 Each realization of  is equally likely, but the realized value is neither observable nor

verifiable. Correlation in UI shocks, here modeled via , results in uncertain aggregate UI demand.

This is a standard feature in noisy rational expectations models since Kyle (1985).5

Just prior to the trading of securities taking place in period 2, each UI privately observes the

size of his period 3 endowment. UI are risk-neutral over period 2 consumption (2) and risk-averse

over period 3 consumption (3) We follow the tractable specification of risk-aversion employed by

Dow (1998) in that final period utility is piecewise linear, with a concave kink.6 UI are indexed by

the intensity of risk-aversion as captured by a privately-known preference parameter . An UI with

preference parameter  has the utility function:

(2 3; ) ≡ 2 + min(0 3 − ) (1)

Notice each UI is averse to period 3 consumption falling below the critical level  This creates

a storage motive whenever they face a low final period endowment. The degree of aversion to

low consumption is captured by the idiosyncratic parameter  The  have support Θ ≡ [1 max]

ensuring gains from trade in the absence of adverse selection. Throughout, max is assumed to be

sufficiently high such that UI demand is positive for at least one security.7 The  parameters have

density  with cumulative density  This distribution is common knowledge. It has no atoms, with

5To see this, note i.i.d. shocks hitting a continuum of UI would result in constant noise trading in Kyle (1985).
6Other smooth utility functions could be assumed, with more complex aggregate UI demands.
7This avoids the need to continually check upper limits of integration when computing their demand.
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 strictly positive and continuously differentiable.

Given the preferences described in equation (1), it is apparent that any UI facing a low terminal

endowment would like to invest in a riskless asset delivering  in period 3, bringing his final period

consumption up to the critical level . Initially, the main question addressed is whether the owner

will market such a riskless asset in equilibrium. In an extension, we consider how the introduction

of a riskless government bond affects equilibrium security design and social welfare.

In addition to the UI, there is a speculator S with utility 2 + 3. She is endowed with 2 ≥ 

units of the numeraire and can afford to buy the entire asset. Her terminal endowment is normalized

at zero. The speculator is unique in receiving a signal regarding  and can exert costly effort to

increase signal precision. Letting  ∈ { } denote the signal, S chooses  ≡ Pr( =  ) from the

feasible set [12 1] Iff   12 the signal is informative. The speculator’s non-pecuniary effort cost

function  is twice continuously differentiable, strictly increasing and convex, with

lim
↓ 1

2

() = lim
↓ 1

2

0() = 0

lim
↑1

0() = ∞

The final set of agents is a measure one continuum of market-makers (MM below) having utility

2 + 3. Their period 2 endowment is 

2 ≥ , so they too can afford to buy the entire asset.

Their terminal endowment is 
3 ≥ 0

Owner has utility 2 + 3 Owner has access to a linear technology allowing him to convert each

unit of the good received from investors in period 2 into   1 units of the good. In contrast to the

original tangible real asset, the payoff on the new investment is not verifiable and cannot be pledged.

The model is a standard ABS setup with securities backed by an asset-in-place, as in DeMarzo and

Duffie (1999).

B. The Security Design Game

Since Owner is privately informed regarding  , his choice of retention and security design in pe-

riod 1 represents a signaling game. Maskin and Tirole (1992) and Tirole (2005) show the equilibrium

set of signaling games can be refined and Pareto-improved (from the perspective of the privately
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informed party) by altering the fundraising mechanism in a way that expands the set of feasible

initial actions. We modify their approach to allow for market-making, informed speculation, and

endogenous uninformed security demand.

The game starting in period 1 is called the Security Design Game. It is a signaling game played

between Owner and investors. This game begins with Owner registering a menu containing two

allocations {ΣΣ} that he will choose from subsequently. To fix ideas, one may think of this

menu registration as approximating a shelf-registration. In a shelf-registration, a prospective issuer

undergoes a single compliance stage with a regulator, registering a number of securities. After the

compliance stage, the issuer is free to market any of the registered securities within some time

period. This procedure is commonly used in the U.S., for example. DeMarzo and Duffie (1999) also

model shelf-registrations. However, they consider an issuer with interim private information, while

we consider an issuer with ex ante private information.

Each allocation on the menu is a vector stipulating payoffs for all claimholders (including Owner)

as a function of the verified asset payoff in period 3. In a pooling equilibrium, both types propose a

trivial menu in which Σ = Σ  implying the allocation selection reveals nothing about type.
8 In a

separating equilibrium, Σ 6= Σ and type  weakly prefers Σ to Σ  and vice-versa, so the choice

from the menu reveals the true type.

All agents must have a belief regarding the asset type in response to any menu registered by

Owner, including those off the equilibrium path. Thus, the registered menu is itself a signal. Next,

Owner chooses an allocation from the menu. After observing this choice, the other agents revise

beliefs. The equilibrium concept is perfect Bayesian equilibrium. Robustness of alternative equilibria

to the Intuitive Criterion will be discussed.

C. The Market-Making Game

In period 2, play passes to a continuation game, labeled the Market-Making Game.9 This

game is in the spirit of Kyle (1985) and Glosten and Milgrom (1985) in that atomistic market-

8Nontrivial menus where both types opt for the same selection are subsumed in trivial menus and thus ignored.
9This game is similar to that presented in Maug (1998), but we have endogenous security design and UI demand.
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makers compete à la Bertrand in bidding for securities until a market-clearing price is determined.

However, we depart from these canonical noise-trading models of price determination by considering

endogenous trading decisions by all investors.

In any separating equilibrium,  is revealed, so MM set prices equal to true payoffs and S does

not exert costly effort. In any pooling equilibrium the Market-Making Game is a signaling game

played between the privately informed speculator and the MM. Consistent with Bayes’ rule, the UI

and MM enter this continuation game holding their prior belief that  =  with probability .

The Market-Making Game begins with S choosing signal precision  at cost (). Her choice

of  is not observed, but is correctly inferred in equilibrium. Then S privately observes her signal

 ∈ { }. Next, each UI privately observes whether he faces a low endowment in period 3.

Simultaneous market orders are then submitted by S and each UI. The MM compete and set prices

after having observed aggregate demands in all markets, with no market segmentation. At this

information set, MM must have a belief about the speculator’s signal for any aggregate demand

configuration. Effectively, MM clear markets, buying any securities not purchased by S or the UI.

Since MM cannot short, we impose the following technical assumption:

1 :  ≤ 

2


The role of Assumption 1 is as follows. Aggregate UI demand is weakly increasing in the size of the

endowment shock . Therefore, to avoid the possibility of aggregate demand exceeding supply for

any security,  must be sufficiently small. By construction, even if the asset has the low final payoff

, this payoff is still sufficient to meet the storage demands of the UI. That is, we are considering

a setting where the private owner has the ability to satisfy investor storage demand, but may be

unwilling to do so.

To summarize, the sequence of events is as follows. At time 1 Owner privately observes  

publicly registers a securities menu, and then publicly chooses an allocation from that menu. At

time 2: S exerts effort at cost () and privately observes her signal; each UI privately observes

whether he faces a negative endowment shock; UI and S simultaneously submit market orders; MM
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observe aggregate demands and set prices competitively. In period 3 claimholders receive their

contractually specified payments based upon the verified asset payoff.

II. Market-Making Game Equilibrium

In any separating equilibrium, the owner’s choice of allocation from his registered menu reveals

the asset type and the MM simply set the price of each marketed claim equal to its true payoff.

Therefore, the focus of this section is price determination in pooling equilibria. Suppose Owner

markets no more than two claims in equilibrium. Below this is shown to be without loss of generality.

Denote the two marketed claims as  and  with ( ) and ( ) denoting their respective

period 3 payoffs as functions of the verified asset payoff. Each marketed payoff must be weakly

positive since the other agents’ endowments are not verifiable. Heuristically, this captures investor

limited liability. Security  is treated as the default security if only one security is sold. Finally,

define the total payoff on marketed securities as  ≡  +  and  ≡  +   For example, if

the asset is fully securitized then the marketed bundle ( ) = ()

Following Nachman and Noe (1994) and DeMarzo and Duffie (1999), attention is confined to

marketed securities that are weakly increasing in the period 3 asset payoff. Monotonicity is assumed

for three reasons. First, with monotone securities, the informed speculator’s optimal strategy takes

a simple and intuitive form: he buys when he receives a positive signal. Second, the majority of

marketed claims are monotone. Finally, if one of the securities was decreasing, other claimants would

benefit from making clandestine contributions to the asset. As argued by DeMarzo and Duffie, only

securities with monotone payoffs will be issued if such hidden contributions are feasible.

The key measure of a security’s information-sensitivity in this model is its relative payoff across

the two total asset payoff states. Whenever Owner markets to outside investors two claims, our

notational convention is to treat security  as the more information-sensitive claim with:




≤ 


≤ 


 (2)
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To ensure the issuer faces a non-trivial problem in choosing an optimal structuring and to even

allow for the possibility of the marketing of riskless claims, attention is confined to marketed payoff

bundles ( ) such that   0 In fact,  = 0 is not a feature of the separating equilibrium, nor the

preferred pooling equilibrium of either type, so our characterization of the equilibrium set remains

valid.

A. Price Setting and Expected Revenues

Table 1 depicts order flow on the equilibrium path. We conjecture and verify UI demand is

confined to security . Intuitively, UI buy only the least information-sensitive claim in order to

minimize trading losses due to adverse selection. Consequently, S can only buy security  given

the lack of any cover provided by UI demand in the market for  As shown in Table 1, aggregate

UI demand can be expressed as  for either realization of . This is because the individual UI

cannot condition their own trades on the unobservable realized value of  The UI demand variable

 will be determined endogenously.

Since S cannot short-sell, her optimal strategy is to place a buy order for  if and only if she

receives the signal  . In order to confound the MM, the speculator must set her buy order equal

to the difference between high and low aggregate UI demands, or ( − ). As shown in Table

1, this ensures the MM will be confounded when they observe the aggregate demand  being

unsure of whether this arises from ( ) = ( ) or ( ) In contrast, the MM will be able to

infer that the speculator has received a positive signal when the observed aggregate demand is 

and a negative signal when the observed demand is 

Table 1 depicts the possible equilibrium aggregate demands for security , with demand for

security  equal to 0 Since there is no market segmentation, MM use the demand for security 

in setting prices for securities  and  On the equilibrium path, MM set prices as follows:

() =  + ( −) Pr[ = |] ∀  ∈ {  (2 − )} (3)

() =  + ( −) Pr[ = |] ∀  ∈ {  (2 − )}

Using Table 1, MM beliefs regarding the signal received by S can be mapped directly to beliefs
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regarding  :

Pr[ = | = (2 − )] =


1−  −  + 2
(4)

Pr[ = | = ] = 

Pr[ = | = ] =
(1− )

 +  − 2 

Prices increase monotonically in aggregate demand with:

[(2 − )] ≥ () ≥ () ∀ ∈ () (5)

To support the PBE conjectured in Table 1 it suffices to verify S has no incentive to deviate.

To that end, off the equilibrium path MM form adverse beliefs from the perspective of S, inferring

that any deviation arises from S receiving signal  . Such beliefs imply the following pricing:

() ∈ 0× {  (2 − )}⇒  = [(2 − )] ∀ ∈ () (6)

S has no incentive to change her trading strategy when confronted with such beliefs.

While such beliefs are sufficient to support the conjectured PBE of the market-making game, it

is worthwhile to briefly discuss their plausibility. Note that any deviation must be due to S placing

a strictly positive order. The chosen specification of beliefs is predicated on the notion that MM

should view such an order as being placed by S after having observed  . After all, if a negative

signal is received, S incurs a loss from buying securities unless MM form the most favorable beliefs

from her perspective, which would entail Pr( = ) = 0. For this reason, the posited PBE of the

market-making game survives the Intuitive Criterion.

The expected revenue received by the high type Owner is:

[+| = ] = +(−)
∙
Pr[ = |(2 − )]

2
+
(1− ) Pr[ = |]

2
+
Pr[ = |]

2

¸


(7)
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Equation (7) can be rewritten as:

[ + | = ] = () + [1− ()] (8)

() ≡ 1

2

∙
2

1−  −  + 2
+

(1− )2

 +  − 2 + 

¸


The endogenous variable  plays a critical role, proxying for informational efficiency. Specifically,

the wedge between the high type’s expected revenue and the fundamental value of his marketed

securities () is equal to (1− )(− )

The expected revenue of the low type is:

[ + | = ] = () + [1− ()] (9)

() ≡
µ



1− 

¶
[1− ()]

Lemma 1 shows high type benefits from higher speculator signal precision since this drives prices

closer to fundamentals. All but the most important proofs are presented in the appendix.

Lemma 1 The expected revenue of the owner of a high (low) value asset is increasing (decreasing)

in the speculator’s signal precision.

From Lemma 1 it follows that  is increasing in , with



µ
1

2

¶
=  (10)

(1) =
1 + 

2


If the speculator does not exert effort ( = 12),  =  and both types have the same expected

revenue equal to + (1− )

B. Speculator Effort and Uninformed Demand in Equilibrium

From Table 1 it follows the expected trading gain of the speculator is:

() =

⎡⎢⎣ 
2
{[ − ((2 − ))] + [ − ()]}

+
(1−)(1−)

2
{[ − ((2 − ))] + [ − ()]}

⎤⎥⎦ ( − ) (11)

=
1

2
(1− )(2 − 1)( −)( − )
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Her incentive compatible signal precision () satisfies:

0() = () = (1− )( −)( − ) (12)

Letting Ψ : <+ → [12 1) denote the inverse of 0 we have the following lemma.

Lemma 2 The incentive compatible signal precision of the speculator is

 = Ψ[(1− )( −)( − )]

The next step is to determine UI security demand. To do so, we analyze the optimal portfolio of

each UI and then aggregate. If 3 = , investor  has no need for intertemporal storage and has zero

security demand. So we focus on the demand of those UI facing the low terminal endowment of −.

To this end, let ∗ () denote demand for security  by an individual UI of type  conditional upon

his facing 3 =  − . Note that each individual UI bases demand on his own terminal endowment,

but not the actual realized value of  since he cannot observe . It follows that, consistent with

Table 1, aggregate UI demand for security  can be written as



Z max

1

∗ ()() ≡   (13)

Using Table 1 we arrive at the following expected prices computed by individual UI facing

negative endowment shocks:

[|3 =  − ] =  + (1− ) + (1− )(2 − 1)( −)( − )( + ) (14)

[|3 =  − ] =  + (1− ) + (1− )(2 − 1)( −)( − )( + )

Equation (14) shows UI face adverse selection, with expected prices exceeding expected payoffs,

unless the security is riskless or the speculator exerts no effort. Further, consistent with intuition,

the severity of adverse selection increases in the precision of the speculator’s signal.

The intuition for UI demand is straightforward. If  for an individual UI is sufficiently low,

his demand for both securities is zero, with adverse selection dominating his storage motive. For

intermediate values of  the UI partially insures in the sense of buying enough units of security 
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such that 3 is  if  = , implying 3   if  =  Finally, if  is sufficiently high, the investor

completely insures in the sense of purchasing enough units of security  such that 3 is  even if

 =  implying 3   if  =  Formally, in the appendix it is shown that:

 ≤ [|3 =  − ]

 + (1− )
≡ 1 ⇔ (∗ 

∗
) = (0 0) (15)

 ≥ [|3 =  − ]

(1− )
≡ 2 ⇔ (∗ 

∗
) =

µ
0





¶
 ∈ (1 2)⇒ (∗ 

∗
) =

µ
0





¶


Letting  ≡  and integrating over  we have the following lemma pinning down UI

demand.

Lemma 3 There is zero uninformed demand for the more information-sensitive claim  Aggregate

uninformed demand for security B is  where

 =




∙
1−  (1)


− (− 1) (2)



¸
(16)

1 = 1 +
(1− )(− 1)(2 − 1)( − )( + )

1 + (− 1)
2 = 1 +

+ (1− )(− 1)(2 − 1)( − )( + )

1− 


Lemma 3 can be contrasted with a result obtained by Boot and Thakor (1993). In their model,

speculators make trading gains in the information-sensitive levered equity claim. In our model, UI

optimally save using only the least information-sensitive claim, so the speculator is unable to make

profits in that market. A similar effect is operative in the model of Gorton and Pennacchi (1990),

since they too predict UI will buy the claim with low information-sensitivity.

We can pull together the incentive compatible signal precision from Lemma 2 and the UI demand

from Lemma 3 to verify existence of a unique PBE in the market-making game.

Proposition 1 In the market-making game following the registration of a pooling menu, if  = 

the speculator exerts zero effort ( = 12) and all uninformed investors with a low endowment
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purchase  units of this riskless claim. For   , there exists a unique equilibrium pair

(

 ) satisfying

(

 ) =  ∈

µ
1

2
 1

¶
(

) = 

 ∈

µ
0





¶


III. Preferred Security Designs by Type

Section IV pins down the set of equilibrium security designs. As a precursor, this section considers

which security designs would be preferred by each type in the event that types pool and market an

arbitrary payoff bundle ( ).

Lemma 4 is a useful simplifying result stating that we may confine attention to one or two

marketed securities. Intuitively, all UI demand migrates to the marketed security with the lowest

information-sensitivity, so any remaining securities can be priced as if they were rolled into a single

claim.

Lemma 4 Any payoff outcome attainable with three or more marketed securities is attainable with

two marketed securities.

Consider first the low type pondering his preference for the bifurcation of the payoff bundle

( ) in the event of pooling. Lemma 1 shows the low type prefers zero speculator effort. And

Proposition 1 shows this occurs if and only if the bifurcation results in the marketing of a riskless

security (regardless of the riskiness of the remaining security). Thus, the low type’s preferred pooling

equilibrium entails any structuring in which a riskless claim is marketed.

Consider next the high type’s preference for the bifurcation of the bundle ( ) in the event of

pooling. Lemma 1 shows his expected revenue is increasing in the equilibrium signal precision of
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the speculator. Substituting the UI demand function from Lemma 3 into the IC signal precision

from Lemma 2 yields the following equation implicitly defining :

 = Ψ[( − )(1− )( )] (17)

( ) ≡ (− 1)
∙
1−  [1( )]


− (− 1) [2( )]



¸
 (18)

Equation (17) shows that the variable  is the key endogenous variable determining equilibrium

speculator effort. And equation (18) shows that is simply the product of the speculator’s per-unit

trading gain and the endogenous UI demand variable  As intuition would suggest, endogenous

changes in UI demand leads to an inherent tradeoff between these two. In particular, increasing

per-unit profits for the speculator reduces UI trading volume.

From the implicit function theorem it follows:




=

Ψ0(·)( − )(1− )


1−Ψ0(·)( − )(1− )


 (19)

Since Ψ is an increasing function and is decreasing in its second argument it follows  increases

(decreases) with  iff  increases (decreases) with . This yields the following lemma.

Lemma 5 Given a marketed bundle ( ) the maximum pooling equilibrium signal precision ∗()

is attained with ∗ =  and ∗ = ∗() where

∗() ∈ arg max
≤

 [ ∗()]

In the preceding lemma, the constraint  ≤  ensures claim  is, in fact, the low information-

sensitivity claim that will be traded by the UI. Lemma 6 presents a sufficient condition for global

concavity of  and the existence of a unique preferred informational sensitivity for the high type

in pooling equilibria.

Lemma 6 If the cumulative distribution function ( ) for uninformed investors’ preference parame-

ter  is weakly convex, then the speculator gain function(· ) is strictly concave for all  ∈ (12 1]

and the high type has a unique preferred informational sensitivity ∗() for all  ∈ (1∞). If
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 ≥ ∗(∞) then ∗() = ∗(∞) and ∗() = ∗(∞) If   ∗(∞) then ∗() =  and

∗()  ∗(∞)

The intuition behind Lemma 6 is as follows. For  convex, marginal increases in  result in

ever larger reductions in UI demand. Further, the benefit to the speculator of the increase in per-

unit profits stemming from an increase in  is spread over a progressively smaller trading base.

Consequently, the maximand (the product of per-unit speculator gains and UI trading volume) is

strictly concave. The remainder of the paper adopts two technical assumptions:

2 :  is weakly convex.

3 :



 ∗(∞)

Assumption 2 ensures a concave programme and Assumption 3 ensures the high type’s preferred

informational sensitivity is interior if the underlying asset is fully securitized.

To better understand the factors determining the high type’s preferred informational sensitivity,

we differentiate  to obtain:

( ) =

∙
1−  (1)


− (− 1) (2)



¸
(20)

−
∙
− 1


¸ ∙
 (2)−  (1)


+ (1)

1


+ (− 1)(2)1



¸
1


=

(1− )(2 − 1)( − )( + )

[1 + (− 1)]2  0

2


=

∙


1− 
+ (2 − 1)( − )( + )

¸
 0

The first term in (20) captures the incentive benefit from increasing informational sensitivity (via

), as it increases the speculator’s per-unit trading gain. The negative term captures the cost of

increasing informational sensitivity in terms of reducing equilibrium uninformed demand, behind

which the speculator hopes to hide her trading. Canceling terms one obtains the following first-

order condition capturing the optimal trade-off between per-unit speculator gains and endogenous

changes in UI demand:

1−  (1)

∗∗
− (

∗∗ − 1) (2)
∗∗

=

∙
∗∗ − 1
∗∗

¸ ∙
 (2)−  (1)

∗∗
+ (1)

1


+ (∗∗ − 1)(2)2



¸
 (21)
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This establishes the following proposition characterizing the high type’s preferred bifurcation of

marketed claims in a pooling equilibrium with full securitization.

Proposition 2 If the entire asset is securitized, the high type’s preferred pooling equilibrium bifurca-

tion consists of a low-information-sensitivity claim such that ∗ =  and ∗ = ∗∗ where ∗∗  1

is the unique solution to equation (21). The second residual claim attracts zero aggregate uninformed

demand. All informed trading gains are derived in the market for the low information-sensitivity

claim.

The following corollary shows each type’s preferred pooling structuring can be achieved by

combining standard securities.

Corollary (Full Securitization) The high type’s preferred pooling equilibrium bifurcation maximizes

speculator effort and consists of a risky senior tranche with face value ∗∗, where ∗∗ is the unique

solution to equation (21), and a residual junior tranche. The low type’s preferred pooling equilibrium

bifurcation reduces speculator effort to zero via the sale of a riskless senior claim with face value 

and a residual junior tranche.

When analyzing social welfare, we will be particularly interested in whether and how the pri-

vately informed asset owner will respond to increases in the size of endowment shocks hitting the

UI. Foreshadowing that analysis, consider again the high type’s preferred pooling equilibrium bifur-

cation. Applying the implicit function theorem to the equilibrium condition (17) we have




=

Ψ0(·)( − )(1− )

1−Ψ0(·)( − )(1− )


 0 (22)

Importantly, equilibrium signal precision is increasing in the size of UI endowment shocks. Intu-

itively, individual and aggregate UI demand for security  increases linearly in  In turn, increases

in UI demand allow the speculator to make larger profits given her ability to place larger masking

trades. Anticipating, the comparative static in (22) will have important consequences for under-

standing potential conflicts between private and public objectives in security design.
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Figure 1 provides further intuition regarding the high type’s preferred bifurcation. Recall, ag-

gregate UI demand is  where  ∈ { } When she receives a positive signal, the speculator

places a buy order of size ( − ) Figure 1 plots the endogenous UI demand factor .
10 UI

demand for security  declines monotonically in informational sensitivity () since increases in 

induce marginal UI to either forego purchase of the security (1 increasing) or to purchase less units

(2 increasing). The figure also shows that increases in the size of UI endowment shocks () induce

rightward shifts in aggregate UI demand.

Figure 2 plots  the key term in equation (17) pinning down equilibrium signal precision. As

shown in the figure, the high type’s preferred  value is independent of  However, higher  values

result directly in higher values of  , which implies higher equilibrium speculator effort ().

Again, the intuition is that larger UI endowment shocks stimulate informed trading by allowing the

speculator to place larger buy orders.

IV. Equilibrium Security Designs

This section characterizes the set of perfect Bayesian equilibria. We begin with an analysis of

the Low Information Intensity Optimum.

A. The Low Information Intensity Optimum

The LIIO is that pair of incentive compatible, profitable type-by-type, allocations (ΣΣ)

maximizing high type utility. The LIIO minimizes the low type’s incentive to mimic the high type

by giving him his first-best allocation in which he retains zero interest in the asset. This allows the

low type to invest at first-best and achieve utility .

In the LIIO, there is no need for the high type to sell more than one public security since

marketed securities are priced at fundamental value given type is revealed. In the LIIO, the high

10The figure assumes the  are uniformly distributed on [1 6]  = 12 = 20 and  = 80.
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type owner retains on his own balance sheet a security  with state-contingent payoffs solving:

max
()

 + ( −)



 :  ≥  + ( −)

 



To determine the LIIO, we first ignore monotonicity constraints and then verify they are slack.

Clearly, in this relaxed program the optimal policy is to loosen the non-mimicry constraint to the

maximum extent by setting  = 0 Intuitively, if the low type were to mimic, he would receive

zero payoff on his retained security. Clearly, NM must bind at the optimum, implying  = −

Thus, in the LIIO both types only market safe debt with face value  with the high type holding

a residual junior claim on his own balance sheet.

Proposition 3 In the Low Information Intensity Optimum, the only marketed security for both

types is a safe debt claim with face value 

As a purely technical matter keeping our terminology consistent with standard terminology and

also allowing us to draw directly upon standard results in signaling games, e.g. Tirole (2005), we

note the LIIO is properly understood as a separating menu since the payoff vector Σ 6= Σ  It is

thus distinct from pooling menus, which have Σ = Σ . To see this, note that under Σ the low

type surrenders any claim to residual cash flow net of , and is willing to do so since he knows any

such claim to be worthless. That is, the low type’s retained security has state-contingent payoffs

(0 0) In contrast, under Σ the final period payoff on the owner’s retained security is (0 − )

As is standard, in the LIIO the low type is just indifferent between Σ and Σ , while the high

type strictly prefers Σ to Σ The LIIO is the best possible separating allocation for both types,

subject to the constraint that market-makers break even on a type-by-type basis.
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The intuition behind Proposition 3 is as follows. In the LIIO the low type would always mimic

if the high type were to sell risky debt with face value greater than  since then the low type would

benefit from overpricing. Therefore, the best the high type can do is to get the maximum funding

possible subject to zero informational-sensitivity. Debt with face value  achieves this objective. In

the LIIO, the high type experiences a loss relative to symmetric information equal to (−1)(−)

As in the model of Myers and Majluf (1984), in the LIIO the high type invests less than first-best.

The socially attractive feature of the LIIO is that it achieves first-best insurance for the UI who can

use the marketed riskless debt claim, issued by either type, as a safe savings vehicle. And further,

the speculator does not exert socially wasteful effort in the LIIO.

B. The Equilibrium Set

The following lemma, an application of a general signaling game result due to Maskin and Tirole

(1992), provides a general characterization of the set of PBE.

Lemma 7 The set of perfect Bayesian equilibria of the Security Design Game includes the Low

Information Intensity Optimum (LIIO) and any pooling menu that weakly Pareto dominates the

LIIO from the perspective of both owner types.

Proof. Consider first supporting the LIIO. If beliefs were set to Pr[ = ] = 0 in response to any

deviating menu, then no such deviation is profitable. Suppose next there is a contract menu weakly

Pareto dominating the LIIO. If beliefs were set to Pr[ = ] = 0 in response to any deviating menu,

the deviator would get weakly less than his LIIO payoff and the deviation is not profitable.

From Lemma 7 it follows the LIIO is actually the unique PBE if there is no menu that makes

both owner types weakly better off. By construction, no separating contract can make both types

better off than the LIIO. Thus, we need only consider pooling equilibria.11 The low type will often

be better off in pooling equilibria since he benefits from overpricing, so the first step in verifying

whether pooling can be supported is to determine the high type’s preferred pooling contract.

11Tirole (2005) allows pre-commitments to cross-subsidies which are impossible in competitive securities markets.
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We characterize the high type’s preferred pooling contract in two steps. First, Lemma 5 char-

acterized his preferred bifurcation of arbitrary marketed cash flows ( ) respecting monotonicity

and limited liability. Given any such marketed pair ( ), let ∗() denote the resulting maxi-

mum feasible . Next, ( ) are optimized in light of their effect on speculator effort incentives.

The following lemma shows the low payoff is fully securitized in the high type’s preferred pooling

equilibrium.

Lemma 8 In the high type’s preferred pooling contract, the security retained by the original asset

owner has a payoff of zero if the realized asset payoff is low.

The intuition for Lemma 8 is that the high type places zero value on cash flow rights in the event

of a low realized asset payoff since he knows this is a probability zero event for him. For this same

reason he also knows that the market will overvalue any marketed claim delivering positive payoffs

in the low state. Thus, the high type prefers to market low state payoffs.

Let ( ) denote the high type’s expected utility when the bundle ( ) is marketed in a pooling

equilibrium with the marketed payoffs bifurcated according to Lemma 5. From Lemma 8 it follows

the high type finds it optimal to set  =  The optimal value of the high state marketed payoff in

a pooling equilibrium, call it ∗, solves:

∗ ∈ max
∈[]

( ) ≡  − + [+ (− )(∗())] (23)

If the high type opts to pool at a structuring in which only safe debt is securitized, his utility ()

is just equal to what he obtains in the the LIIO. Further, if [∗()] ≤ 1 the preferred pooling

contract for the high type is to pool at a structuring in which only safe debt is marketed. To see

this, note:

[∗()] ≤ 1⇒ ( ) ≤ () =  − +  ∀  ∈ (] (24)

That is, if  ≤ 1, the high type cannot achieve higher utility from pooling than he achieves at the

LIIO. And it follows from Lemma (7) that in such cases the LIIO is the unique PBE. We have the

following proposition.
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Proposition 4 If feasible speculator effort and corresponding market informational efficiency are

low, with [∗()] ≤ 1 the unique perfect Bayesian equilibrium of the Security Design Game

is the Low Information Intensity Optimum in which both types market only safe debt with face value



The intuition for Proposition 4 is as follows. If the speculator cannot be incentivized to produce

sufficiently precise signals, then the costs of underpriced securities exceed the value of immediate

funding and the owner of a high value asset prefers not to issue any risky security.

Consider next the preferred pooling contract for the high type when it is possible to induce high

levels of speculator effort and informational efficiency, in the sense that   1 To analyze this

case, note that ∗() = ∗() for all   ∗∗ where ∗∗ is the unique solution to equation

(21). It follows that:

∀  ∈ (∗∗) ( ) = (∗())− 1 (25)

which is a strictly positive constant in the posited setting. Thus

[∗()]  1⇒ ()  ( ) ∀  ∈ [∗∗) (26)

That is, when informational efficiency () is sufficiently high, the high type prefers marketing  = 

to marketing  ∈ [∗∗)

Using the fact that the objective function ( ·) is linear for   ∗∗ we also know:

[∗()]  1⇒ (∗∗) = ()− [ − ∗∗][(∗())− 1] (27)

⇓

(∗∗) =  − + + (∗∗ − )[(∗())− 1] ≥ ( ) ∀ ∈ [∗∗)

It follows from the inequalities in (26) and (27) that:

[∗()]  1⇒ ()  ( ) ∀  ∈ [) (28)

This last inequality implies that, with sufficient speculator effort and market informational efficiency

(  1), the high type can achieve higher utility at his preferred pooling contract than at the LIIO
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since the LIIO provides the high type with utility (). And the low type is clearly better off

with this pooling outcome that at the LIIO since his LIIO payoff is only  From Lemma (7) it

then follows the high type’s preferred pooling contract is in the set of PBE iff [∗()]  1

Having determined necessary and sufficient conditions for the high type’s preferred pooling

contract, with maximum information production, to be in the set of PBE, we turn next to the low

type’s preferred pooling contract. As discussed in the previous section, this contract entails full

securitization of the asset cum issuance of riskless debt to destroy incentives for the speculator to

exert effort. From Lemma 7 it follows this pooling contract is in the set of PBE iff the high type is

better off under it than under the LIIO, or:

[ + (1− )]   − + ⇔   1 (29)

That is, iff   1 the low type’s preferred pooling contract is in the set of PBE. Since   ,

this is a more restrictive condition than that needed to support the high type’s preferred pooling

contract as a PBE. Intuitively, the high type has relatively strong incentives to deviate from the low

type’s preferred pooling outcome since it entails large deviations of prices from fundamentals.

We can summarize these results as follows.

Proposition 5 Iff informational efficiency is high, with [∗()]  1 the high type’s pre-

ferred pooling contract is a perfect Bayesian equilibrium. This contract entails full securitization

with the asset bifurcated into risky senior debt with face value ∗∗ where ∗∗ is the unique solution

to equation (21), and a residual junior tranche. Iff   1, the low type’s preferred pooling contract

is in the set of perfect Bayesian equilibria. This contract entails full securitization with the asset

bifurcated into riskless senior debt with face value  and a residual junior tranche.

Finally, we evaluate whether the three potential PBE discussed above satisfy the Intuitive Crite-

rion of Cho and Kreps (1987). In the interest of brevity, the high type’s preferred pooling equilibrium

is labeled HPOOL and that of the low type is labeled LPOOL. Recall, from the proof of Lemma 7

that the various PBE are supported by imputing any off-equilibrium menu registration to the low
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type. As one might suspect, LPOOL is fragile inasmuch as such beliefs can be viewed as implausible

given that the high type has a strong incentive to deviate from LPOOL, while the low type finds

LPOOL very attractive. Consistent with this intuition, in the appendix we prove the following

proposition.

Proposition 6 The LIIO satisfies the Intuitive Criterion. LPOOL does not satisfy the Intuitive

Criterion. HPOOL satisfies the Intuitive Criterion iff speculator effort and informational efficiency

are sufficiently high such that

1− [∗()]

1− [∗()]
≥ 

 − 1 

V. Private versus Public Incentives in Securitization

The model allows us to determine whether the private sector will implement socially preferred

equilibria. In comparing across equilibria in which informed speculation does and does not occur,

Pareto improvements are impossible since uninformed investors suffer when informed speculation

occurs while the speculator benefits. So we take the perspective of a utilitarian social planner placing

equal weight on all agents.

Interestingly, there is one case in which we can say that one PBE Pareto dominates another.

Specifically, suppose   1 so that LPOOL (defined in Section IV) is a potential PBE. This PBE

Pareto dominates the LIIO. To see this, note that the UI, S and the low type are equally well off

in the two equilibria. However, since   1 the high type is strictly better off pooling at full

securitization of the asset than at the LIIO. Thus, if   1 LPOOL Pareto dominates the LIIO.

To set a benchmark, consider social welfare under symmetric information. Here, the owner

would sell the entire asset, regardless of type, converting each unit of funds raised into   1 units of

consumption. The speculator and market-makers would consume their endowments. Each UI facing

a low endowment would spend  units of period 2 goods to insure against negative consumption in
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period 3. The implied ex ante social welfare in the case of first-best is:

 = [ + (1− )] + 2 + 
2 + 

3 + 2 −
( + )

2
 (30)

Consider now social welfare under LPOOL, recalling it is a PBE iff   1 LPOOL achieves the

first-best social welfare level  To see this, note that the low type’s preferred pooling contract

carves out a safe debt claim. This safe debt claim will be used by the UI to save across periods 2

and 3, resulting in first-best risk sharing. Further, the marketing of safe debt destroys incentives

for socially wasteful speculator effort. In LPOOL there is a transfer from the high to low type due

to mispricing of the risky equity tranche, but this transfer is zero-sum.

Consider next the LIIO. Ex ante, the social planner computes the following expectation (over

types) of social welfare loss in the LIIO relative to first-best:

 = ( − 1)( − ) (31)

The only deadweight loss in the LIIO is the loss in NPV resulting from the high type operating

the new investment below first-best scale. From a risk sharing perspective the LIIO is attractive,

since all investors achieve their first-best consumption profiles. The UI save using the safe marketed

claim and the speculator does not exert costly effort.

Consider finally HPOOL, the high type’s preferred pooling equilibrium in which the asset is fully

securitized under the corresponding optimal structuring described in Proposition 2. The expected

level of investment in the pooling equilibrium equals first-best. However, this equilibrium entails

costly speculator effort and results in inefficient risk sharing as the UI distort their portfolios. The

calculation of social welfare in the pooling equilibrium is a bit more involved. As a first step it can

be computed as:

 = [ + (1− )] + 2 + 
2 + 

3 + 2 +−  (32)

−( + )

2

⎡⎣ 1Z
1

() + (1− )
¡
1− −1

¢ 2Z
1

() +
[|3 =  − ]



⎤⎦ 
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The first line in equation (32) measures the expected value of aggregate investment, plus the income

endowments plus the net trading gain to the speculator. The second line measures the costs incurred

by UI from 3   in addition to the expected cost of the UI portfolios. This simplifies to:

 = [ + (1− )] + 2 + 
2 + 

3 + 2 −  (33

−( + )

2

⎡⎣[1−  (1)] +

1Z
1

() + (1− )
¡
1− −1

¢ 2Z
1

( − 1)() + (− 1) [1−  (2)]

⎤⎦
We then obtain the following expression for the deadweight loss in the high type’s preferred pooling

equilibrium:

 = [()]+
( + )

2

⎡⎣ 1Z
1

( − 1)() + (1− )
¡
1− −1

¢ 2Z
1

( − 1)() + (− 1)[1−  (2)]

⎤⎦ 
(34)

Equation (34) has the following intuition. The first term reflects the fact that speculator effort is

socially costly. The term in large square brackets reflects the fact that the existence of asymmetric

information in this pooling equilibrium leads to distortions in UI portfolios. The first term in the

large brackets captures the fact that a socially inefficient number of UI forego saving altogether. The

second term in the large brackets reflects the fact that adverse selection induces a socially inefficient

number of UI to only partially insure against low consumption. And the final term represents the

social cost associated with overinsurance (3  ) by extremely risk-averse UI.

From equation (34) it is readily verified that the deadweight loss in HPOOL is increasing in the

size of endowment shocks as follows:




=




0+

 + 

2

⎡⎣ 1Z
1

( − 1)() + (1− )
¡
1− −1

¢ 2Z
1

( − 1)() + (− 1)[1−  (2)]

⎤⎦ 
(35)

Note that the deadweight loss in the LIIO is independent of  but increasing in  Conversely, the

deadweight loss under the high type’s preferred pooling contract is independent of  but increasing

in  It follows that by equating the deadweight losses across these two equilibria we may pin down

a critical value of  call it  at which the social planner would be just indifferent between
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LIIO and HPOOL. Specifically:

()−1 =

[()] +
(+)

2

⎡⎣ 1Z
1

( − 1)() + (1− )
¡
1− 1



¢ 2Z
1

( − 1)() + (− 1)[1−  (2)]

⎤⎦
( − )



(36)

It is readily verified that  is increasing in . Intuitively, an increase in  raises the risk

sharing cost associated with HPOOL, so the only way to maintain social planner indifference across

the equilibria is to have a compensating increase in , which raises the deadweight cost of the

underinvestment associated with the LIIO.

Similarly, we may pin down a critical value of  call it  at which the high type would be

just indifferent between HPOOL and the LIIO. From Proposition 5 we know that the indifference

region is determined by:

() = [(()]
−1 ⇒ 


= −[(()]−2

∙




¸
 0 (37)

In contrast to the social planner, the high type is more attracted to HPOOL for higher values of

 since large endowment shocks stimulate uninformed demand and speculator effort, resulting in

less underpricing in this pooling equilibrium. Hence, to maintain indifference for the high type, a

compensating decrease in  is required in response to a marginal increase in 

Figure 3 compares private and public preferences over three potential equilibria: the LIIO,

HPOOL, and LPOOL while excluding any of the three that are not PBE on particular regions. For

example, LPOOL is always preferred by the utilitarian social planner, but LPOOL is only in the set

of PBE on Region 5, when   1. Consequently, LPOOL is listed as the publicly preferred PBE

in Region 5 only. Similarly, HPOOL is not at a PBE on Regions 1 and 2 since these regions are to

the left of the downward sloping line where  = 1 On each region, the private preference is from

the perspective of the high type since the low type’s preference (LPOOL) is not generally a PBE

and never satisfies the Intuitive Criterion.

On Regions 1 and 2, the LIIO is the unique equilibrium so there is no conflict between public

and private preferences over the PBE. Here riskless debt will be supplied by either type, with the
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high type owner retaining all risk. In the LIIO there will be efficient risk sharing across investors,

with no informed speculation taking place.

On Region 3 both the LIIO and HPOOL are potential equilibria. Here both the high type and

the social planner prefer HPOOL to the LIIO. The high type prefers HPOOL to the LIIO on this

region because the high value he places on funding (high ) dominates the severe underpricing he

will face (low ). The planner prefers HPOOL to the LIIO on this region despite the fact that risky

debt will replace riskless debt. The planner is willing to accept vanishing liquidity because efficient

risk sharing is less socially important than high investment on this region.

Private and public preferences over PBE conflict on Regions 4 and 5. On Region 4 the planner

prefers the LIIO, with high  values raising the risk sharing and speculator effort costs inherent in

HPOOL. In other words, liquidity is particularly socially valuable on Region 4 given the large storage

demands (high ) of the uninformed investors. However, on this same region the high type prefers

HPOOL, where liquidity vanishes and is replaced by risky debt. The high type recognizes that high 

values stimulate speculator effort and mitigate the extent of underpricing. This makes HPOOL more

attractive to him. Similarly, an increase in UI risk-aversion via a first-order stochastic dominant

shift in  would also increase the social welfare loss associated with HPOOL, while simultaneously

making that equilibrium more attractive to the owner of a high quality asset.

The analysis of Region 4 illustrates starkly that the private sector can prefer the pooling equi-

librium cum risky debt, with high volumes of securitized asset sales and inefficient risk sharing,

precisely when liquidity and efficient risk sharing have high social value. Also, the analysis shows

that it is not simply a matter of the high type failing to account for the negative externality he

imposes on uninformed investors. Rather, the larger the negative externality (higher  or UI risk-

aversion), the greater the relative attractiveness of HPOOL for the high type. Paradoxically, the

negative externality is more likely to be imposed when it is larger.

On Region 5, LPOOL can be supported as a PBE. The planner prefers LPOOL here since it

results in first-best social welfare, with the asset being fully securitized in the form of riskless debt
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and risky equity. However, the high type would prefer to deviate from this PBE, instead issuing

risky debt in order to stimulate speculator effort and drive prices closer to fundamentals. And

further, HPOOL is arguably a more plausible outcome inasmuch as LPOOL relies upon beliefs that

do not satisfy the Intuitive Criterion. So once again we see a conflict between public and private

preferences can emerge in security design.

VI. Publicly Supplied Liquidity

In recent years governments have explicitly recognized the demand of uninformed investors for

liquidity. For example, during the consultation period leading up to its introduction of long-dated

gilts, the Debt Management Office (DMO) of the United Kingdom stated: “Excess demand for

high quality inflation-linked bonds and very long-dated bonds in the formats desired by long-term

investors has featured strongly in the DMO’s informal discussions. It seems likely that both Her

Majesty’s Government and investors may benefit from the issuance of bonds in maturity ranges or

formats where there currently exists either no or insufficient supply.”

The analysis up to this point has assumed the income endowments of the various agents are not

verifiable, precluding the use of these endowments to back the sale of securities in period 2. Thus,

in the baseline model only asset-backed securities could be issued. We now relax this assumption,

examining the welfare implications of publicly supplied liquidity backed by income endowments.

Holmström and Tirole (1998) argue governments are more capable of providing liquidity. After

all, governments generally have superior infrastructure for verifying incomes. Further, governments

generally have at their disposal harsher methods for compelling delivery of required payments (e.g.

jail). We assume now that a fraction of the final period income endowment (
3 ) of the MM

is verifiable by the public treasury. In particular, assume the treasury has the ability to levy a

non-distorting tax equal to a fraction  of the period 3 endowment of the MM. To fix ideas, one may

think of the MM as having high incomes that are impossible to completely hide from the treasury.

Alternatively, one may think of MM as deriving a portion of their incomes from a transparent source.
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The government can supply liquidity as follows. In period 2 it can sell riskless bonds carrying

face value 
3  The government bond will be used as a safe store of value by the UI. The proceeds

raised by the government bond flotation (
3 ) can be used to finance a period 2 transfer to the

MM to avoid income redistribution. In terms of its effect on social welfare, such a government policy

is equivalent to the MM having the ability to credibly pledge to the UI a fraction  of their period

3 endowment.

To illustrate the potential welfare benefits of publicly supplied liquidity, return to Figure 3 and

assume the pair ( ) falls within in Region 4. In the absence of government intervention, the

private sector may implement HPOOL, implying no riskless securities are issued and resulting in

distorted risk sharing. Here, the social planner would prefer the LIIO to HPOOL given the high

social value of efficient risk sharing in this region. If 
3 ≥  the government can easily achieve

the same social welfare as the LIIO via the public liquidity scheme. By selling safe debt with face

value 
3 the government would fully satisfy UI demand for safe storage regardless of whether

this demand is high or low. And absent UI demand for risky securities, the private sector would

implement the LIIO securitization structure.

A more subtle and powerful role for publicly supplied liquidity is revealed if one considers a

government with lower debt capacity. To see this, return to Region 4 of Figure 3 but now assume


3   In this case public liquidity is insufficient to meet the storage demands of the UI

even when their demand is low. In particular, each UI facing a negative endowment shock can now

buy only 
3  units of the riskless government bond in period 2. This leaves each UI facing a

negative endowment shock with a residual storage demand equal to

 ≡ − 
3


 0 (38)

It follows that the resulting equilibrium security design is equivalent to what one would obtain in

the baseline model, but with the parameter  being replaced by the smaller quantity  Further,

we know from equation (22) that lower UI storage demand results in lower speculator effort and

informational efficiency as measured by . If the reduction in the incentive compatible  were
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sufficiently small, HPOOL would still remain viable as a PBE. However, social welfare would still

be higher since risk sharing distortions would be smaller and speculator effort costs would be lower.

If instead the reduction in the incentive compatible  were sufficiently large, the introduction

of even this relatively small amount of public liquidity could potentially cause LIIO to become

the unique PBE (on Region 4). This illustrates the following novel result: The introduction of

public liquidity can crowd-in private liquidity and crowd-out informed speculation. Intuitively, public

liquidity siphons off UI demand for information-sensitive claims, reducing the potential gains to

informed speculation and, with it, the informational efficiency of prices. This makes it less likely

that an issuer with positive information would be willing to issue information-sensitive claims.

As an interesting illustration of this effect at work, suppose:


3      

3 + 

In the above case, the public supply of liquidity is insufficient to satisfy even low UI demand for

safe assets. However, by crowding in  units of private liquidity, the introduction of public liquidity

could result in sufficient aggregate liquidity to satisfy even high UI demand for safe assets, resulting

in first-best risk sharing.

The beneficial effect of public liquidity on social welfare is not confined to Region 4. To see

this, consider next ( ) pairs falling within Region 5. Here the introduction of public liquidity

does not rule out HPOOL as a PBE. However, public liquidity would reduce speculator effort and

risk sharing distortions taking place under HPOOL. Further, the public supply of liquidity could

crowd-out all informed speculation on this region so that HPOOL vanished, with the only pooling

equilibrium then being LPOOL. Under LPOOL first-best social welfare would be achieved.

However, the analysis also shows that excessive publicly supplied liquidity can reduce social

welfare. To see this, consider ( ) pairs falling within Region 3. On this region, with relatively

small UI endowment shocks, efficient risk sharing is of second order concern from a social welfare

perspective. Here the social planner would view HPOOL as preferable to the LIIO, and it would

not be socially optimal to supply public liquidity in an amount sufficient to destroy HPOOL as a
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viable equilibrium. Rather, the social optimum would entail supplying just enough public liquidity

so that  = 1 with speculator effort just sufficient to keep HPOOL viable.

The above arguments imply the following characterization of the socially optimal supply of public

liquidity.

Proposition 7 If uninformed investors face large endowment shocks (Region 4), government should

supply maximum public liquidity to crowd-in private liquidity and implement the LIIO. If the owner

places high value on funding (Region 5), government should supply maximum public liquidity to

eliminate informed speculation. For intermediate endowment shocks and funding values (Region 3),

government should supply limited public liquidity to curtail informed speculation.

Conclusions

This paper analyzes security design, the private equilibrium supply of liquidity, and the role

of public liquidity. The model bridges two distinct literatures: the corporate finance literature on

security design and the microstructure literature on rational expectations equilibria. We extend the

former by allowing for information production by the market driving prices closer to fundamentals

in the event of pooling. We extend the latter by modeling rational trading of ABS by optimizing

uninformed investors. Endogenous uninformed trading is the key causal mechanism in the model

responsible for the most interesting results. Additionally, endogenous uninformed trading allows us

to assess social welfare.

First-best social welfare would be attained under pooling at the low type’s preferred outcome

in which the full asset is marketed as riskless debt and levered equity. However, this structuring is

not generally an equilibrium and fails to survive weak refinements. Intuitively, the high type has

an obvious incentive to deviate from a pooling equilibrium with zero informed trading and severe

underpricing.

The equilibrium set always includes the low information intensity optimum (LIIO) in which only

riskless debt is marketed. In the LIIO, the high type retains all risk on his own balance sheet and
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underinvests. However, this equilibrium achieves first-best risk sharing across investors since there

is no speculator effort and uninsured investors are immune from adverse selection as they save using

the riskless debt issued by either type. From a social perspective, the LIIO is particularly attractive

when risk sharing is important.

The high type may be better off than under the LIIO by securitizing the entire asset in a pooling

equilibrium. In his preferred pooling equilibrium, the asset is split into a risky senior tranche and

a junior equity tranche. The absence of riskless claims then leaves uninformed investors exposed

to adverse selection. In contrast to canonical signaling models, we find the (separating) LIIO may

actually be socially preferred to this pooling equilibrium. This is because pooling gives rise to

speculative markets with costly speculator information acquisition and distortions in the portfolios

of uninformed investors.

The model highlights the following fundamental conflict between private and public preferences:

Private incentives to implement the pooling equilibrium cum risky debt, adverse selection and port-

folio distortions, can be strongest precisely when risk sharing is most socially valuable. Specifically,

increases in the size of endowment shocks hitting uninformed investors, or their risk-aversion, en-

courage asset owners to rely upon speculative activity, since higher uninformed trading volume

subsidizes information acquisition by speculators, which reduces the extent of mispricing in pooling

equilibria.

An important problem highlighted by the model is that issuers fail to internalize the negative

externality they impose on uninformed investors when they sell information-sensitive securities in

speculative markets. In fact, our analysis shows that even when privately-informed owners have

the ability to fully insulate uninformed investors from adverse selection, they have an incentive to

issue securities with nonzero information-sensitivity in order to promote information production by

speculators. Worse still, the larger the negative externality imposed on uninformed investors when

risky debt is marketed instead of safe debt, the stronger the incentive of a high type to impose it.

The model offers a novel rationale for publicly-supplied liquidity. Public liquidity has an obvious
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direct benefit in providing uninformed investors with some amount of safe storage. However, we show

public liquidity has a subtle indirect multiplier-effect. In particular, public liquidity siphons off the

demand of uninformed investors for risky assets, reducing the profitability of informed speculation in

markets for information-sensitive claims. This will increase the extent of underpricing anticipated by

issuers with private information, potentially causing them to switch to marketing safe debt instead.

Thus, public liquidity can have a disproportionate effect on aggregate liquidity and social welfare

by crowding-out informed trading and crowding-in private liquidity.
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Appendix: Proofs

Lemma 1

We can write

[ + | = ] =  +
1

2


∙
2

1−  −  + 2
+

(1− )2

 +  − 2 + 1
¸
(− ) (39)

We need only verify the square bracketed term is increasing in . To this end let

() ≡  +  − 2

Ω() ≡ 1 +
2

(1− )
+
(1− )2




We need only verify Ω is increasing. Differentiating we obtain:

Ω0() =
2 (1− ) + (1− 2)2

(1− )2
− 2(1− ) + (1− 2)(1− )2

2
(40)

=
[2 (1− ) + (1− 2)]2 − (1− )2(1− ) [2+ (1− 2)(1− )]

(1− )2 2

This is strictly positive iff:

[2 (1− ) + (1− 2)]2  (1− )2(1− ) [2+ (1− 2)− (1− 2)]

m

[(1− ) + (1− )]2  (1− )2(1− ) [+ (1− )]

m

(1− )2  (1− )
£
(1− )(1− )+ (1− )(1− )(1− )− 2

¤
m

(1− )2  (1− ) [(1− )−  + (1− )(1− )(1− )]

m

[(1− )+ 1− ]  (1− )2 [+ (1− )(1− )]

m
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[1− ]  (1− )2(1− )

m

− 2  (1− )2 − (1− )2

m


£
(1− )2 − 2

¤
+   (1− )2

m

 + (1− 2)  (1− )2

m

2 + ( − )  (1− )2

m

2(2 − 1) + 2 [ − (2 − 1)]  1

m

( − 1)2(2 − 1)− (2 − 1) + 2  1

m

( − 1)2(2 − 1)  0.¥

Proposition 1

Consider a graph with  on the vertical axis and  on the horizontal axis. We know (12) ∈

(  ) and that  is strictly decreasing in  on (12 1) yet strictly positive for max

sufficiently high. Plotting the IC signal precision, we know  is strictly increasing in  with

−1 (12) = 0 and the limit as 1 converges to one of 
−1
 (1) =∞ Thus, the two curves intersect

once, and only once, implying a unique equilibrium.¥

Lemma 3
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Since security  is more information-sensitive it follows:

 + (1− )

[|3 =  − ]
≤  + (1− )

[|3 =  − ]
and

(1− )

[|3 =  − ]
≤ (1− )

[|3 =  − ]
 (41)

The two inequalities in (41) indicate security  is viewed by UI as having higher expected cost per

unit of 3.

Consider some UI facing 3 =  −  His terminal consumption is:

3(  ) =  +  +  −  ∀  ∈ {} (42)

Attention is confined to portfolios satisfying 3(  ) ≤  since the marginal utility of terminal

consumption is zero for all portfolios such that 3(  )  

Consider first an arbitrary portfolio such that 3( )   and evaluate a local perturba-

tion. We have:

[]


=  [ + (1− )]−[|3 =  − ] (43)

[]


=  [ + (1− )]−[|3 =  − ]

If  is sufficiently low, both perturbation gains listed above are negative and optimal UI demand is

zero. Specifically:

 ≤ [|3 =  − ]

 + (1− )
≡ 1 ⇔ (∗ 

∗
) = (0 0) (44)

Next, consider an arbitrary portfolio ( ) such that 3( ) = + where  is arbitrarily

small. At such points:

[]


= (1− ) −[|3 =  − ] (45)

[]


= (1− ) −[|3 =  − ]

If  is sufficiently high, the second perturbation gain listed above is positive. Further, since the

maximand is piece-wise linear, it would then be optimal to fully insure by achieving 3(
∗
 

∗
 ) =

 From (41) it follows the minimal cost means of achieving this full insurance is to purchase only
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security  Thus,

 ≥ [|3 =  − ]

(1− )
≡ 2 ⇔ (∗ 

∗
) =

µ
0





¶
 (46)

The final case to consider is  ∈ (1 2) From the perturbation arguments given above, we know

such UI partially insure, with 3(
∗
 

∗
) =  From the first inequality in (41) we know security

 provides higher marginal utility per unit spent. It follows that security  yields the highest

marginal utility on the region of partial insurance, so that

 ∈ (1 2)⇒ (∗ 
∗
) =

µ
0





¶
¥ (47)

Lemma 4

Suppose Owner sells  ≥ 3 securities. Rank these securities in descending order in terms of the

ratio of their payoff if value is low relative to their payoff if value is high. We established UI trading

will be concentrated in security 1, and security 1 will be the only source of informed trading gains.

Aggregate demand of UI and S will then be zero in securities 2 to  Therefore, one may roll up

these securities into a single security having no effect on the equilibrium  or expected revenues.¥

Lemma 6

We first establish concavity of (· ) Differentiation yields:

(· ) = 1−  (2) + −2[ (2)−  (1)]− (1− −1)
∙
(1)

1


+ (2)

2


(− 1)

¸
(· ) = −2−2(1)1


− 2−3[ (2)−  (1)]

−(1− −1)

"
 0(1)

µ
1



¶2
+  0(2)

µ
2



¶2#

−(1− −1)
∙
2(1 + −1)(2)

2


− (1)

¯̄̄̄
21

2

¯̄̄̄¸


Since  is convex, a sufficient condition for strict concavity is¯̄̄̄
21

2

¯̄̄̄
≤ 2




which always holds.
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We next prove existence of a unique interior solution when  is unconstrained, denoted ∗(∞)

For arbitrary   12

lim
↑∞

( ) = 1−  [1 + (1− )(2 − 1)( − )( + )]

For b arbitrarily large there exists  arbitrarily small such that
(b ) = lim

↑∞
( )± 

Now choose e such that (e ) =(b ) We know e  b since
e ≈ 1 + 1−  [1 + (1− )(2 − 1)( − )( + )]

1−  [1()] − (−1) [2()]  2

From the strict concavity of(· ) and the intermediate value theorem there exists unique ∗(∞) ∈

(e b) such that [
∗(∞) ] = 0 with (· ) increasing (decreasing) for  less (greater) than

∗(∞).¥

Lemma 8

The following program characterizes the preferred pooling contract for the high type.

max


( ) ≡  − + [ + (− )(∗())]



 :  ≥ 

  :  ∈ [0] and  ∈ [0 ]

We pin down the optimal policy via perturbation and dominance arguments. First, we claim

∗ =  ⇒ ∗ = 

and thus

∗  ⇒ ∗  

To demonstrate this, note

∗ =  ⇒ ∀ ∈ (0 ) ∗  ⇒ 1( 
∗) = (1− )  0
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Now let ∗( ) denote the multiplier on the low-information sensitivity constraint ( ≤ )

in the residual structuring problem for a given marketed bundle ( ). Consider the two possible

values for this multiplier . We claim first:

∗(∗ ∗) = 0⇒ ∗ = 

To demonstrate this, suppose to the contrary that (0 0) are optimal with 
∗(0 0) = 0 but 0  

Then consider increasing  by  arbitrarily small, noting that such an increase meets all constraints

including monotonicity since ∗(0 0) = 0 implies 0  0 The gain is (1−)  0 contradicting

the initial conjecture.

Next we claim

∗(∗ ∗)  0⇒ ∗ = 

To demonstrate this claim, suppose to the contrary that (0 0) are optimal with 
∗(0 0)  0 but

0   Then let 0 ≡ 00 and consider all pairs ( 0) By construction, all such pairs keep 

fixed at [∗(00)] ≡ 0 Then consider




 [ 0] = (1− 0) + 0[0 − 1] ∀  ∈ (0 )

Note that the value of this derivative is constant by construction. We next claim the derivative must

be weakly positive. For if it is not, the optimal policy is to decrease both  and  to zero leaving

the owner to collect  =  which is strictly dominated by  =  =  Finally, since the derivative

is weakly positive ∗ = ¥

Proposition 6

We prove this proposition with three lemmas.

Lemma: LIIO satisfies the Intuitive Criterion.

Proof. LIIO imputes any deviating menu registration to the low type. We verify these beliefs

satisfy the Intuitive Criterion (IC). Note first no separating menu is preferred by the high type,

so registration of any other separating menu can be imputed to the low type. Within the set of

pooling menus, consider an arbitrary pair of marketed payoffs ( ) such that the high type benefits
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from deviating provided beliefs would be focused on the high type. It must be that    But

with beliefs focused on the high type, the low type would also gain by making this same deviating

proposal, capturing  −  +    Thus, IC admits beliefs imputing any such deviation to the

low type.

Lemma: LPOOL does not satisfy the Intuitive Criterion.

Proof. Consider LPOOL and a deviating offer of marketed payoffs ( ) with  such that:

 − +   [ + (1− )]  

m

 ∈
µ
 − ( − )(1− )

 − 1   + (1− )

¶


By construction, the high (low) type strictly gains (loses) from deviating if beliefs are focused on

the high type. Thus, IC demands beliefs imputing this deviation to the high type, and so the high

type would in fact deviate from LIIO.

Lemma: HPOOL satisfies the Intuitive Criterion iff (1− )(1− ) ≥ ( − 1).

Proof. We begin first with necessity. Suppose instead (1 − )(1− )  ( − 1). Now consider

HPOOL and a deviating offer of marketed payoffs ( ) with  such that:

 − +   [ + (1− )]  [ + (1− )]  

m

 ∈
µ
 − ( − )(1− )

 − 1   + (1− )

¶


By construction, the low type is always worse off making this deviation while the high type is better

off provided beliefs were to be focused on the high type. Thus, IC demands imputing this contract

to the high type, causing him to deviate.

Consider next sufficiency of the stated ≥ condition. To show IC is satisfied we need only establish

that if the high type were to make a strict gain from some deviation, so too would the low type

(provided beliefs were focused on the high type). Consider then that the high type gains by deviating
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to marketed cash flows ( ) iff    − ( − )(1 − )( − 1) But if the stated ≥ condition

holds, the low type gains from any such deviation.¥
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Table 1: Aggregate Demand Outcomes

Type Signal
Fraction UI

Low Endow

Speculator

Demand

UI

Demand

Aggregate

Demand

Probability

   ( − )  (2 − )

2

   ( − )  

2

   0  
(1−)
2

   0  
(1−)
2

   0  
(1−)
2

   0  
(1−)
2

   ( − )  (2 − )
(1−)(1−)

2

   ( − )  
(1−)(1−)

2
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Figure 1: Aggregate Uninformed Demand
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Figure 2: High Type Preferred Informational Sensitivity
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Figure 3: Public and Private Preferences over Equilibria
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