
1: Probability and Distribution Basics

Bertille Antoine
(adapted from notes by Brian Krauth and Simon Woodcock)

Random Variables

Econometrics is the application of economic models to economic data. Economic data are
measurements of some aspect of the economy. We usually think of them as being the outcome
of some random process, sometimes called the data generating process or DGP. We don’t
observe the DGP. As econometricians, our objective is to learn about the DGP.

If X is an outcome of the DGP, we call it a random variable because its value is
uncertain until the data are observed. I will use capital letters for the name of a random
variable, and lower case letters for the values it takes.

Definition 1 A random variable X is discrete if the set of possible outcomes is finite or
countably infinite. X is continuous if the set of possible outcomes is uncountable.

Probability Distributions

We use probabilities to describe uncertainty about the specific outcome a random variable
will take. Informally, we call the set of possible outcomes of a random variable X and associ-
ated probabilities the distribution ofX.We summarize this information with a probability
distribution function when X is discrete, or a probability density function when X
is continuous. In either case, we abbreviate this function as pdf, and denote it fX (x) .

Definition 2 For a discrete random variable X, fX (x) = Pr (X = x) and satisfies:

0 ≤ fX (x) ≤ 1∑
x

fX (x) = 1.

Definition 3 For a continuous random variable X, fX (x) satisfies:

fX (x) ≥ 0

Pr (a ≤ x ≤ b) =

∫ b

a

fX (x) dx ≥ 0∫
X

fX (x) dx = 1.

1



Figure 1: Pr (a < x ≤ b) = FX (b)− FX (a)

Cumulative Distribution Functions

For any random variable X, the cumulative distribution function (cdf), is

FX (x) = Pr (X ≤ x) .

Definition 4 For a discrete random variable X, FX (x) =
∑

X≤x fX (X) . For a continuous

random variable X, FX (x) =
∫ x
−∞ fX (t) dt. In both cases, FX (x) satisfies:

0 ≤ FX (x) ≤ 1

if x > y, then FX (x) ≥ FX (y)

lim
x→∞

FX (x) = 1

lim
x→−∞

FX (x) = 0

Notice that the definition of the cdf implies Pr (a < x ≤ b) = FX (b)−FX (a) . See Figure
1.

Transformations of Random Variables

Often we know the probability distribution of a random variable X, but our interest centers
on some function of X. In this case, we need to know how to map the probability distribution
of X into the distribution of a function of X. Let’s define X = {x : fX (x) > 0} and Y =
{y : y = g (x) for some x ∈ X} . The set Y is called the image of g. The sets X and Y
describe the possible values that the random variables X and Y can take. We call this the
support of X and Y.
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Theorem 5 Let X have cdf FX (x) and Y = g (X) . Then
a. If g is an increasing function on X then FY (y) = FX (g−1 (y)) for y ∈ Y .
b. If g is a decreasing function on X and X is a continuous random variable, FY (y) =
1− FX (g−1 (y)) for y ∈ Y.

Example 6 Suppose X ∼ fX (x) = 1 for 0 < x < 1 and 0 otherwise (this is called the
uniform(0, 1) distribution). Here X = (0, 1) . Now define Y = g (X) = − lnX. Clearly, g (x)
is decreasing, Y = (0,∞) , and g−1 (y) = e−y. Therefore, for y > 0:

FY (y) = 1− FX
(
g−1 (y)

)
= 1− FX

(
e−y
)

= 1− e−y.

When the cdf of Y is differentiable, we can obtain the pdf of Y by differentiation. The
result is summarized by the following theorem (its proof is a simple application of the chain
rule and Theorem 5).

Theorem 7 If X is a continuous random variable with pdf fX (x) and Y = g (X) is contin-
uous, monotone, and differentiable, then

fY (y) = fX
(
g−1 (y)

) ∣∣∣∣ ∂∂yg−1 (y)

∣∣∣∣ . (1)

Example 8 Let fX (x) be the gamma pdf

fX (x) =
1

(n− 1)!βn
xn−1e−x/β, 0 < x <∞

where β is a positive constant and n is a positive integer. Suppose we want to know the pdf
of g (X) = 1/X. Note that both X and 1/X have support (0,∞) . If we let y = g (x) then
g−1 (y) = 1/y and ∂

∂y
g−1 (y) = −1/y2. Then for y ∈ (0,∞) ,

fY (y) = fX
(
g−1 (y)

) ∣∣∣∣ ∂∂yg−1 (y)

∣∣∣∣
=

1

(n− 1)!βn

(
1

y

)n−1
e−1/(βy)

1

y2

=
1

(n− 1)!βn

(
1

y

)n+1

e−1/(βy)

which is a special case of the inverted gamma pdf.

The preceding is only applicable when g is monotone. If g is not monotone, then things
are a little more complicated. Sometimes we can make some headway without complicated
theorems, as the following example illustrates.

Example 9 Suppose X is a continuous random variable. For y > 0 the cdf of Y = X2 is

FY (y) = Pr (Y ≤ y)

= Pr
(
X2 ≤ y

)
= Pr (−√y ≤ X ≤ √y)

= Pr (−√y < X ≤ √y) continuity of X (2)

= FX (
√
y)− FX (−√y)
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Here’s a theorem we can apply more generally to cases where the transformation g is not
monotone.

Theorem 10 Let X have pdf fX (x) and Y = g (X) . Suppose there exists a partition
A0, A1, ..., Ak of X such that Pr (X ∈ A0) = 0 and fX (x) is continuous on each Ai. Suppose
further there exist functions g1 (x) , ..., gk (x) defined on A1, ..., Ak satisfying:
a. g (x) = gi (x) for x ∈ Ai
b. gi (x) is monotone on Ai
c. the set Y = {y : y = gi (x) for some x ∈ Ai} is the same for each i = 1, ..., k
d. each g−1i (y) has a continuous derivative on Y .
Then:

fY (y) =

{ ∑k
i=1 fX

(
g−1i (y)

) ∣∣∣ ddyg−1i (y)
∣∣∣ for y ∈ Y

0 otherwise.

The key to Theorem 10 is that we can partition the set of possible values of X into a
collection of sets, such that g is monotone on each of the sets. We no longer need g to be
monotone over all possible values of X. The set A0 is typically ignorable – we just use it to
handle technicalities, e.g., the endpoints of intervals.

Example 11 Suppose X has a standard normal distribution, so that

fX (x) =
1√
2π

exp
(
−x2/2

)
for −∞ < x <∞

and let Y = X2. Then g (X) = X2 is monotone on (−∞, 0) , and monotone on (0,∞) , and
Y = (0,∞) . Let A0 = {0} , and

A1 = (−∞, 0) , g1 (x) = x2, g−11 (y) = −√y
A2 = (0,∞) , g2 (x) = x2, g−12 (y) =

√
y.

Then from Theorem 10, we know:

fY (y) =
1√
2π

exp
(
− (−√y)2 /2

) ∣∣∣∣− 1

2
√
y

∣∣∣∣+
1√
2π

exp
(
− (
√
y)2 /2

) ∣∣∣∣ 1

2
√
y

∣∣∣∣
=

1√
2π

1
√
y

exp (−y/2) for 0 < y <∞.

We’ll see this pdf again: it is the pdf of a chi-squared random variable with one degree of
freedom.

Expectations of Random Variables

Definition 12 The mean or expected value of a random variable is

E [X] =

{ ∑
X xfX (x) if X is discrete∫

X
xfX (x) dx if X is continuous

. (3)
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The expected value of a random variable X is a weighted average of the possible values
taken by X, where the weights are their respective probabilities. We usually denote it by
µ. The expectation operator is a linear operator, so that E [a+ bX] = a + bE [X] and
E [g1 (X) + g2 (X)] = E [g1 (X)]+E [g2 (X)] . More generally, including the case of nonlinear
functions, we have the following.

Proposition 13 Let g (X) be a function of X. The expected value of g (X) is

E [g (X)] =

{ ∑
X g (x) fX (x) if X is discrete∫

X
g (x) fX (x) dx if X is continuous

.

Proposition 14 (Jensen’s Inequality) For any random variable X, if g (x) is a convex
function then E [g (X)] ≥ g (E [X]) .

Definition 15 The variance of a random variable X is

V ar [X] =

{ ∑
X (x− µ)2 fX (x) if X is discrete∫

X
(x− µ)2 fX (x) dx if X is continuous

= E
[
(X − µ)2

]
= E

[
X2
]
− µ2.

The variance of a random variable is a measure of dispersion in its distribution. We
usually denote it by σ2, and frequently work with σ (its square root), called the standard
deviation of X.

By Jensen’s inequality, the variance operator is not a linear operator. In fact, V ar [a+ bX] =
b2V ar [X] . More generally, for any function g (X) ,

V ar [g (X)] = E
[
(g (x)− E [g (x)])2

]
=

∫
X

(g (x)− E [g (x)])2 fX (x) dx.

The expected value of a random variable is the first central moment of its distribution.
The variance is the second central moment. The rth central moment of the distribution of
a random variable X is E [(X − µ)r] . We call the third central moment the skewness of
a distribution. It is a measure of the symmetry of a distribution (or lack thereof). For
symmetric distributions, skewness is zero. We call the fourth central moment kurtosis, and
it measures the thickness of the tails of the distribution.

Some Important Probability Distributions

The Normal Distribution

Definition 16 A random variable X has a normal distribution with mean µ and variance
σ2, denoted X ∼ N (µ, σ2) , if and only if (iff)

fX
(
x|µ, σ2

)
=

1

σ
√

2π
e−

1
2(x−µσ )

2

, −∞ < x <∞. (4)
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Figure 2: Some Chi-Squared Densities

The normal distribution plays a very important role in econometric theory, particularly
for inference and asymptotic theory. It has many convenient properties. First, the normal
distribution is completely characterized by two parameters (or by two moments): the mean
and variance. Second, it is preserved under linear transformations. That is, if X ∼ N (µ, σ2)
then a + bX ∼ N (a+ bµ, b2σ2) . Because of this second property, we can always write a
normally distributed random variable as a function of a random variable with a standard
normal distribution, denoted Z ∼ N (0, 1) . The usual notation for the standard normal
pdf is φ (z) ; we usually use Φ (z) for the standard normal cdf. Notice that

φ (z) =
1√
2π
e−

z2

2 (5)

so that if X ∼ N (µ, σ2) we can write

fX (x) =
1

σ
φ

(
x− µ
σ

)
. (6)

The Chi-Squared (χ2) Distribution

The chi-squared distribution is another useful distribution for inference. Many test statistics
have a χ2 distribution. It is a special case of the gamma distribution, and is derived from
the normal. It is defined by a single parameter: the degrees of freedom ν. It is a skewed
distribution that takes positive values only. Figure 2 gives some sample plots of χ2 densities
with different degrees of freedom.
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Figure 3: Some t Densities

Definition 17 A random variable X has a χ2 distribution with ν degrees of freedom, denoted
X ∼ χ2

ν , iff

fX (x|ν) =
1

Γ (ν/2) 2ν/2
x(ν/2)−1e−x/2, 0 ≤ x <∞. (7)

We call the function Γ (n) the gamma function. It has no closed form unless n is an
integer. In general, Γ (n) =

∫∞
0
tn−1e−tdt. When n > 0 is an integer, Γ (n) = (n− 1)!.

Proposition 18 If Z ∼ N (0, 1) , then X = Z2 ∼ χ2
1.

Proposition 19 If X1, ..., Xn are n independent χ2
1 random variables, then

∑n
i=1 xi ∼ χ2

n.

Proposition 20 Suppose X ∼ χ2
n. Then E [X] = n and V ar [X] = 2n.

Proposition 21 Suppose X1 ∼ χ2
n1

and X2 ∼ χ2
n2

are independent. Then X1+X2 ∼ χ2
n1+n2

.

Student’s t Distribution

The t distribution has the same basic shape as a standard normal distribution, but with
thicker tails. It is useful for inference: the usual “t test” statistic has a t distribution (we’ll
see this in an upcoming lecture). It is defined by a single parameter, the degrees of freedom
ν. Figure 3 plots the standard normal density, and several t densities.

Definition 22 A random variable X has a Student’s t distribution (or simply a t distribu-
tion) with ν degrees of freedom, denoted X ∼ tν , iff

fX (x|t) =
Γ
(
ν+1
2

)
Γ (ν/2)

1

(νπ)1/2
1

(1 + x2/ν)(ν+1)/2
, −∞ < x <∞. (8)
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Figure 4: Some F Densities

Proposition 23 If Z ∼ N (0, 1), and X ∼ χ2
ν is independent of Z, then

t =
Z√
X/ν

∼ tν .

Proposition 24 Suppose X ∼ tν . Then only ν − 1 moments of the distribution exist (i.e.,
are finite), and E [X] = 0 if ν > 1, and V ar [X] = ν

ν−2 if ν > 2.

Snedecor’s F Distribution

Like the t distribution, the F distribution is a “derived” distribution that is useful for infer-
ence. As you might guess, the usual “F test” statistic follows an F distribution (next lecture).
It is defined by two degrees of freedom parameters, ν1 and ν2. Like the χ2 distribution, it is
skewed and takes positive values only. Figure 4 plots some F densities.

Proposition 25 A random variable X has a Snedecor’s F distribution (or simply an F
distribution) with ν1 and ν2 degrees of freedom, denoted X ∼ Fν1,ν2, iff

fX (x|ν1, ν2) =
Γ
(
ν1+ν2

2

)
Γ
(
ν1
2

)
Γ
(
ν2
2

) (ν1
ν2

)ν1/2 x(ν1−2)/2(
1 +

(
ν1
ν2

)
x
)(ν1+ν2)/2 , 0 ≤ x <∞. (9)

Proposition 26 If X1 and X2 are two independent chi-squared random variables with ν1
and ν2 degrees of freedom, respectively, then

F =
X1/ν1
X2/ν2

∼ Fν1,ν2 .

Proposition 27 If X ∼ tν then X2 ∼ F1,ν .
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