Midterm Exam

ECON 837

Prof. Simon Woodcock, Spring 2009

You may use one page of hand-written notes, intution, and divine inspiration, but no electronic devices or collusion. There are 4 questions, each worth 25 points. You should answer all four questions. You have 110 minutes. Good luck, and remember: econometrics is fun!

1. [A Warmup] Consider the two regressions

$$E[y] = x_1\beta_1 + x_2\beta_2 + x_3\beta_3$$

 $E[y] = z_1\alpha_1 + z_2\alpha_2 + z_3\alpha_3$

where $z_1 = x_1 - 2x_2$, $z_2 = x_1 + x_2$, and $z_3 = x_1 + 2x_2 + 2x_3$. What is the exact relationship between the least squares estimator of $\boldsymbol{\beta} = \begin{bmatrix} \beta_1 & \beta_2 & \beta_3 \end{bmatrix}'$ and $\boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 & \alpha_2 & \alpha_3 \end{bmatrix}'$?

2. Suppose you draw three disjoint iid random samples from the same $N(\mu, \sigma^2)$ population: $(X_1, X_2, ..., X_{n_1})$, $(X_{n_1+1}, X_{n_1+2}, ..., X_{n_1+n_2})$, and $(X_{n_1+n_2+1}, X_{n_1+n_2+2}, ..., X_{n_1+n_2+n_3})$. Suppose we denote the sample mean and variance in the first sample as \bar{x}_1 and s_1^2 , in the second sample as \bar{x}_2 and s_2^2 , and in the third sample as \bar{x}_3 and s_3^2 . Define a class of estimators:

$$s_c^2 = c_1 s_1^2 + c_2 s_2^2 + c_3 s_3^2$$

where c_1, c_2 and c_3 are constants.

- (a) [5 points] Give a necessary and sufficient condition for s_c^2 to be an unbiased estimator of σ^2 .
- (b) [10 points] Find the best unbiased estimator of σ^2 in the class of estimators s_c^2 . What is its variance?
- (c) [10 points] Let s^2 denote the sample variance based on the pooled sample $X_1, X_2, ..., X_{n_1+n_2+n_3}$. Is s^2 more efficient than the estimator you found in part b? Prove your claim, and give the intuition for your result.
- 3. We say a random variable z has an exponential (γ) distribution if it has pdf:

$$f(z) = \frac{1}{\gamma}e^{-z/\gamma}, \quad \gamma > 0, \quad z \ge 0.$$

- (a) [5 points] Derive the moment generating function of z.
- (b) [10 points] Find the mean and variance of z.
- (c) [10 points] Suppose you specify the simple regression model $y_i = \alpha + \beta x_i + \varepsilon_i$, where the errors $\varepsilon_i \geq 0$ have an exponential(γ) distribution. Are the least squares estimators of α and β biased or unbiased? Prove your claim.

1

- 4. Suppose the data generating process is given by $\mathbf{y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon}$ where \mathbf{X}_1 is $n \times k_1$, \mathbf{X}_2 is $n \times k_2$, and the other quantities are vectors. Suppose you estimate this model (call it the "long" model) via OLS, and you also estimate the "short" model, which excludes \mathbf{X}_2 .
 - (a) [10 points] Derive the sum of squared residuals in both models, and sign their difference.
 - (b) [10 points] Derive the **expected** sum of squared residuals in both models, and sign their difference.
 - (c) [5 points] Suppose $\beta_2 = 0$. Does this change your answers to parts a and b? Explain.

Some (possibly) useful results:

1. Partitioned inverse formula:

$$\left[egin{array}{ccc} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array}
ight]^{-1} = \left[egin{array}{ccc} \mathbf{A}_{11}^{-1} \left(\mathbf{I} + \mathbf{A}_{12} \mathbf{F}_2 \mathbf{A}_{21} \mathbf{A}_{11}^{-1}
ight) & - \mathbf{A}_{11}^{-1} \mathbf{A}_{12} \mathbf{F}_2 \ - \mathbf{F}_2 \mathbf{A}_{21} \mathbf{A}_{11}^{-1} & \mathbf{F}_2 \end{array}
ight]$$

where $\mathbf{F}_2 = (\mathbf{A}_{22} - \mathbf{A}_{21} \mathbf{A}_{11}^{-1} \mathbf{A}_{12})^{-1}$. The upper left block can also be written $\mathbf{F}_1 = (\mathbf{A}_{11} - \mathbf{A}_{12} \mathbf{A}_{22}^{-1} \mathbf{A}_{21})^{-1}$.

- 2. Integration by parts: $\int_a^b f'(x) g(x) dx = [f(x) g(x)]_a^b \int_a^b f(x) g'(x) dx$
- 3. **L'Hopital's Rule:** Consider the ratio f(x)/g(x). If both f and g are continuous and differentiable, and if $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$ or $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$, then:

if
$$\lim \frac{f'(x)}{g'(x)} = L$$
, then $\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)} = L$.