Problem Set #10: Specification and Data Problems

Economics 435: Quantitative Methods

Fall 2011

1 Proxy variables

An important policy question in labor economics is the extent to which young people from lower-income families are "credit constrained" in their educational choices.

The regression we would want to estimate is:

$$school = \beta_0 + \beta_1 faminc + \beta_2 ability + u$$

where school is the number of years of school received by the respondent, faminc is the household income of the respondent's family, ability is the student's ability¹, and

$$E(u|faminc, ability) = 0$$

The parameter of interest is β_1 . Suppose we have a random sample of data on (school, faminc), but do not observe ability.

- a) Let $\hat{\beta}_1^A$ be the coefficient on faminc from an OLS regression of school on faminc. Find plim $\hat{\beta}_1^A$
- **b**) Based on your answer, is $\hat{\beta}_1^A$ more likely to overestimate β_1 or underestimate it? Explain your reasoning.
- c) One way to address an omitted variable problem is to find a proxy for the omitted variable. Suppose that we have data from a standardized test taken by each respondent. Let test be the respondent's test score. Assume that:

$$ability = \gamma_0 + \gamma_1 faminc + \gamma_2 test + v$$

where

$$E(u|faminc, test) = E(v|faminc, test) = 0$$

Find E(school|faminc, test)

- d) Suppose that we estimate an OLS regression of school on famine and test. Let $\hat{\beta}_1^B$ be the coefficient on famine from that regression. Find plim $\hat{\beta}_1^B$.
- e) Based on your answer, what do you think is the direction of bias in using $\hat{\beta}_1^B$ to estimate β_1 ? Do you think the bias in $\hat{\beta}_1^B$ is likely to be higher or lower than the bias in $\hat{\beta}_1^A$? Explain your reasoning.

¹ "Ability" here is something of a loaded word. In this context, it means

ECON 435, Fall 2011 2

2 Regression with standardized variables

Suppose that we have a random sample of size n on the random variables y and x such that:

$$E(y|x) = \beta_0 + \beta_1 x$$

Now suppose that we standardize both the independent and dependent variable. Let $(\tilde{y}_i, \tilde{x}_i)$ be defined by:

$$\tilde{y}_{i} = \frac{y_{i} - \bar{y}}{\sqrt{v\hat{a}r(y)}}$$

$$\tilde{x}_{i} = \frac{x_{i} - \bar{x}}{\sqrt{v\hat{a}r(x)}}$$

Let $\hat{\beta}_1$ be the coefficient on \tilde{x}_i from an OLS regression of \tilde{y} on \tilde{x} .

- **a**) Find $\hat{\beta}_0$ as a function of $\hat{\beta}_1$.
- **b**) Find the R^2 from the regression as a function of $\hat{\beta}_1$.
- c) Find the sample correlation $c\hat{orr}(\tilde{y}, \tilde{x})$ as a function of $\hat{\beta}_1$.
- **d**) Can $\hat{\beta}_1$ possibly be less than -1 or greater than +1? Prove it.