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Abstract

We propose a new specification test for a parametric structural model defined
by conditional moments. Our procedure is robust to weak identification and het-
eroskedasticity of unknown form, and detects nonparametric deviations from the null
of correct specification. The test statistic builds on the ICM statistics of Bierens
(1982) and Antoine and Lavergne (2023), but directly accounts for heteroskedasticity
of unknown form. Our procedure is omnibus and uniformly controls size irrespective
of identification strength. It is also powerful irrespective of the precise form of the
link between instruments and endogenous variables. In addition, our test statistic
is compatible with identification-robust subvector inference without maintaining any
additional (identification) assumption on the remaining parameters.
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competitive with existing procedures in simulations and applications.
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1 Introduction

We consider cross-section data observations and the linear model popular from micro-

econometrics

yi = Y ′2iβ +X ′1iγ + ui E (ui|X1i, X2i) = 0 i = 1, . . . n , (1)

where Y2 are endogenous variables, X1 are exogenous control variables, and X2 are exoge-

nous instrumental variables. Over the last 30 years, it has become clear that standard

asymptotic approximations may reflect poorly what is observed even for large samples

when there is weak correlation between instrumental variables and endogenous explana-

tory variables. Alternative asymptotic frameworks have then been developed to account

for potentially weak identification and tests have been proposed that deliver reliable in-

ference about parameters of interest, see e.g. Staiger and Stock (1997), Stock and Wright

(2000), Moreira (2003), Kleibergen (2002, 2005), Andrews and Cheng (2012), Andrews and

Guggenberger (2019), Andrews (2016), and Andrews and Mikusheva (2016a,b). Surveys

on weak identification issues include Stock et al. (2002), Dufour (2003), Hahn and Haus-

man (2003), and Andrews and Stock (2007). Existing inference procedures are robust to

identification strength and uniformly control size, but rely on a parametric first-stage, and

often on a linear projection of endogenous variables on instruments. From an empirical

perspective, Dieterle and Snell (2016) have documented significant nonlinearities in first-

stage regression in several applied microeconomics papers. Since practitioners typically

have little prior information on the form of the relation between endogenous variables and

instruments, one may consider estimating the reduced form nonparametrically, e.g. using

an increasing number of approximating series. However, nonparametrically estimated in-

struments cannot be relied upon under weak identification, see Jun and Pinkse (2012) and

Mikusheva and Sun (2020). Indeed, if identification is not strong enough, the statistical

variability of a nonparametric estimator will dominate the signal we aim to estimate.

In a recent work, building on the Integrated Conditional Moment (ICM) principle orig-

inally proposed by Bierens (1982), Antoine and Lavergne (2023) develop two inference

procedures that are easy to implement, robust to any identification pattern and unknown

heteroskedasticiy, and that do not rely on a linear projection in the first-stage equation.

In particular, they study an ICM test which tests at the same time for the value of the

parameter and the specification of the model. Our present work elaborates on theirs. We

propose a heteroskedastic version of their ICM statistic, labelled HICM. A key feature of

our new statistic is that, under the null hypothesis H0 : β = β0, its asymptotic distribution

is independent of β0. Since building a confidence interval for β involves inverting a test
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statistic for H0 a large number of times, using critical values that are independent of pa-

rameter values significantly speeds up the process. An additional advantage of this feature

is that it allows to devise a pure specification test, which is valid - and powerful - indepen-

dently of identification weakness and of the particular functional form of the reduced form

that links instruments and endogenous variables. We show that our specification test is

omnibus and that it uniformly controls size irrespective of identification strength. We also

study its power properties along sequences of local alternatives.

Furthermore, our procedure can also be easily adapted to handle subvector inference.

That is, delivering identification-robust inference on some of the parameters of interest,

without maintaining any additional assumption on the parameters that are not under test:

specifically, our procedure remains valid regardless of the underlying identification of the

parameters that are not under test.

We illustrate the finite sample properties of our procedures in a series of simulations.

When the model is correctly specified, we find that the level of our HICM-based inference

procedure is well controlled and that it has significant power advantages compared to ex-

isting procedures such as that of Stock and Wright (2000) when the reduced form equation

is nonlinear. It also displays competitive power for a linear reduced form. Similarly, when

testing whether the model is correctly specified, our HICM-based specification test demon-

strates excellent size and power properties. We also consider two empirical applications:

(i) a study on the effects of population decline in Mexico on land concentration in the

sixteenth century, using the data and framework of Sellars and Alix-Garcia (2018) and (ii)

a study on the determinants of risk and time preferences, using the data and framework of

Tanaka et al. (2010). In both cases, our procedures are competitive and provide empirically

valuable inference.

Our paper is organized as follows. In section 2, we introduce our framework and our new

HICM test statistic. We discuss how it can be used for powerful and identification-robust

inference that is compatible with subvector inference, as well as for specification testing.

The asymptotic properties of our inference procedure and of our specification test based on

HICM are studied in section 3. Their finite sample properties are investigated in a series

of Monte-Carlo experiments in section 4 and in two empirical applications in section 5.

2 Framework

The influence of exogenous control variables X1 can be projected out through orthogonal

projection in (1), which does not influence our reasoning, but simplifies exposition. Hence,

3



in what follows, we consider a structural equation of the form

yi = Y ′2iβ + ui E (ui|Zi) = 0 i = 1, . . . n . (2)

This is augmented by a first-stage reduced form equation for Y2

Y2i = Π(Zi) + V2i E (V2i|Zi) = 0 . (3)

Hence,

yi − Y ′2iβ0 = Π′(Zi) (β − β0) + εi, where εi = ui + V ′2i (β − β0) and E (εi|Zi) = 0 .

The variables Z include the instruments X2 but also the exogenous X1 to account for

potential nonlinearities in X1 in the function Π(·).

2.1 ICM statistic

The ICM statistic introduced by Antoine and Lavergne (2023) is a test statistic for

H̃0 : E (y − Y ′2β0|Z) = 0 a.s. (4)

which considers at the same time H0 : β = β0 and the correct specification of the model, in

the same way the Anderson and Rubin (1950) (AR hereafter) test does. A result of Bierens

(1982) states that H̃0 holds if and only if

E [(y − Y ′2β0) exp(is′Z)] = 0 ∀s ∈ Rk . (5)

To test this hypothesis, Bierens’ Integrated Conditional Moment (ICM) statistic is∫
Rk
|n−1/2

n∑
j=1

(
yj − Y ′2jβ0

)
exp(is′Zj)|2 dµ(s) , (6)

where µ is some symmetric measure with support Rk. Let us define

w(z) =

∫
Rk

exp(is′z) dµ(s) =

∫
Rk

cos(s′z) dµ(s) ,

due to the symmetry of µ. We can then rewrite the statistic (6) as∫
Rk
n−1

n∑
j=1

n∑
m=1

(Y ′j b0)(Y
′
mb0) exp(is′(Zj − Zm)) dµ(s)

= n−1
n∑
j=1

n∑
m=1

(Y ′j b0)(Y
′
mb0)

∫
Rk

exp(is′(Zj − Zm)) dµ(s) = b′0Y
′WY b0 , (7)

4



where W is a matrix with generic element n−1w (Zj − Zm). The condition for µ to have

support Rk translates into the restriction that w(·) should have a strictly positive Fourier

transform almost everywhere. Examples include products of triangular, normal, logistic, see

Johnson et al. (1995, Section 23.3), Student, including Cauchy, see Dreier and Kotz (2002),

or Laplace densities. To achieve scale invariance, we recommend, as in Bierens (1982), to

scale the exogenous instruments by a measure of dispersion, such as their empirical standard

deviation. The role of the function w(·) resembles the one of the kernel in nonparametric

estimation, but, in contrast, it is a fixed user-chosen function that does not vary with the

sample size. To make this explicit, we will impose that the squared integral of w(·) equals

one.1

If Z has bounded support, results from Bierens (1982) yield that H̃0 holds if and only

if E [(y − Y ′2β0) exp(s′Z)] = 0 for all s in a (arbitrary) neighborhood of 0 in Rq. Hence µ

in (6) can be taken as any symmetric probability measure that contains 0 in the interior of

its support. For instance, we can consider the product of uniform distributions on [−π, π],

so that w(·) is the product of sinc functions. As noted by Bierens (1982), there is no loss of

generality to assume a bounded support, as his above-mentioned equivalence result equally

applies to a one-to-one transformation of Z, which can be chosen with bounded image.

Moreover, if it is known that

E (y − Y ′2β0|Z) = E (y − Y ′2β0|Ψ(Z)) ,

for some known dimension-reducing function Ψ(·), then W could be defined using this

transformation instead.

The ICM principle replaces conditional moment restrictions by a continuum of un-

conditional moments such as (5). Other functions have been used beyond the complex

exponential, see Bierens (1990) and Bierens and Ploberger (1997). Stinchcombe and White

(1998) give a characterization of a large class of functions that could generate an equivalent

set of unconditional moments. As detailed by Lavergne and Patilea (2013), this yields a

full collection of potential estimators under strong (or semi-strong) identification, such as

the ones developed by Dominguez and Lobato (2004), Antoine and Lavergne (2014), and

Escanciano (2018) among others. This would also yield a collection of test statistics that

could be used under weak identification, see Chen et al. (2021) for a recent instance. Here,

we focus on a particular application of the ICM which is suitable for theoretical investiga-

tion and practical implementation, and we leave for future work the investigation of the

relative merits of these different ICM-type tests.

1A more involved restriction would be to impose a similar condition on the Frobenius norm of W .
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Let ω̂ be a (semiparametric) estimator of ω = E (Var(Y |Z)). Antoine and Lavergne

(2023) ICM test statistic is defined as

ICM(β0) =
b′0Y

′WY b0
b′0ω̂b0

with b0 = (1,−β′0)′ and Y =


y1 Y ′21
...

...

yn Y ′2n

 . (8)

It corresponds to the ICM statistic (7) with the value of the parameter set at β0 which is

standardized by an estimator of the variance of Y ′i b0. It resembles the AR statistic, with

W replacing PZ , the orthogonal projection on Z. The statistic is also related to Antoine

and Lavergne (2014) Weighted Minimum Distance objective function, though they chose a

different normalization and only consider semi-strong identification. As apparent from its

construction, ICM is designed to test the correct specification of the model together with

the parameter value, as does the AR test under a linear reduced form. Since ICM equals

(6) up to the positive term b′0ω̂b0, it is non-negative, and the test rejects the null hypothesis

for large positive values of the statistic.

2.2 Heteroskedasticity-robust ICM statistic

We now construct a version of ICM which is robust to heteroskedastic, so-called HICM.

Accounting for unknown heteroskedasticity requires estimating the conditional variance

Ω(Z) of Y given Z. One should note that weak identification does not preclude consistent

estimation of these quantities. The conditional variance can be estimated parametrically

if one is ready to make an assumption on its functional form. Otherwise, we can resort to

nonparametric conditional variance estimation. Several consistent ones have been devel-

oped for a univariate Y , and generalize easily. To make things concrete, we focus on kernel

smoothing, which is used in our simulations and application. Let

Y (z) = (nbn)−1
n∑
i=1

YiK ((Zi − z)/bn)

based on the n iid observations (Yi, Zi), a kernel K(·), and a bandwidth bn. With e =

(1, . . . 1)′, let f̂(z) = e(z) and Ŷ (z) = Y (z)/f̂(z). The conditional variance estimator of Y

is defined as

Ω̂(z) = (nbn)−1

∑n
i=1

(
Yi − Ŷ (Zi)

)(
Yi − Ŷ (Zi)

)′
K ((Zi − z)/bn)

f̂(z)
. (9)

This estimator, studied by Yin et al. (2010), is a generalization of the kernel conditional

variance, and is positive definite whenever K(·) is positive. Note that we could equivalently
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consider an estimator of the uncentered moment E (Y ′Y ) and then avoid preliminary esti-

mation of E (Y |Z).

Now it is clear that our null hypothesis of interest (4) also writes

H̃0 : E
[
(b′0Ω(Z)b0)

−1/2(y − Y ′2β0)|Z
]

= 0 a.s. (10)

Following our previous reasoning, we define

HICM(β0) = n−1
n∑
j=1

n∑
m=1

(b′0Ω̂(Zj)b0)
−1/2(Y ′j b0)(b

′
0Ω̂(Zm)b0)

−1/2(Y ′mb0)w(Zj − Zm)

= b′0Y
′
[
(e⊗ b0)′Ω̂(e⊗ b0)

]−1/2
W
[
(e⊗ b0)′Ω̂(e⊗ b0)

]−1/2
Y b0 , (11)

where Ω̂ = diag
(

Ω̂(Zi), i = 1, . . . n
)

with Ω̂(.) as in (9) and e the n-vector of ones.

Our new HICM statistic can be used to construct a confidence region for β, in the

same way an ICM-based confidence region is built, see Antoine and Lavergne (2023). If the

model is correctly specified with parameter β0, then, as we will show, HICM(β0) asymp-

totically follows the same distribution as G′WG, where G ∼ N(0, I). This distribution is

independent of the particular value of β0. We can then simulate the distribution of our

statistic under H0 and recover a critical value as the (1 − α)-quantile of the distribution

of G′WG, denoted as c1−α(Z). The confidence set obtained by inverting the HICM test is

{β0 : HICM(β0) < c1−α(Z)}. Since building such a confidence set for β involves inverting

the HICM test a large number of times - testing many candidate values β0 - the use of

critical values that are independent of β0 is computationally advantageous.

Next, we explain how to adapt our procedure to deliver subvector inference, before

introducing our pure specification test in section 2.4.

2.3 Subvector inference

In this subsection, we return to the complete model (1) to introduce an HICM-based

inference procedure compatible with subvector inference,

yi = Y ′2iβ0 +X ′1iγ0 + ui E (ui|X1i, X2i) = 0 i = 1, . . . n . (12)

We consider two cases of interest for subvector inference:

(i) inference on β0, the entire vector of slope parameters associated with endogenous

variables;

(ii) inference on some components of β0 only, say β0,1, with β0 = [β′0,1, β
′
0,2]
′.
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2.3.1 Inference on β0

We first consider the case where we are interested in delivering identification-robust infer-

ence on β0 in model (12), and not on (β0, γ0). Since the exogeneity of X1 is maintained

throughout, we can obviously partial it out from the model and follow the HICM-based

inference strategy introduced in section 2.2. We propose here an alternative strategy which

relies on the strong identification of γ0 and on the fact that it can be easily and reliably

estimated.

Let us introduce the following notations: Z collects all the exogenous variables, Z =

(X ′1, X
′
2)
′, while b̃0 ≡ (b′0, γ

′
0)
′ = (1,−β′0,−γ′0)′, and

Ỹ =


y1 Y ′21 X ′11
...

...

yn Y ′2n X ′1n

 ,

allow us to compute Ỹ b̃0, the vector of generic components yi − Y ′2iβ0 − X ′1iγ0 = ui for a

given (β0, γ0). The associated HICM statistic thus writes

HICM(β0, γ0) = b̃′0Ỹ
′Ω̃
−1/2
0 W Ω̃

−1/2
0 Ỹ b̃0 = b̃′0Ỹ

′W0Ỹ b̃0 , (13)

where Ω̃0 = (e⊗ b0)′Ω̂(e⊗ b0), and W0 = Ω̃
−1/2
0 W Ω̃

−1/2
0 . Note that γ0 has no bearing on Ω̂.

Now, for a fixed β0, there is no weak identification, and one can estimate γ0 by mini-

mizing the above statistic (13) (with respect to γ), which gives

γ̂ = (X ′W0X)
−1
X ′W0Y b0 , with X =


X ′11

...

X ′1n

 .

It is then easy to deduce that the associated minimum value, minγ HICM(β0, γ), is

HICM(β0, γ̂) = b′0Y
′Ω̃
−1/2
0

[
W −W Ω̃

−1/2
0 X

(
X ′Ω̃

−1/2
0 W Ω̃

−1/2
0 X

)−1
X ′Ω̃

−1/2
0 W

]
Ω̃−1/2Y b0

= b̃′0Ỹ
′Ω̃
−1/2
0

[
W −W Ω̃

−1/2
0 X

(
X ′Ω̃

−1/2
0 W Ω̃

−1/2
0 X

)−1
X ′Ω̃

−1/2
0 W

]
Ω̃−1/2Ỹ b̃0

= b̃′0Ỹ
′Ω̃
−1/2
0 W̃0Ω̃

−1/2Ỹ b̃0 .

If the model is correctly specified with parameter (β0, γ0), then minγ HICM(β0, γ) asymp-

totically follows the same distribution as G′W̃0G, where G ∼ N(0, I). We can then simulate

the distribution of our statistic under H0 : β = β0 and recover a critical value as the (1−α)-

quantile of the distribution of G′W̃0G, denoted as c̃0,1−α(Z). The confidence region obtained

by inverting the corresponding HICM test is then {β0 : HICM(β0, γ̂) < c̃0,1−α(Z)}.

8



In our simulation study (see section 4), we find that HICM(β0, γ̂) is less undersized

and delivers more powerful inference than HICM(β0) introduced in subsection 2.2. The

main advantage of HICM(β0) is computational, in the sense that its critical values do not

depend on β0: a significant advantage when β0 is multidimensional and confidence regions

are obtained by inverting the associated test over a multidimensional grid of candidates.

Accordingly, in practice, we recommend using HICM(β0) when β0 is multidimensional and

computational efficiencies are at stake; otherwise, we recommend using HICM(β0, γ̂).

2.3.2 Inference on β0,1

We now consider the case where we are interested in delivering identification-robust in-

ference on some components of β0 only, say β0,1. We rewrite and partition our model

accordingly as follows:

yi = Y ′2i,1β0,1 + Y ′2i,2β0,2 +X ′1iγ0 + ui E (ui|X1i, X2i) = 0 i = 1, . . . n . (14)

In this model, we cannot reliably estimate (β0,2, γ0) for two main reasons: first, β0,2

may only be weakly identified; and second, without knowing / fixing β0,2, the approach

highlighted in the previous subsection is infeasible when it comes to the estimation of γ0.

We resort instead to the following hybrid approach which combines: (i) partialing out X1

from (14); (ii) minimizing HICM(β0,1, β0,2) with respect to β0,2 for given β0,1; and (iii)

inverting the associated test using a conservative upper-bound.

With obvious notations, partialing out X1 from model (14) yields:

y⊥i = Y ⊥
′

2i,1β0,1 + Y ⊥
′

2i,2β0,2 + ui E (ui|X1i, X2i) = 0 i = 1, . . . n . (15)

Following our derivations from section 2.2 and using similar notations, the associated HICM

statistic writes

HICM(β0,1, β0,2) = b′0Y
⊥′
[
(e⊗ b0)′Ω̂(e⊗ b0)

]−1/2
W
[
(e⊗ b0)′Ω̂(e⊗ b0)

]−1/2
Y ⊥

′
b0

with b0 = (1,−β′0,1,−β′0,2). If the model is correctly specified with parameter β0, then,

as previously explained, HICM(β0,1, β0,2) asymptotically follows the same distribution as

G′WG, where G ∼ N(0, I). This distribution is independent of the particular value of β0.

As a result, even though HICM(β0,1, β0,2) is infeasible under H0 : β1 = β0,1 (since β0,2 is now

unknown under the null of interest), we can still design an identification-robust inference

procedure for β1 without maintaining any additional restrictions on the identification of

β2. Our inference is now based on

HICM∗(β0,1) ≡ min
β2

HICM(β0,1, β2) ≤ HICM(β0,1, β0,2) ,
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and it relies on a (conservative) critical value obtained as the (1 − α)-quantile of the

distribution of G′WG, still denoted as c1−α(Z). The confidence set obtained by inverting

the corresponding test is {β0,1 : HICM∗(β0,1) < c1−α(Z)}.

2.4 Specification testing

For simplicity, we now introduce our pure specification test in the context of the linear

model where the exogenous have been partialed out,

yi = Y ′2iβ + ui E (ui|Zi) = 0 i = 1, . . . n .

To test the correct specification of this model, we define

HICM∗ = min
β

HICM(β) .

Under correct specification, there is a β0 such that (10) holds. Since, by definition,

HICM∗ ≤ HICM(β0) ,

we can rely on the simulated null distribution of HICM(β0), which is independent of β0,

to bound the distribution of HICM∗. Our asymptotic test rejects the correct specification

of the model whenever HICM∗ > c1−α(Z). From the above inequality, we have control of

asymptotic size, and the test is conservative.

If the model is incorrectly specified, then there is no β0 such that

E
[
Ω−1/2(Z) (y − Y ′2β0) exp(is′Z)

]
= 0 ∀s ∈ Rk .

Hence, under strong identification, we expect∫
Rk
|n−1

n∑
j=1

(b′0Ω̂(Zj)b0)
−1/2 (yj − Y ′2jβ0) exp(is′Zj)|2 dµ(s) (16)

to be bounded away from zero uniformly in β0, and our test to be consistent. Under weak

identification, (16) should be bounded away from zero uniformly in β0, and our specification

test should have non trivial power.

3 Asymptotics

3.1 Uniform asymptotic validity

We consider the following assumptions.
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Assumption A. (i) The observations (yi, Y2i, Zi) form a rowwise independent triangular

array that follows (2) and (3), where the marginal distribution of Z remains unchanged.

(ii) For some δ > 0 and M ′ <∞, supz E
(
‖Y ‖2+δ|Z = z

)
≤M ′ uniformly in n.

The assumption of a constant distribution for Z could be weakened, but is made to

formalize that identification strength is related to the conditional distribution of Y given

Z only. For the sake of simplicity, we will not use a double index for observations and will

denote by {Y1, . . . , Yn} the independent copies from Y for a sample size n. We denote by

P the class of distributions on which our observations lie.

Let E be a class of vector-valued functions Π(·) and let N (ε, E , L2(Q)) be the covering

number of E , that is the minimum number of L2(Q) ε-balls needed to cover E , where an

L2(Q) ε-ball around Π(·) is the set of vector functions
{
h ∈ L2(Q) :

∫
‖h− Π‖2 dQ < ε

}
.

Assumption B. The conditional expectation vector E (Y2|Z = ·) belongs to a class of

vector functions E such that ∀Π(·) ∈ E, ‖Π(·)‖ ≤ F (·) with

lim
M→∞

sup
P

E
[
F 2(Z)I (F (Z) > M)

]
= 0

and

logN
(
εE 1/2

(
F 2(Z)

)
, E , L2(P )

)
≤ Kε−V for some V < 2 ,

for all P ∈ P and some K,V independent of P .

Andrews (1994) and van der Vaart (1994), among others, exhibit classes of smooth

functions that fulfill the above conditions.

Let O be a class of matrix-valued functions and let N (ε,O, L2(Q)) be the covering

number of O, defined similarly as above.

Assumption C. (i) supP∈P Pr
[
‖Ω̂− Ω‖ > ε

]
→ 0 ∀ε > 0.

(ii) Ω(·) belongs to a class of matrix functions O such that O < λ ≤ infz λmin(Ω(z)) ≤
supz λmax(Ω(z)) ≤ λ <∞ for all Ω(·) ∈ O and

logN
(
ε,O, L2(P )

)
≤ Kε−V for some V < 2 ,

for all P ∈ P and some K,V independent of P .

(iii) supP∈P Pr
(

Ω̂(·) ∈ O
)
→ 1 as n→∞

(iv) supP∈P
∫
‖Ω̂(Z)− Ω(Z)‖2 dP (Z)

p−→ 0.
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This assumption entails, in particular, that conditional variance estimation does not

affect the asymptotic behavior of our statistics. There is a tension between the generality

of the class of functions O and the class of possible distributions P . When Ω(·) is of a

parametric form, Assumption C will be satisfied for a large class of distributions. When

Ω(·) is considered nonparametric and estimated accordingly, one typically assumes that its

components are smooth functions, and to prove (iii) one has to show that Ω̂(·) also satisfies

the same smoothness conditions with probability converging to 1. Such results have been

derived, see e.g. Andrews (1995) for kernel estimators or Cattaneo and Farrell (2013)

for partitioning estimators. Uniform convergence of nonparametric regression estimators

(and their derivatives) generally requires the domain of the functions to be bounded and

the absolutely continuous components of the distributions of the conditioning variables to

have densities bounded away from zero on their support. When they are not, Andrews

(1995) discusses the use of a vanishing trimming that is compatible with the stochastic

equicontinuity results of Andrews (1994). Condition (iv) is dealt with in the literature on

honest confidence intervals using L2 norm, see e.g. Robins and van der Vaart (2006) and

the references therein.

Assumption D. w(·) is a symmetric, bounded density with
∫
w2(x) dx = 1. Its Fourier

transform is a density, which is positive almost everywhere, or whose support contains a

neighborhood of the origin if Z is bounded.

We denote by c1−α(Z) the critical value of HICM obtained by the simulation-based

method detailed above.2 Let Pβ0 be the subset of distributions in P such that β = β0.

The following result establishes that our tests control size uniformly over a large class of

probability distributions.

Theorem 3.1. Under Assumptions A, B, C, and D,

lim sup
n→∞

sup
β0

sup
P∈Pβ0

Pr [HICM(β0) > c1−α(Z)] ≤ α .

Our theorem readily implies that our test is asymptotically valid whatever identification

strength. Indeed, for any sequence Πn(·), n ≥ 1, of functions in E , that can decrease in

norm to zero arbitrarily fast, our result yields asymptotic validity under this sequence, see

e.g. van der Vaart and Wellner (2000, Chap. 2.8). The result also readily implies the

uniform asymptotic validity of our specification test.

2We neglect the approximation error due to a finite number of simulations by assuming the number of

simulations is infinite so that the critical values are exact.
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Theorem 3.2. Under Assumptions A, B, C, and D,

lim sup
n→∞

sup
β0

sup
P∈Pβ0

Pr [HICM∗ > c1−α(Z)] ≤ α .

3.2 Asymptotic power

We adopt here a large local alternatives setup similar to Bierens and Ploberger (1997).

Assumption E. There exists a fixed matrix C(·) such that EC(Z)C ′(Z) is bounded and

positive definite, and either (i) Π(Z) = c̃n
C(Zi)√

n
or (ii) Π(Z) = C(Zi).

Condition (i) allows to study the power of our tests against weak and semi-strong

identification, when considering a test of H0 : β = β1 where β1 6= β0, the true parameter

value. Condition (ii) is the strong identification case and we consider local alternatives of

the type H1n : β1n = β0 + c̃n
δ√
n
, where δ 6= 0 is fixed. In both cases, the object of interest

is the asymptotic power of our two tests when c̃n becomes large.

Theorem 3.3. Under Assumptions A, C, and D,

(i) under Assumption E-(i), for any fixed β1 6= β0,

lim inf
c̃n→∞

inf
P∈Pβ0

Pr [HICM(β1) > c1−α(Z)] = 1 .

(ii) under Assumption E-(ii), for β1n = β0 + c̃n
δ√
n

and a fixed δ 6= 0,

lim inf
c̃n→∞

inf
P∈Pβ0

Pr [HICM(β1n) > c1−α(Z)] = 1 .

Result (i) shows that, under weak identification, power is non trivial for a large enough

c̃n. Result (ii) implies that, under strong identification, power is non trivial under a se-

quence of Pitman local alternatives for c̃n large enough.

3.3 Asymptotic power of specification test

Consider the sequence of local alternatives

H1,n : min
β

∫ ∣∣E [(b′0Ω(Z)b0)
−1/2(y − Y ′2β0) exp(is′Z)

]∣∣2 dµ(s) = d̃n/
√
n ,

where d̃n, n = 1, . . . is a real sequence uniformly bounded away from zero.

Theorem 3.4. Under Assumptions A, C, and D,

lim inf
d̃n→∞

inf
P∈P∩H1,n

Pr [HICM∗ > c1−α(Z)] = 1 .

13



4 Small Sample Behavior

We generated data following the model

yi = α0 + Y2iβ0 + δZi + σ(Zi)ui , (17)

Y2i = γ0 +
c√
n
f(Zi) + σ(Zi)v2i .

where c is a constant that controls the strength of the identification and Y2i is univariate.

The joint distribution of (ui, v2i) is a bivariate normal with mean 0, unit unconditional

variances, and unconditional correlation ρ. We set α0 = β0 = γ0 = 0 and ρ = 0.8. We con-

sider three different specifications for the function f(·): (i) a polynomial function of degree

3 proportional to z−2z3/5, (ii) a linear function, and (iii) a function compatible with first-

stage group heterogeneity, see Abadie et al. (2024), proportional to (2z2 − 1) (z1 − 2z31/5).

Here Z (or Z1) is deterministic with values evenly spread between -2 and 2, and Z2 follows

a Bernoulli with probability 1/2. Also, f(Z) is centered and scaled to have variance one to

ensure that the different cases are comparable. We consider heteroskedasticity depending

on the first component of Z of the form

σ(z) =

√
3(1 + z2)

7
.

Finally, δ controls the degree of misspecification. When δ = 0, the model that excludes Z

from the structural equation is well-specified, while it is misspecified when δ 6= 0.

We focus on the 10% asymptotic level tests for the correct specification of the model that

excludes Z from the structural equation. In all our experiments, w(·) is a triangle density,

and conditional covariances are estimated through kernel smoothing with Gaussian kernel

and rule-of-thumb bandwidth. We consider 5,000 replications and 999 simulated values of

the statistic to compute the tests’ p-values.

4.1 Inference on parameters in a correctly specified model

In this subsection, we keep δ = 0 to ensure that the model is always correctly specified

and we focus on delivering inference on β0. We compare the performance of three infer-

ence procedures: (i) HICM introduced in this paper; (ii) ICM introduced in Antoine and

Lavergne (2023); and (iii) S introduced in Stock and Wright (2000). Our benchmark is

the heteroskedastic version of the polynomial model with a degree of weakness c = 3 and

a sample size n = 101. We consider three versions of S, respectively with 1, 3 or 7 in-

struments in the polynomial and linear models. These instruments are obtained by fitting

piecewise linear functions on intervals defined by the quartiles of Z (or Z1): e.g. the three
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considered instruments are 1(z ≤ 0), z × 1(z ≤ 0), and z. For the group heterogeneity

model, we implement S based on a reduced form with 3 instruments, namely the continuous

instrument Z1, the discrete one Z2, and an interaction term. We then consider increasing

the number of instruments to 7 and 15. We construct these instruments as piecewise linear

and interaction terms on intervals defined by the quartiles of Z1. E.g. the seven considered

instruments are 1(z1 ≤ 0), z1× 1(z1 ≤ 0), z1, z2× 1(z1 ≤ 0), z2, z2× z1× 1(z1 ≤ 0), z2× z1.
In Figures 1 and 2, we present the power curves of these three inference procedures when

testing the null hypothesis that H0 : β = β̄ with β̄ ∈ [−1.5, 1.5] for various specifications;

recall that the true unknown value is β0 = 0. The empirical sizes are reported in Table 5.
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Figure 1: Power curves for HICM (blue circle dash), ICM (brown triangle dash), and S with 1

IV (red + solid), with 3 IV (orange x dot), and with 7 IV (green lozenge dot) for the polynomial

and the linear models with (top left and right, respectively), and for the polynomial model with

a sample size of 401 (bottom).

Throughout all specifications, size is controlled by the three procedures. Notably, HICM
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and ICM tend to be more conservative than S. That being said, when it comes to power,

HICM - and, to some extent, ICM - display the best performance. In particular, in the

benchmark model, S with 1 IV does not have any power to reject the model, even for large

values of β whereas HICM and ICM do. Increasing the sample size does not help improve

the power of S. What helps is an increase of the number of instruments3: e.g. with 3

instruments, the power of S is slightly above that of HICM. However, when the number of

instruments is too large the power of S worsens: e.g. with 7 instruments, the power of S is

slightly below that of HICM.

With a linear model, S with 1 IV is the most powerful procedure - as expected. Inter-

estingly, HICM and ICM have power properties that are not too different and comparable

to S with 3 IV; also, both dominate S with 7 IV.

With a model compatible with group heterogeneity, S with 1 IV does not have any

power. S with 7 IV slightly dominates HICM and ICM, while the power of S with 15 IV

falls below that of HICM and ICM.
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Figure 2: Power curves for HICM (blue circle dash), ICM (brown triangle dash), and S with 3

IV (red + solid), with 7 IV (orange x dot), and with 15 IV (green lozenge dot) for the case with

first-stage group heterogeneity with a sample size of 201.

Overall, HICM (and ICM) perform extremely well. And both have the advantage that

their power properties do not depend on the number of chosen instruments. This is in

sharp contrast with S: as can be seen from our experiments, it may lack power when

too few instruments are used; at the same time, its power properties worsen if too many

3It is important to mention that neither HICM nor ICM depend on the number of instruments - or

moments - which are derived from the conditional mean independence.
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instruments are used. Since it is never clear how to choose the number of instruments in

practice, our HICM inference procedure appears particularly attractive.

4.2 Specification testing

In this subsection, we consider a misspecified model with δ 6= 0 and our goal is to test the

null hypothesis that the model is correctly specified.

We compare our specification test based on the minimum of HICM (hereafter HICM-

min) with two other specification tests: the jackknife T-specification test proposed by Chao

et al. (2014) (hereafter Jack-T) and the J-test of overidentification based on the continu-

ously updated GMM with conservative critical values (hereafter J-CUE). Both procedures

rely on unconditional moments obtained from a given set of instruments.

The Jack-T test is based on: (i) estimating β0 by HFULL, a heteroskedasticity-robust

version of the Fuller estimator proposed by Hausman et al. (2012); and (ii) considering

a jackknife version of the overidentification statistic, based on the objective function of

the JIVE2 estimator proposed by Angrist et al. (1999). The associated test statistic is

asymptotically distributed as a chi-square with degrees of freedom equal to the degree of

overidentification when the number of instruments increases with the sample size, or when

it is fixed under maintained homoskedasticity. This test is valid under the framework of

many weak instruments - but, strictly speaking, maybe not under the traditional framework

of weak identification considered here.

The J-CUE test is based on the objective function of the continuously updated GMM

with critical values obtained from the chi-square distribution with degrees of freedom equal

to the number of instruments4. This test is expected to be conservative, but it remains

valid under arbitrary weak identification.

In Figure 3, we present the power curves of these three competing procedures for our

three underlying DGPs: (i) the polynomial model with a sample size of 101 (top left); (ii)

the linear model with a sample size of 101 (top right); and (iii) the group heterogeneity

model with a sample size of 201 (bottom). We consider three versions of Jack-T and J-

CUE, respectively with 3, 7 or 11 instruments for models (i) and (ii) and with 3, 7, or 15

instruments with model (iii); see section 4.1 for details. The empirical sizes are reported

in Table 6.

Throughout all our designs, our specification test HICM-min always controls size (when

4Regardless of the identification properties of the parameters, the CUE objective function is asymptot-

ically upper-bounded by a random variable distributed as a chi-square with degrees of freedom equal to

the number of instruments.
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Figure 3: Power curves for (i) polynomial Model (n=101) (ii) linear model (n=101) (iii) group

heterogeneity model (n=201).

δ = 0), and it also consistently displays excellent power properties - even in the linear

model. As expected, the properties of both Jack-T and J-CUE are affected by the number

of underlying instruments. While J-CUE always controls size, it is not the case with Jack-T

(see e.g. the polynomial model with 3 instruments). Interestingly, increasing the number of

instruments does not always yield improved power properties, either for Jack-T or J-CUE.

It is worth to note that Jack-T does not have any power in the linear model, and that it is

not consistent in the other cases, regardless of the number of instruments. As previously

mentioned, we suspect that this last point may be related to the preliminary estimation of

the model with HFULL which is not robust to weak identification. In our last experiment,

we consider a polynomial model that is more strongly identified with c = 7 (instead of

c = 3), while everything else remains the same. The associated power curves are presented

side-by-side in Figure 4: (i) on the left hand-side with c = 3; (ii) on the right hand-side
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with c = 7. Jack-T is now consistent, but it remains oversized with 3 instruments.
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Figure 4: Power curves for polynomial model (n=101) with (i) c = 3 (left) and (ii) c = 7 (right).

Overall, our proposed specification test based on HICM-min performs extremely well.

It always controls size and displays competitive power properties regardless of the identifi-

cation strength and the particular functional form that links instruments and endogenous

variables.

5 Empirical illustrations

5.1 Demographic collapse in 16th-century Mexico

We revisit Antoine and Lavergne (2023)’s empirical application which extends some of the

results presented in Sellars and Alix-Garcia (2018). They study the impact of a large pop-

ulation collapse in 16th-century Mexico on land institutions by adopting an instrumental-

variables empirical strategy based on the characteristics of a massive epidemic in the mid-

1570s which is believed to have been caused by a rodent-transmitted pathogen that emerged

after several years of drought were followed by a period of above-average rainfall. Sellars

and Alix-Garcia (2018) use proxies for these climate conditions as their three excluded

instrumental variables: (i) drought, the sum of the 2 lowest consecutive PDSI5 values

between 1570 and 1575 (more negative numbers indicate severe and prolonged drought),

(ii) rainfall, the maximum PDSI between 1576 and 1580 (as a measure of excess rainfall),

5The Palmer Drought Severity Index (PDSI) is a normalized measure of soil moisture that captures

deviations from typical conditions at a given location.
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and (iii) gap, the difference between the minimum PDSI between 1570 and 1575 and the

maximum between 1576 and 1580.

Using the data constructed by Sellars and Alix-Garcia (2018), we estimate the short-

term effects of the population collapse6, that is:

yi = β0 + β1Y2i + γ′X1i + ui , E(ui|X1i, X2i) = 0 , (18)

where yi is the inverse hyperbolic sine of the percent rural population living in hacienda

communities in 1900, Y2i is the population decline in municipality measured as the log ratio

of 1650 and 1570 density, X2i represents the vector of the 3 climate instruments, and X1i is

a vector of control variables of geographic features related to population and agriculture7.

We report confidence regions obtained with three inference procedures that simulatenously

test the null and the validity of the model: (i) HICM introduced in this paper; (ii) ICM

introduced in Antoine and Lavergne (2023); and (iii) S introduced in Stock and Wright

(2000). When using all three climate instruments, the model is rejected, even when adding

regional dummies. When using the 2 most reliable instruments (gap and drought), the

model is once again rejected, unless regional dummies are added to the set of controls. In

Table 1, we report confidence regions obtained with either one or 2 climate instruments

(gap and/or drought) including the full set of full set of 12 control variables from Sellars

and Alix-Garcia (2018) and regional dummies. When using both gap and drought, all three

procedures report a significant and negative effect of the population decline on the percent

rural population living in hacienda - as expected: this means that a decrease in the ratio of

1650 to 1570 density increases the likelihood of having more large estates per area in 1900.

The confidence set obtained with HICM is the narrowest: in addition, it is fully enclosed

in the one obtained with S and that obtained with ICM.

Computationally, the advantage of HICM is clear. Since its critical values do not depend

on the tested value, they only need to be computed once for the entire grid of candidates.

Accordingly - and similar to S - the associated confidence set can be obtained much faster

than that obtained with ICM: under 50 seconds for HICM, and over 52 minutes with ICM

when considering a grid of 2,500 candidate points! It is also important to mention that,

unlike S, the critical values of HICM are not tied to the number of instruments, but rather

to the number of unknown parameters.

6As explained in details in Sellars and Alix-Garcia (2018), the sharp decline in population lowered the

costs and increased the benefits of acquiring land from indigenous villages in many areas.
7This specification corresponds to Column 6 in Table 2 in Sellars and Alix-Garcia (2018). It includes

their full set of 12 control variables, the standard deviation of PDSI, a measure of maize productivity,

various measures of elevation and slope, as well as the log of tributary density in 1570 and governorship-

level fixed effects. See also Column 1 in Table 2 in Antoine and Lavergne (2023)
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2 climate IV Computational time 1 climate IV Computational time

(drought, gap) (in sec.) (gap) (in sec.)

HICM [-1.256, -0.834] 46.66 [-3.837, 0.444] 95.39

ICM [-2.209, -0.506] 3,140.22 [-4.395, 0.626] 6,527.91

S [-1.369, -0.682] 46.66 [-2.193, -0.636] 95.39

F-stat 145.25 55.8

Adj. R2 0.22 0.05

Table 1: 95% Confidence Intervals for the population collapse, using either 1 or 2 climate

instruments over the full sample of size equal to 1030. All specifications include the full

set of 12 control variables as well as regional dummies. Confidence regions are obtained

using a grid of 2,500 evenly spread points over [−2.5, 0] (with 2 IV) and 5,100 evenly spread

points over [−4.4, 0.7] (with 1 IV).

Sellars and Alix-Garcia (2018) - and Antoine and Lavergne (2014) - assume throughout

a linear structural equation; see equation (18) above. To relax the assumption that the

effect of the population collapse, Y2i, on land tenure is linear8, we consider instead the

following nonlinear specifications:

S1 : yi = b0 + b1Y2i + b2Y2i × IY2i<−2 + γ′bX1i + ub,i , E(ub,i|X1i, X2i) = 0 (19)

S2 : yi = c0 + c1Y2i + c2Y
3
2i + γ′cX1i + uc,i , E(uc,i|X1i, X2i) = 0 (20)

In Figure 5, we report the confidence regions for the (nonlinear) effect of the population

collapse obtained with HICM and S for both specifications using 2 climate instruments over

the full sample. We include the full set of 12 control variables as well as regional dummies

as previously discussed. Bivariate confidence regions are obtained (jointly) using a 2-

dimensional grid of 401 evenly spread points over [−1.75,−0.5]×[−0.5, 0.5] (for specification

S1) and over [−2, 2]× [−0.5, 0.5] (for specification S2). For both specifications, the HICM

confidence regions are small and bounded, while those obtained with S are unbounded.

In Table 2, we report the 95% and 90% confidence intervals obtained with HICM by

projecting the bivariate confidence regions. They reveal some nonlinearities in the effect

of the population collapse on land tenure for both specifications. Specifically, with the

estimation of specification S1 (19), we find that the first parameter b1 is negative (at 95%)

while the second parameter b2 is positive (at 90%) and much smaller in magnitude. Overall,

the effect of the population collapse at the mean remains negative and significant, and very

much in line with previously reported results; see Table 3. Our analysis suggests that more

negative values of the population collapse - that is, more severe population declines - are

8We thank I. Andrews for this suggestion.
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Specification S1 (Indicator) S2 (Cubic)

Level 95% 90% 95% 90%

b1 [-1.68, -0.73] [-1.26, -1.09] c1 [-1.78, 1.61] [-1.23, 0.80]

b2 [-0.83, 1.62] [ 0.01, 0.41] c2 [-0.28, 0.05] [-0.20, -0.00]

Table 2: 95% and 90% Confidence Intervals for the (nonlinear) effect of the population col-

lapse using 2 climate instruments over the full sample of size equal to 1030. All specifications

include the full set of 12 control variables as well as regional dummies. Confidence inter-

vals are computed by projection from the bivariate confidence regions obtained (jointly)

using a 2-dimensional grid of 401 evenly spread points over [−1.75,−0.5]× [−0.5, 0.5] (for

specification S1) and over [−2, 2]× [−0.5, 0.5] (for specification S2).

Specification S0 (Linear) S1 (Indicator) S2 (Cubic)

Mean/median Y2 = −1.4 [-1.256, -0.834] [-1.68, -0.73] [-2.530, 1.744]

1st-decile Y2 = −2.37 [-1.256, -0.834] [-2.51, 0.89] [-4.787, 2.147]

Table 3: 95% confidence Intervals for the marginal effect of a one-unit increase in Y2, the

population decline, using three specifications, S0 (linear), S1 (indicator), and S2 (cubic).

We report the marginal effect computed at the mean/median and at the 1st-decile. We

use 2 climate instruments over the full sample of size equal to 1030 and all specifications

include the full set of 12 control variables as well as regional dummies.

not driving the results as they seem to be associated with a slightly smaller (negative)

effect. With the estimation of specification S2 (20), we find that the first parameter c1 is

not significantly different from 0, while the second parameter c3 is negative (at 90%) and

small in magnitude.

In Table 3, we report the marginal effects of a unit increase in Y2, the population decline,

at the mean/median value of Y2 (equal to -1.4) as well as at the first-decile of Y2 (equal to

-2.37). For both nonlinear specifications, the confidence interval obtained for the marginal

effect at the mean is much narrower than - and fully enclosed within - that obtained at

the fist-decile. Interestingly, the confidence intervals obtained with specification S2 are

the widest: they fully contain those obtained with specification S1, which contain those

obtained with the linear specification.
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Figure 5: Confidence regions for the (nonlinear) effect of the population collapse obtained with

HICM (left column) and S (right column). We estimate specification 1 (top row) and specification

2 (bottom row) using 2 climate instruments over the full sample of size equal to 1030. We include

the full set of 12 control variables as well as regional dummies. Bivariate confidence regions

obtained (jointly) using a 2-dimensional grid of 401 evenly spread points over [−1.75,−0.5] ×
[−0.5, 0.5] (for specification S1) and over [−2, 2]× [−0.5, 0.5] (for specification S2).
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5.2 Determinants of risk and time preferences

We revisit Guggenberger et al. (2019)’s empirical illustration which extends some of the

results presented in Tanaka et al. (2010). Using experimental data collected from Viet-

namese villages, they estimate linear IV regressions to study the determinants of risk and

time preferences. Their dependent variable y is the curvature of the utility function, and

they consider two specifications with the same exogenous covariates X1 (Chinese, Age,

Gender, Education, Distance to market and South), the same excluded exogenous vari-

ables used as instruments X2 (Rainfall and Head-of-household-can’t-work), and either one

or two endogenous variables Y2: the first specification contains Income as the single en-

dogenous variable, while the second one relies instead on a decomposition of income into

two components, the village mean’s income and the relative income within the village.

In Table 4, we report the 95% confidence intervals of the slope of the income variables

for both specifications obtained with four inference procedures: (i) HICM after partialing

out the exogenous controls (as in section 2.2), (ii) subvector-HICM (as in section 2.3), (iii)

S introduced in Stock and Wright (2000), and (iv) conditional Anderson-Rubin introduced

by Guggenberger et al. (2019). For the first specification, all four procedures report a small

and insignificant effect of income - though all intervals contain 0, they are asymmetric

and suggest a positive effect of income. Subvector-HICM delivers the narrowest confidence

interval which is fully enclosed in those obtained with S and with HICM(β0). This example

also illustrates the efficiency gains obtained by implementing subvector-HICM rather than

HICM(β0).

Specification #1 Specification #2

HICM(β0) [-0.021, 0.101]

HICM(β0, γ̂) [-0.005, 0.022]

S [-0.005, 0.033]

Conditional AR [-0.002, 0.044]

Table 4: 95% Confidence Intervals for the slope of the endogenous variables measuring

income in both specification, using 2 instruments and 6 included control variables. We

report confidence intervals obtained by: (i) HICM(β0), HICM after partialing out the

controls; (ii) HICM(β0, γ̂), subvector-HICM; (iii) S; and (iv) Conditional AR. Confidence

intervals are obtained using a grid of 2,000 evenly spread points over [-1,1] for all procedures

except Conditional AR.

To be completed
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6 Proofs

6.1 Proof of Theorem 3.1

To simplify exposition, we consider the case where Ω is known and the statistic is based on

S = Y b0 (b′0Ωb0)
−1/2. It is easy to adapt our reasoning to account for a consistent estimator

of Ω using Assumption C-(iv). However, we do not assume that the conditional variance

Ω(·) is known.

6.1.1 Uniform Convergence of Processes

The class of functions
{
s′Z, s ∈ Rk

}
has Vapnik-Červonenkis dimension k+ 2 and thus has

bounded uniform entropy integral (BUEI). Since the functions t → cos(t) and t → sin(t)

are bounded Lipschitz with derivatives bounded by 1, the class
{

cos(s′Z), sin(s′Z), s ∈ Rk
}

is BUEI, see Kosorok (2008, Lemma 9.13).
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By Assumption B, the class E is BUEI. From Kosorok (2008, Theorem 9.15), the

class
{

Π(Z) cos(s′Z),Π(Z) sin(s′Z),Π(·) ∈ E , s ∈ Rk
}

is BUEI, and from van der Vaart

and Wellner (2000, Lemma 2.8.3)(
n−1/2

∑n
i=1 [E (Yi|Zi) cos(s′Zi)− E (Y cos(s′Z))]

n−1/2
∑n

i=1 [E (Yi|Zi) sin(s′Zi)− E (Y sin(s′Z))]

)
 

(
G1(s)

G2(s)

)
,

uniformly in P ∈ P where (G′1(·),G′2(·)) is a vector Gaussian process with mean 0. Formally

weak convergence uniform in P means that

sup
P∈P

dBL(Gn,G)→ 0 where dBL(Gn,G) = sup
f∈BL1

|E f (Gn)− E f (G)|

is the bounded Lipschitz metric, that is BL1 is the set of real functions bounded by 1 and

whose Lipschitz constant is bounded by 1. This implies that

n−1/2
n∑
i=1

[E (Yi|Zi) exp(is′Zi)− E (Y exp(is′Z))] G1(s) + i G2(s) (21)

Since E ‖Y ‖2+δ <∞, and because E is BUEI,

n−1/2
n∑
i=1

(Yi − E (Yi|Zi)) exp(is′Zi) G3(s) + i G4(s) (22)

Since Ω(·) is a variance matrix with uniformly bounded elements, the functions a′Ω(·)b
for ‖a‖, ‖b‖ ≤M , and Ω ∈ O satisfies

|a′Ω1(·)b− a′Ω2(·)b| ≤ ‖a‖‖b‖‖Ω1 − Ω2‖ ≤M2‖Ω1 − Ω2‖ .

From Assumption C and Kosorok (2008, Lemma 9.13), these functions forms a BUEI class.

Consider now the class of functions B = {a′Ω(·)b/b′Ω(·)b, ‖a‖, ‖b‖ ≤M,Ω ∈ O}. Since the

function φ(f, g) = f/g is Lipschitz for f, g uniformly bounded and g uniformly bounded

away from zero, B is a BUEI class. Gathering results, for B ∈ B

Gn(B, s) = n−1/2
n∑
i=1

B(Zi) (Yi − E (Yi|Zi)) exp(is′Zi) G(B, s) , (23)

converges uniformly in P ∈ P to a centered Gaussian vector process. The joint uniform

convergence of the processes in (21)–(23) follows.

Now let us show that replacing Ω(·) by its estimator, or replacing B(·) = a′Ω(·)b/b′Ω(·)b
by B̂(·) = a′Ω̂(·)b/b′Ω̂(·)b, does not change the uniform weak limit of the process. From

Assumption C-(iii) and (iv), it is sufficient to show that

sup
P∈P

Pr

[
sup
m≥n

sup
s
‖Gm(B̂m, s)−Gm(B, s)‖B > ε

]
→ 0 ∀ε > 0 .

This follows as Gn(B, s) is asymptotically equicontinuous uniformly in P , see van der Vaart

and Wellner (2000, Theorem 2.8.2).
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6.1.2 Notations and Preliminary Results

For vector complex-valued functions h1(s) and h2(s), define the scalar product

〈h1, h2〉 =
1

2

(∫ (
h
′
1(s)h2(s) + h′1(s)h2(s)

)
dµ(s)

)
and the norm ‖h1‖ = 〈h1, h1〉1/2. Denote

hβ0,S(s) ≡ n−1/2
n∑
i=1

Si exp(is′Zi) ,

and note that ‖hβ0,S‖2 = S ′WS, so that we can write ICM(β0) = ICM(hβ0,S) = ‖hβ0,S‖2.
Let

hβ0,T (s) ≡ n−1/2
n∑
i=1

Ti exp(is′Zi) .

Lemma 6.1. Over the set {h : ‖h‖ ≤ C}, ICM(h) is bounded and Lipschitz continuous in

h.

Proof. (a) Boundedness is trivial. For Lipschitz continuity,

|ICM(h1)− ICM(h2)| =
∣∣‖h1‖2 − ‖h2‖2∣∣ = |〈h1 − h2, h1 + h2〉|

≤ ‖h1 − h2‖‖h1 + h2‖ ≤ ‖h1 − h2‖(‖h1‖+ ‖h2‖) ≤ 2C ‖h1 − h2‖ .

Lemma 6.2. Under Assumption A and D,

lim
M→∞

sup
β0

sup
P∈Pβ0

Pr [ICM(β0) > M ]→ 0 .

Proof. By definition

ICM(β0) = S ′WS = n−1
n∑
i=1

S2
i w(0) + n−1

n∑
i=1

∑
j 6=i

SiSjw(Zi − Zj) .

Hence, for some constants C,C ′, C ′′ > 0 independent of P ∈ Pβ0 and of β0,

Pr

[
n−1

n∑
i=1

S2
i w(0) > M/2

]
≤ 2w(0)

ES2
1

M
≤ C

M

Pr

[
n−1

n∑
i=1

∑
j 6=i

SiSjw(Zi − Zj) > M/2

]
≤ 4C ′

E 2(S2
1)

M2
≤ C ′′

M
,

using the boundedness of w(·) and Markov’s inequality.
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6.1.3 Main proof

Let Pβ0 = {P ∈ P : β = β0}. From (22),

hβ0,S(s) GS(s) , (24)

uniformly in P ∈ Pβ0 and in β0, where GS(s) is a centered complex Gaussian process. Let

Ω̂i = Ω̂(Zi) and

Ĝi = (b′0Ωb0)
−1/2

(
b′0Ω̂ib0

)1/2
εi ,

where the εi are independent N(0, 1). From our results in Section 6.1.1,

hĜ(s) = n−1/2
n∑
i=1

Ĝi exp(is′Zi) GS(s) ,

uniformly in P ∈ P . We say that hβ0,S uniformly weakly converges to hĜ in P ∈ P , i.e.

sup
β0

sup
P∈Pβ0

dBL(hβ0,S, hĜ)→ 0 ,

see Kasy (2018) for a similar terminology. Let F (x) = I [x < C1] + C2−x
C2−C1

I [C1 ≤ x ≤ C2]

for some 0 < C1 < C2 and consider the continuous truncation of ICM(hS) defined by

ICMF (hS) = ICM(hS)F (‖hS‖). Consider the conditional quantile of ICMF (h)

cF,1−α(h) = inf {c : Pr [ICMF (h) ≤ c] ≥ 1− α} .

Lemma 6.1 ensures that ICMF (h) is Lipschitz, and it follows that cF,1−α(h) is also Lipschitz.

Indeed,

1− α ≤ Pr [ICMF (h1) ≤ cF,1−α(h1)]

≤ Pr [ICMF (h2) ≤ cF,1−α(h1) +K‖h1 − h2‖] ,

so that cF,1−α(h2) ≤ cF,1−α(h1) + K‖h1 − h2‖ for some constant K > 0. Interverting the

role of h1 and h2 we get cF,1−α(h1) ≤ cF,1−α(h2) +K‖h1 − h2‖, so cF,1−α(h) is Lipschitz in

h.

Assume now that the conclusion of Theorem 3.1 does not hold. Then there exists some

δ > 0, an infinitely increasing subsequence of sample sizes nj and a sequence of probability

measures Pnj ∈ Pβ0,nj , with corresponding sequences of β0,nj and Πnj(·), such that

Pr
nj

[
ICM(hβ0,nj ,S) > c1−α(hĜ)

]
> α + 3δ ∀nj .

Choose C1 such that Prnj

[
ICM(hβ0,nj ,S) ≥ C1

]
< δ, which is possible from Lemma 6.2.

Now

Pr [ICM(hβ0,S) > x] ≤ Pr [ICMF (hβ0,S) > x] + Pr [ICM(hβ0,S) ≥ C1]
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for any β0 and any Pβ0 , and cF,1−α(h) ≤ c1−α(h), so that

Pr
nj

[
ICMF (hβ0,nj ,S) > cF,1−α(hĜ)

]
> α + 2δ ∀nj .

As ICMF (h) is bounded and Lipschitz in h, by the uniform convergence of hβ0,S to hĜ,

sup
β0

sup
P∈Pβ0

sup
x

∣∣Pr [ICMF (hβ0,S) > x]− Pr
[
ICMF (hĜ) > x

]∣∣→ 0 .

Therefore for nj large enough

Pr
nj

[
ICMF (hĜ) > cF,1−α(hĜ)

]
≥ α + δ ,

which contradicts the definition of cF,1−α(hĜ).

7 Empirical Results

7.1 Simulation results
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Polynomial model (i) HICM ICM S-1IV S-3IV S-7IV

Level 5%

Sample size of 101, c = 3 5.56 4.22 5.48 5.00 3.26

Sample size of 201, c = 3 3.82 3.36 4.98 4.72 4.14

Sample size of 401, c = 3 3.18 3.00 4.96 4.20 3.82

Level 10%

Sample size of 101, c = 3 9.46 8.18 10.68 10.34 8.34

Sample size of 201, c = 3 7.34 7.18 9.62 9.82 9.44

Sample size of 401, c = 3 6.60 6.30 9.68 8.72 8.48

Linear model (ii) HICM ICM S-1IV S-3IV S-7IV

Level 5%

Sample size of 101, c = 3 5.56 4.22 5.48 5.00 3.26

Sample size of 201, c = 3 3.82 3.36 4.98 4.72 4.14

Sample size of 101, c = 0 5.56 4.22 5.48 5.00 3.26

Sample size of 201, c = 0 3.82 3.36 4.98 4.72 4.14

Level 10%

Sample size of 101, c = 3 9.46 8.18 10.68 10.34 8.34

Sample size of 201, c = 3 7.34 7.18 9.62 9.82 9.44

Sample size of 101, c = 0 9.46 8.18 10.68 10.34 8.34

Sample size of 201, c = 0 7.34 7.18 9.62 9.82 9.44

Group heterogeneity model (iii) HICM ICM S-1IV S-3IV S-7IV

Level 5%

Sample size of 201, c = 3 3.58 4.34 4.68 4.36 2.76

Sample size of 101, c = 0

Level 10%

Sample size of 101, c = 3

Sample size of 201, c = 3 7.42 8.78 9.92 8.96 7.48

Sample size of 101, c = 0

Table 5: Empirical sizes for the three inference procedures, HICM, ICM and S, considered

in section 4.1 for various DGPs and with significance level of 5% or 10%.
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Polynomial model (i) HICM-min Jack-T J-CUE

3-IV 7-IV 11-IV 3-IV 7-IV 11-IV

Level 5%

Sample size of 101, c = 3 2.38 8.38 5.48 4.68 1.22 0.82 0.66

Sample size of 201, c = 3 1.34 8.40 4.84 4.78 1.48 1.44 0.88

Sample size of 101, c = 7 3.16 8.30 5.42 4.84 1.50 1.32 1.16

Level 10%

Sample size of 101, c = 3 4.54 14.80 10.70 9.22 2.94 2.78 2.10

Sample size of 201, c = 3 3.26 15.70 9.74 8.86 3.40 3.84 6.62

Sample size of 101, c = 7 5.34 15.22 11.04 9.76 4.16 3.88 3.64

Linear model (ii) HICM-min Jack-T J-CUE

3-IV 7-IV 11-IV 3-IV 7-IV 11-IV

Level 5%

Sample size of 101, c = 3 1.38 4.04 3.90 4.22 1.14 0.64 0.40

Sample size of 201, c = 3 1.02 4.18 4.64 4.62 1.44 1.26 0.82

Sample size of 101, c = 7 2.00 2.78 3.08 3.84 1.58 1.26 1.08

Level 10%

Sample size of 101, c = 3 2.88 8.04 7.86 8.50 3.26 2.30 1.66

Sample size of 201, c = 3 2.44 7.84 8.28 8.40 3.62 3.76 3.58

Sample size of 101, c = 7 3.64 6.72 6.96 8.02 4.02 3.92 3.22

Group heterogeneity model (iii) HICM-min Jack-T J-CUE

3-IV 7-IV 11-IV 3-IV 7-IV 11-IV

Level 5%

Sample size of 201, c = 3 1.28 1.56 5.30 4.58 0.04 1.24 0.66

Level 10%

Sample size of 201, c = 3 3.40 3.80 10.78 9.02 0.32 3.80 2.48

Table 6: Empirical sizes for the three specification tests, HICM-min, Jack-T and J-CUE,

considered in section 4.2 for various DGPs and with a significance level of 5% or 10%.
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