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Abstract

This paper derives a maximum likelihood estimator for an
econometric model of discrete choice with social interaction ef-
fects. Endogenous selection of reference group is addressed within
the econometric model through the incorporation of a reduced
form within-group correlation in both observed and unobserved
characteristics. The estimator requires only standard survey data
which provides information on a binary choice made by the re-
spondent, a vector of the respondent’s background characteris-
tics, and the average choice made by a large reference group (for
example, school or census tract). Properties of the estimator are
demonstrated analytically and through Monte Carlo experiments.

1 Introduction

This paper derives a maximum likelihood estimator for an econo-
metric model of discrete choice with social interaction effects. In
the model, individuals make a binary choice and the relative ben-
efit to each choice is affected by the prevalence of that choice in
the individual’s reference group. In applications, the reference
group can consist of friends, neighbors, schoolmates, or any peer
group. Because the other members of the reference group face
the same choice and are also influenced by the prevalence within
the reference group, the actual probability distribution of choices
is governed by the equilibrium of some appropriately-specified
game.
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The problem of developing a maximum likelihood estimator
of peer effects in this context was first addressed by Brock and
Durlauf (2001b). However, their estimator has seen limited if
any direct use in the applied literature for two reasons. First, it
requires data on the choice of every group member. While this
type of data is occasionally available, there are many other cases
in which a set of randomly sampled respondents are each asked
both his or her own choice and the average choice in his or her ref-
erence group. Second, and most importantly, the Brock/Durlauf
estimator requires that there be no correlation in unobservable
characteristics. Unfortunately, as noted by Manski (1993), this
condition is rarely met as it would imply random (exogenous)
selection of peer group. Both economic theory and evidence indi-
cate that individuals tend to form relatively homogeneous groups;
this will lead to positive correlation between peer behavior and
the respondent’s unobserved characteristics. As a result, both
the reduced-form coefficient on peer behaviour in a simple probit
or logit regression, and the coefficient on peer behavior in the
Brock/Durlauf structural estimator will be biased upwards due
to standard endogeneity problems.

The econometric model proposed here addresses both prob-
lems, and provides much greater direct applicability. First, the
estimator does not require complete information on peer choice,
only survey data of the kind described above. Second, the model
is structured so as to allow for a reduced-form correlation in both
observables and unobservables between group members. This
correlation is a parameter to be estimated and is identified under
the restriction of equal correlation in observable and unobserv-
able characteristics. When this restriction is inappropriate for
a particular application, interval estimation of social interaction
effects is possible under much weaker interval restrictions.

Although the econometric model described in this paper is
applicable both to peer effects (i.e., a small reference group) and
neighborhood effects (i.e., a large peer group), the appropriate
estimation method depends in part on the size of the reference
group. The estimator based on a closed-form likelihood func-
tion described in this paper uses large-sample approximations to
overall group behavior. As a result, it is appropriate only when
the reference group is relatively large; for example, a neighbor-
hood, city, or school. A related paper (Krauth 2002) derives a
simulation-based estimator that is appropriate when the refer-
ence group is small; for example, close friends or classmates. The
reason for the two distinct estimators is that, with nonzero social
interaction effects, the respondent’s choice influences the average
choice in the reference group. The maximum likelihood estimator
derived here uses asymptotic approximations to ignore this influ-
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ence (which goes to zero as the group size goes to infinity). With
smaller group sizes, this approximation is poor and simulation
is needed to eliminate the simultaneous equations bias. In other
words, the bias from the large-group estimator is decreasing in
the group size, while the computational cost of the simulation-
based estimator is increasing with the group size. Monte Carlo
results reported in this paper quantify the tradeoff somewhat.

The result of this research provides a structural estimation
alternative to the instrumental variables and natural experiment
approaches that have dominated empirical analysis of social inter-
actions. While such approaches have merits, the endogeneity of
the instruments used in these studies is often highly controversial
and the resulting estimates of social interaction effects can be er-
ratic. As a result, alternative methods have particular value here
in constructing a robust consensus on the strength of social inter-
action effects. In addition, the methodology described here has
several advantages over IV estimation. First, it does not require
a researcher has the good fortune to discover a natural experi-
ment, but rather works on common survey data. This greatly
expands the potential set of cases in which one can construct
selection-robust estimates. Second, the methodology provides a
more straightforward means of ascertaining the sensitivity of pa-
rameter estimates to assumptions, through the construction of
interval estimates.

Having derived the estimator, I then proceed to discuss its
numerical properties using a series of Monte Carlo experiments.

1.1 Related literature

The practice of incorporating average choice or average character-
istics in a person’s reference group as an explanatory variable for
the person’s choices or outcomes has a long history. Jencks and
Mayer (1990) provide a good survey of this early work on social
interaction effects. Although the deep identification problems
associated with measuring social interaction effects are quietly
discussed in some of these papers, these problems were treated
much more seriously following the methodological work of Manksi
(1993). Manski identifies three problems in measuring social in-
teraction effects by simply including peer behavior as an explana-
tory variable. First, there is simultaneity: if there are social in-
teraction effects, peer behavior both influences and is influenced
by the respondent’s behavior. As a result, there will be corre-
lation between peer behavior and the respondent’s unobservable
characteristics, a classic example of simultaneous equations bias.
Second, there is selection or sorting: individuals have a tendency
to form relatively homogeneous groups. As a result, there will be
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correlation in unobserved characteristics between peers, which
also implies a correlation between the peer behavior and the re-
spondent’s unobservables. Third, there is the possibility of con-
textual effects: a person may be influenced by the background
characteristics of the peer group as well as (or instead of) by
their behavior. Without strong functional form assumptions, it
is difficult to include both peer characteristics and peer behavior
as explanatory variables without facing serious collinearity prob-
lems. The effect of all three of these issues is that any measure
of peer influence that is based on a simple regression coefficient
on peer behavior is biased upwards.

Since this work, a number of empirical studies have attempted
to construct unbiased measures of social interaction effects. Some
of these studies (Evans, Oates and Schwab 1992, Gaviria and
Raphael 2001, Norton, Lindrooth and Ennett 1998) have used
instrumental variables for group average behavior. Another set
of studies (Oreopoulos 2003, Kremer and Levy 2001, Sacerdote
2001) consider natural experiments in which individuals are as-
signed randomly to different groups by some central authority.
A third (Hoxby 2000, Arcidiacono and Nicholson 2003) exploits
small and seemingly random year-by-year variation in cohort
composition in schools or other organizations. While these stud-
ies provide valuable information, each approach has its weak-
nesses. Research using group-level instrumental variables gen-
erally uses instruments whose exogeneity is highly questionable.
The natural experiments approach is confined to those cases where
a person’s reference group is determined by a central author-
ity. The stream of research that exploits exogenous year-to-year
variation in cohort characteristics (for example, sex ratios) runs
into the standard problems associated with using data on small
changes to estimate the effect of larger changes. As a result of
these weaknesses, there is a stronger than usual need to use mul-
tiple methods for estimating social interaction effects.

Model-based methods for estimating social interaction effects
have also appeared in many applications. Several early papers
adapted models from physics to econometric analysis: Glaeser,
Sacerdote, and Scheinkman (1996) adapt the “voter model” to
analyze the role of social interactions in explaining variations in
crime across cities. Topa (2001) adapts the “contact process”
model to explain local correlations in employment rates across
Chicago neighborhoods. Brock and Durlauf (Brock and Durlauf
2001b) provide a general analysis of the econometrics of estimat-
ing equilibrium models of social interactions, and suggest a model
that is similar in spirit to the one described here. In addition to
Krauth (2002), papers by Kooreman (1994) and Kooreman and
Soetevant (2002) have outlined and used simulation-based meth-
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ods for estimating more tractable variants on the Brock/Durlauf
model. Tamer (2002b, 2002a) analyzes the econometric conse-
quences of multiple equilibria in this class of models.

2 The model

The basic structure of the model is quite standard in the so-
cial interactions literature: an individual makes a binary choice,
the relative utility from each choice is a function of the individ-
ual’s observed characteristics, the average choice in the reference
group, and a random utility term. This type of model dates
back at least to Schelling (1978), and has been analyzed in an
econometric context by Brock and Durlaf (Brock and Durlauf
2001a, Brock and Durlauf 2001b). The model here differs from
that of Brock and Durlauf in that it allows for correlation in
characteristics between group members. In addition, to facilitate
modeling of this correlation, the random utility term is assumed
to have a normal distribution rather than the logistic distribution
assumed by Brock and Durlauf.

2.1 Preferences and choices

The economy features a set of large non-overlapping peer groups,
each with n members. Groups are indexed by g and individuals
are indexed within each group by i, so that the pair (g, i) identifies
an individual. Where the group is unambiguous, I refer simply
to “agent i.” Each individual makes a binary choice ygi ∈ {0, 1},
and has a utility function ugi(ygi;yg) such that:

ugi(1;yg)− ugi(0;yg) = βxgi + γȳgi + εgi (1)

where xgi ≡
(
1, x1

gi, x
2
gi, . . . , x

k
gi

)′ is vector of exogenous charac-
teristics which are observable in the data, yg ≡ (yg1, . . . , ygn)′

is the vector of choices made by the members of the group, ȳgi

is the average choice made by the other members of the group:(
ȳgi ≡ 1

n−1

∑
j 6=i ygj

)
and εgi is an exogenous variable which is

not observed in the data. The parameter γ is the endogenous
social effect; If γ > 0, agent i’s incremental utility from choosing
ygi = 1 is increasing in the fraction of his or her peers that do so.
As with much of the literature, this model assumes the absence
of contextual effects.

2.2 Correlated effects

The exogenous variables are assumed to have a jointly normal
probability distribution across all individuals which meets the
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following conditions:

1. Independence across groups
2. Exchangeability within groups: The joint probability dis-

tribution is not changed by any reordering of individuals
within groups.

3. Normalization of random utility term:

E(εgi) = 0 ∀g, i

var(εgi) = 1 ∀g, i

4. Independence of observable and unobservable characteris-
tics:

cov(xgi, εgj) = 0 ∀i, j, g
The exchangeability condition follows from the fact that our or-
dering of individuals in the data is arbitrary. The normalization is
standard in discrete choice models, as parameters in such models
are always identified only to a linear transformation. The third
assumption, of independence between observable and unobserv-
able characteristics, is a stronger assumption. It is standard to
assume in discrete choice models that an individual’s random util-
ity term is independent of his or her observed characteristics. We
extend that standard assumption to include independence of the
individual’s random utility term with his or her peers’ observed
characteristics.

Given these basic conditions, we can derive the following use-
ful parameterization. For any g, and any i 6= j:

βxgi

βxgj

εgi

εgj

 ∼ N




βµx

βµx

0
0

 ,


σ2

βx ρxσ2
βx 0 0

ρxσ2
βx σ2

βx 0 0
0 0 1 ρε

0 0 ρε 1


 (2)

where (µx, ρx, σ2
βx, ρε) is a set of parameters to be estimated.

An alternative parameterization is as follows. Let each group
be characterized by a “typical” value for xgi and εgi, called x̄g

and ε̄g respectively. Each individual’s deviation from the typical
group value of a variable is an independent mean-zero random
variable. In particular:

x̄g

ε̄g

ug1

vg1

ug2

vg2

...


∼ N





µx

0
0
0
0
0
...


,



Σx̄ 0 0 0 0 0
0 σ2

ε̄ 0 0 0 0
0 0 Σu 0 0 0
0 0 0 σ2

v 0 0
0 0 0 0 Σu 0
0 0 0 0 0 σ2

v
...

...
...

...
...

. . .




(3)
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where µx is a k-vector of means, and Σx̄ and Σu are both k × k
covariance matrices. For each i, let:

xgi = x̄g + ugi (4)
εgi = ε̄g + vgi (5)

Let Σx ≡ Σx̄ + Σu, let σ2
βx̄ ≡ βΣx̄β′, and let σ2

βu = βΣuβ′. It
can be easily demonstrated that these two parameterizations are
equivalent where:

σ2
βx = σ2

βx̄ + σ2
βu (6)

ρx =
σ2

βx̄

σ2
βx̄ + σ2

βu

(7)

ρε = σ2
ε̄ (8)

1 = σ2
ε̄ + σ2

v (9)

Either parameterization will be used as convenience dictates.

2.3 Equilibrium

The set of equilibrium average choice levels for group g is defined
as:

Yg = {ȳ ∈ [0, 1] : Pr(βxgi + γȳ + εgi > 0|x̄g, ε̄g) = ȳ} (10)

For small to moderate values of γ, the set Yg is a singleton, i.e.,
equilibrium is unique. However, for sufficiently large values, Yg

has as many as three elements. In order for there to be a well-
defined likelihood function for this case, the model must be sup-
plemented with an equilibrium selection rule. The equilibrium
selection rule is not necessarily identified by the data and must
be chosen by the researcher.

An equilibrium selection rule for this model is defined as a
triplet Λ ≡ (λL, λM , λH) in the unit simplex. The selection rule
should be interpreted as giving the probability that the lowest,
highest, or middle equilibrium is selected. In order for the like-
lihood function to be finite valued for all parameter values and
data sets, the selection rule should also give strictly positive prob-
ability to each equilibrium.

2.4 Selection on observables and unobservables

In order to obtain point estimates of model parameters, it is
necessary to impose an additional restriction on ρε, the between-
peer correlation in unobservables. The primary restriction used

7



in this paper is that the correlation is the same as the correlation
in observables, i.e.

ρε = ρx (11)

The idea of using the degree of selection on observables as a proxy
for the degree of selection on unobservables was first proposed by
Altonji, Elder, and Taber (2000) to correct for selection effects
in measuring the effect of attending a Catholic school. These au-
thors demonstrate that equality in these two correlations will hold
(in expectation) if the observables are a random subset of a large
set of relevant variables. Alternatively, if the observed variables
are more highly correlated between peers than the unobserved
variables, the equal-correlation point estimate of the peer effect
will be biased downwards. This is a distinct possibility, as per-
sonal information that is particularly easily gathered in surveys
(race, sex, age) may also be more easily observed by potential
friends. In any case, the model can also be estimated under al-
ternative restrictions on ρε, including interval restrictions. As a
result, one can report results that allow readers with different
beliefs about the selection process to construct their own range
of estimates consistent with both the data and their prior beliefs.

3 Estimation from a random sample

This section describes how the model can be estimated from a
random sample on individuals in which average peer choice is
reported by the respondent. Let θ ≡ (β, γ, ρx, ρε, µx,Σx) be
the vector of parameters to be estimated and let θ∗ be the true
value of θ. Suppose that we have a random sample of size N on
(xgi, ygi, ȳgi). Without loss of generality assign the group index
g to the person described in the gth observation. This section
derives the likelihood function:

L(θ) =
N∏

g=1

Pr(ygi, ȳgi, xgi) (12)

=
N∏

g=1

Pr(ygi|xgi, ȳgi) Pr(ȳgi|xgi) Pr(xgi) (13)

Consistent and efficient estimates of θ∗ can then be derived by
maximizing L(θ) or lnL(θ).

3.1 Preliminaries

Note that the parameters in the k-vector of means µx and the k by
k covariance matrix Σx can be estimated directly from the matrix
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of x variables using the sample averages and sample covariance
matrix. Although these parameters could be incorporated di-
rectly into the maximum likelihood problem, little efficiency will
be lost by simply using those standard estimates and maximizing
the likelihood conditional on the x variables.s The respondent’s
choice ygi is discrete, and the average choice in the group ȳgi is
continuous. So we can write the log-likelihood function as:

`(θ) = ln L(θ) (14)

=
N∑

g=1

ygi ln Pr(ygi = 1|xgi, ȳgi)

+
N∑

g=1

(1− ygi) ln(1− Pr(ygi = 1|xgi, ȳgi))

+
N∑

g=1

ln

(
d Pr(ȳgi ≤ ȳ|xgi)

dȳ

∣∣∣∣
ȳ=ȳgi

)

Now we need to derive formulas for Pr(ygi = 1|xgi, ȳgi) and
d Pr(ȳgi≤ȳ|xgi)

dȳ .
First, apply standard rules for the distributions of linear func-

tions of multivariate normal random vectors to get: βx̄g + ε̄g

βxgi

βxgi + εgi

 ∼ N

 βµx

βµx

βµx

 ,

 σ2
βx̄ + σ2

ε̄ σ2
βx̄ σ2

βx̄ + σ2
ε̄

σ2
βx̄ σ2

βx̄ + σ2
βu σ2

βx̄ + σ2
βu

σ2
βx̄ + σ2

ε̄ σ2
βx̄ + σ2

βu σ2
βx̄ + σ2

ε̄ + σ2
βu + σ2

v


(15)

Next, apply the standard rules for conditional distributions under
the multivariate normal to derive:

(βxgi + εgi)|(βx̄g + ε̄g) ∼ N
(
βx̄g + ε̄g, σ

2
βu + σ2

v

)
(16)

βx̄g + ε̄g|xgi ∼ N

(
σ2

βuβµx + σ2
βx̄βxgi

σ2
βu + σ2

βx̄

,
σ2

ε̄ σ2
βu + σ2

ε̄ σ2
βx̄ + σ2

βx̄σ2
βu

σ2
βu + σ2

βx̄

)
(17)

βxgi + εgi|(βx̄g + ε̄g), xgi ∼ N(Mgi, S) (18)

where

S ≡
σ2

ε̄ σ2
βuσ2

v + σ2
ε̄ σ2

βuσ2
βx̄ + σ2

ε̄ σ2
βx̄σ2

v + σ2
βx̄σ2

βuσ2
v

σ2
ε̄ σ2

βu + σ2
ε̄ σ2

βx̄ + σ2
βx̄σ2

βu

(19)

Mgi ≡

(
σ2

ε̄ σ2
βu + σ2

ε̄ σ2
βx̄

)
(βx̄g + ε̄g) +

(
σ2

ε̄ σ2
βu + σ2

βx̄σ2
βu

)
βxgi − σ2

ε̄ σ2
βuβµx

σ2
ε̄ σ2

βu + σ2
ε̄ σ2

βx̄ + σ2
βx̄σ2

βu

These three distributions can be used to derive the likelihood
function.
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3.2 Calculating Pr(ȳg|xgi)

First, we calculate Pr(ȳgi ≤ ȳ|xgi). Now,

Pr(ygi = 1|βx̄g + ε̄g) = Pr(βxgi + εgi + γȳg > 0|x̄g + ε̄g)(20)

Since this equation describes the CDF of a linear function of a
vector of normally distributed random variables, we can normal-
ize to get:

Pr(ygi = 1|βx̄g + ε̄g) = Φ

γȳg + βx̄g + ε̄g√
σ2

βu + σ2
v

 (21)

where Φ is the CDF of the standard normal distribution.
Equation (21) holds for all i, so E(ȳg|βx̄g + ε̄g) = E(ygi|x̄g +

ε̄g). Applying the law of large numbers, we have:

ȳg = Φ

γȳg + βx̄g + ε̄g√
σ2

βu + σ2
v

 (22)

Equation (22) describes the relationship between group charac-
teristics and equilibrium group choice.

For a given set of parameter values, equation (22) defines for
each value of ȳg, a uniquely defined value of (βx̄g + ε̄g) such that
ȳg is an equilibrium.

(βx̄g + ε̄g) = Φ−1 (ȳg)
√

σ2
βu + σ2

v − γȳg (23)

However, the converse is not necessarily true: there may be mul-
tiple equilibria. Note that equation (22) defines a function map-
ping each value of ȳg into a value of (βx̄g + ε̄g). There is a corre-
sponding function mapping (βx̄g + ε̄g) into ȳg if and only if the
function defined in equation (23) is invertible (i.e., monotonic).
Taking derivatives, we get:

∂(βx̄g + ε̄g)
∂ȳg

=

√
σ2

βu + σ2
v

φ(Φ−1(ȳg))
− γ (24)

where φ is the PDF of the standard normal distribution. The
parameter values imply a unique equilibrium if and only if this
derivative is positive for all values of ȳg. The minimal value of
this derivative occurs for ȳg = 0.5, as Φ−1(0.5) = 0. Substituting
and solving, the equilibrium is always unique if

γ <

√
σ2

βu + σ2
v

φ(0)
(25)
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and potentially multiple otherwise. Notice that multiplicity is a
function of parameter values, not of any feature in the data. The
form of the likelihood depends on whether or not equilibrium is
unique.

3.2.1 Case 1: Unique equilibrium

First, suppose that equation (25) holds and equilibrium is unique.
Then the equilibrium ȳg is a strictly increasing function of βx̄g +
ε̄g. An example is depicted in Figure 1. We can derive:

Pr(ȳg ≤ ȳ|xgi) = Pr(βx̄g + ε̄g ≤ Φ−1 (ȳ)
√

σ2
βu + σ2

v − γȳ|xgi)(26)

We already showed that:

βx̄g + ε̄g|xgi ∼ N

(
σ2

βuβµx + σ2
βx̄βxgi

σ2
βu + σ2

βx̄

,
σ2

ε̄ σ2
βu + σ2

ε̄ σ2
βx̄ + σ2

βx̄σ2
βu

σ2
βu + σ2

βx̄

)
(27)

We use the usual trick of normalizing to get

Pr(ȳg ≤ ȳ|xgi) = Φ

Φ−1 (ȳ)
√

σ2
βu + σ2

v − γȳ − σ2
βuβµx+σ2

βx̄βxgi

σ2
βu

+σ2
βx̄√

σ2
ε̄ σ2

βu
+σ2

ε̄ σ2
βx̄

+σ2
βx̄

σ2
βu

σ2
βu

+σ2
βx̄

(28)

Now we take the derivative and evaluate at ȳ = ȳg to get:

∂ Pr(ȳg ≤ ȳ|xgi)
∂ȳ

∣∣∣∣
ȳ=ȳg

=


√

σ2
βu

+σ2
v

φ(Φ−1(ȳg)) − γ√
σ2

ε̄ σ2
βu

+σ2
ε̄ σ2

βx̄
+σ2

βx̄
σ2

βu

σ2
βu

+σ2
βx̄

 (29)

× φ

Φ−1 (ȳg)
√

σ2
βu + σ2

v − γȳg −
σ2

βuβµx+σ2
βx̄βxgi

σ2
βu

+σ2
βx̄√

σ2
ε̄ σ2

βu
+σ2

ε̄ σ2
βx̄

+σ2
βx̄

σ2
βu

σ2
βu

+σ2
βx̄


3.2.2 Case 2: Multiple equilibria

When equation (25) is not satisfied, equilibrium is not always
unique. Figure 2 depicts the equilibrium correspondence graphi-
cally for the case where there are multiple equilibria. For (βx̄g +
ε̄g) between xL and xH , there are three equilibria.

Next we need to solve for the four quantities (yL, yML, yMH , yH)
depicted in Figure 2. First we find yMH , which is the highest pos-
sible unstable equilibrium:

yMH ≡ max y such that

φ(Φ−1(y)) =

√
σ2

βu + σ2
v

γ

 (30)
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The lowest possible unstable equilibrium yML is:

yML ≡ min y such that

φ(Φ−1(y)) =

√
σ2

βu + σ2
v

γ

 (31)

Now xL is the value of (βx̄g + ε̄g) such that yMH is an equi-
librium, and xH is the value such that yML is an equilibrium:

xL ≡ Φ−1
(
yMH

)√
σ2

βu + σ2
v − γyMH (32)

xH ≡ Φ−1
(
yML

)√
σ2

βu + σ2
v − γyML (33)

The low equilibrium for xL is denoted by yL:

yL ≡ lim
i→∞

yL
i where yL

0 = 0, yL
i+1 = Φ

 γyL
i + xL√

σ2
βu + σ2

v

 (34)

starting with yL
0 = 0. The high equilibrium for xH is denoted by

yH :

yH ≡ lim
i→∞

yH
i where yH

0 = 1, yH
i+1 = Φ

 γyH
i + xH√
σ2

βu + σ2
v

 (35)

Having determined these quantities, let f(.) be the conditional
PDF for the random variable (βx̄g + ε̄g), conditional on βxgi, and
let h(.) be the right side of equation (23). Then:

Pr(ȳg ≤ ȳ) =



∫ h(ȳ)

−∞ f(x)dx ȳ < yL∫ xL

−∞ f(x)dx + λL

∫ h(ȳ)

xL f(x)dx ȳ ∈ [yL, yML]∫ xL

−∞ f(x)dx + λL

∫ xH

xL f(x)dx + λM

∫ xH

h(ȳ)
f(x)dx ȳ ∈ [yML, yMH ]∫ xL

−∞ f(x)dx + (λL + λM )
∫ xH

xL f(x)dx + λH

∫ h(ȳ)

xL f(x)dx ȳ ∈ [yMH , yH ]∫ h(ȳ)

−∞ f(x)dx ȳ > yH

(36)
Taking derivatives, we get:

∂ Pr(ȳ ≤ ȳi)
∂ȳi

= φ

Φ−1 (ȳ)
√

σ2
βu + σ2

v − γȳ − σ2
βuβµx+σ2

βx̄xi

σ2
βu

+σ2
βx̄√

σ2
ε̄ σ2

βu
+σ2

ε̄ σ2
βx̄

+σ2
βx̄

σ2
βu

σ2
βu

+σ2
βx̄

(37)

∗


√

σ2
βu

+σ2
v

φ(Φ−1(ȳ)) − γ√
σ2

ε̄ σ2
βu

+σ2
ε̄ σ2

βx̄
+σ2

βx̄
σ2

βu

σ2
βu

+σ2
βx̄


∗ Λi
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where:

Λi ≡


1 if ȳ ∈ (−∞, yL) ∪ (yH ,∞)

λL if ȳ ∈ [yL, yML]
−λM if ȳ ∈ [yML, yMH ]
λH if ȳ ∈ [yMH , yH ]

(38)

3.3 Calculating Pr(ygi|ȳg, xgi)

Finally, we look at ygi. We note that

Pr(ygi = 1|xgi, ȳg) = Pr(xgi + εgi + γȳg > 0|xgi, ȳg) (39)

= Pr
(

(xgi + εgi)−Mgi√
S

>
−γȳg −Mgi√

S

∣∣∣∣xgi, ȳg

)
= Φ

(
γȳg + Mgi√

S

)
where

S ≡
σ2

ε̄ σ2
βuσ2

v + σ2
ε̄ σ2

βuσ2
βx̄ + σ2

ε̄ σ2
βx̄σ2

v + σ2
βx̄σ2

βuσ2
v

σ2
ε̄ σ2

βu + σ2
ε̄ σ2

βx̄ + σ2
βx̄σ2

βu

(40)

Mgi ≡

(
σ2

ε̄ σ2
βu + σ2

ε̄ σ2
βx̄

)(
Φ−1 (ȳg)

√
σ2

βu + σ2
v − γȳg

)
+
(
σ2

ε̄ σ2
βu + σ2

βx̄σ2
βu

)
βxgi − σ2

ε̄ σ2
βuβµx

σ2
ε̄ σ2

βu + σ2
ε̄ σ2

βx̄ + σ2
βx̄σ2

βu

3.4 Calculating the likelihood function

To summarize, the log-likelihood function is given by:

`(θ) =
n∑

g=1

ygi ln
(

Φ
(

γȳg + Mgi√
S

))

+
n∑

g=1

(1− ygi) ln
(

1− Φ
(

γȳg + Mgi√
S

))

+
n∑

g=1

ln

∣∣∣∣∣∣∣∣
√

σ2
βu

+σ2
v

φ(Φ−1(ȳg)) − γ√
σ2

ε̄ σ2
βu

+σ2
ε̄ σ2

βx̄
+σ2

βx̄
σ2

βu

σ2
βu

+σ2
βx̄

∣∣∣∣∣∣∣∣
+

n∑
g=1

lnφ

Φ−1 (ȳg)
√

σ2
βu + σ2

v − γȳg −
σ2

βuβµx+σ2
βx̄βxgi

σ2
βu

+σ2
βx̄√

σ2
ε̄ σ2

βu
+σ2

ε̄ σ2
βx̄

+σ2
βx̄

σ2
βu

σ2
βu

+σ2
βx̄


+

n∑
g=1

ln |Λgi| (41)
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where Λgi, Mgi, and S are as defined in equations (38) and (40),

µx = µ̂x (42)
σ2

βx̄ + σ2
βu = βΣ̂xβ′ (43)

and (µ̂x, Σ̂x) are just the sample mean and covariance matrix of
the xgi’s.

It may also be useful to define the log-likelihood function in
terms of the alternative parameterization. This can be done by
simply substituting into equation (41):

`(θ) =
n∑

g=1

ygi ln
(

Φ
(

γȳg + Mgi√
S

))

+
n∑

g=1

(1− ygi) ln
(

1− Φ
(

γȳg + Mgi√
S

))

+
n∑

g=1

ln

∣∣∣∣∣∣∣
√

(1−ρx)σ2
βx

+1−ρε

φ(Φ−1(ȳg)) − γ√
ρε + ρx(1− ρx)σ2

βx

∣∣∣∣∣∣∣
+

n∑
g=1

lnφ

Φ−1 (ȳg)
√

(1− ρx)σ2
βx + 1− ρε − γȳg − (1− ρx)βµx − ρxβxgi√

ρε + ρx(1− ρx)σ2
βx


+

n∑
g=1

ln |Λgi| (44)

where:

S ≡
ρε(1− ρε) + ρx(1− ρx)σ2

βx

ρε + ρx(1− ρx)σ2
βx

(45)

Mgi ≡
ρε

(
Φ−1 (ȳg)

√
(1− ρx)σ2

βx + 1− ρε − γȳg

)
+
(
ρε ∗ (1− ρx) + ρx(1− ρx)σ2

βx

)
βxgi − ρε(1− ρx)βµx

ρε + ρx(1− ρx)σ2
βx

Λi is as defined in equation (38), with:

yMH ≡ max y such that

φ(Φ−1(y)) =

√
(1− ρx)σ2

βx + 1− ρε

γ


yML ≡ min y such that

φ(Φ−1(y)) =

√
(1− ρx)σ2

βx + 1− ρε

γ


xL ≡ Φ−1

(
yMH

)√
(1− ρx)σ2

βx + 1− ρε − γyMH
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xH ≡ Φ−1
(
yML

)√
(1− ρx)σ2

βx + 1− ρε − γyML

yL ≡ lim
i→∞

yL
i where yL

0 = 0, yL
i+1 = Φ

 γyL
i + xL√

(1− ρx)σ2
βx + 1− ρε


yH ≡ lim

i→∞
yH

i where yH
0 = 1, yH

i+1 = Φ

 γyH
i + xH√

(1− ρx)σ2
βx + 1− ρε

 s

and

µx = µ̂x (46)
σ2

βx = βΣ̂xβ′ (47)

where (µ̂x, Σ̂x) are just the sample mean and covariance matrix
of the xgi’s.

4 Monte Carlo results

This section describes the results of a series of Monte Carlo ex-
periments aimed at characterizing the performance of the model
in different environments.

The baseline experiment has the following features:

1. The vector of explanatory variables xgi consists of an inter-
cept and a single random variable with a N(0, 1) distribu-
tion across g.

2. The number of group members is varied across experiments,
as are the values of the parameters ρ, γ, β0 (the intercept),
and β1 (the coefficient on the explanatory variable). In
most cases the intercept is set at β0 = γ/2, in order to
avoid having an extremely large fraction of observations at
the same value of ygi.

3. A single member from each group is sampled in order to
generate a random sample from a large population.

4. For a finite number of group members, instead of the group
choice outcome being determined by the “equilibrium av-
erage choice”, the outcome is chosen from the set of Nash
equilibria. The set of equilibrium average choice levels is
simply the limit of the set of Nash equilibria as the group
size goes to infinity.

5. The equilibrium selection rule in the simulated data is as
follows: the lowest-average-choice Nash equilibrium is se-
lected.
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6. The equilibrium selection rule assumed in estimation is (1/3, 1/3, 1/3).

Given these features, the Monte Carlo experiment is standard.
For each value of θ and ng, we draw a sample of size N = 1, 000
and calculate the maximum likelihood parameter estimate θ̂. We
repeat this experiment 100 times in order to get the approximate
probability distribution of θ̂. In particular, we are primarily con-
cerned with E(ρ̂− ρ) and E(γ̂ − γ), the bias in the estimates of
the peer effect and selection effect.

Table 1 reports the results from the Monte Carlo experiments.
As one might expect, the estimator performs very poorly for small
reference groups, with a large upward bias in γ̂. This upward bias
is not surprising because the ML estimator derived in this paper
uses approximations which are motivated by a large reference
group. In those cases, the simulation-based estimator in Krauth
(2002) will be more appropriate. As one might also expect, the
performance of the estimator improves significantly as the size of
the reference group increases. In most of the experiments, the
bias of the ML estimator is negligible for reference groups with
more than 100 to 200 members.

Next, we consider the variance of the estimator. Two ques-
tions arise with respect to the variance. First, how accurate is
the asymptotic covariance matrix of the estimator in moderately
sized samples? Second, are the social interaction effect parame-
ters estimated with reasonable precision in moderately sized sam-
ples? In order to answer this question, Table 2 reports estimates
of the standard error and correlation coefficient of γ̂ and ρ̂ us-
ing both the asymptotic covariance matrix (averaged across the
trials), and using the sample standard deviation and correlation
coefficient across the trials. In the interests of space, Table 2 only
reports these results for those values of the reference group size
that do not imply large bias in the coefficient estimates. The
results suggest that the asymptotic covariance matrix estimator
performs fairly well on sample sizes of 1,000 observations or more,
and that the estimator itself has moderate variance for such sam-
ple sizes.

5 Conclusion

The model and estimation method outlined in this paper enable
a researcher to consistently estimate social interaction effects in
binary choice from randomly sampled survey data, while allow-
ing for at least some types of selection effects. The method can
be used in a wide variety of applications, including estimating
neighborhood effects and school effects on teen pregnancy, al-
cohol, tobacco, and drug use, school dropout, and many other
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Size of reference group
ρ γ β0 β1 Stat. 5 10 20 50 100 200 500 ∞

0.1 0.0 0.0 1.0 Avg(ρ̂)
Avg(γ̂)

0.1 0.5 -0.25 1.0 Avg(ρ̂)
Avg(γ̂)

0.1 1.0 -0.5 1.0 Avg(ρ̂) 0.06 0.17 0.20 0.17 0.13 0.12 0.11 0.10
Avg(γ̂) 2.72 1.55 0.83 0.62 0.86 0.79 0.92 1.00

0.1 3.0 -1.5 1.0 Avg(ρ̂)
Avg(γ̂)

0.5 0.0 0.0 1.0 Avg(ρ̂) 0.10 0.31 0.41 0.49 0.50 0.50 0.50 0.49
Avg(γ̂) 2.42 1.26 0.64 0.20 0.10 0.04 0.01 0.01

0.5 0.5 -0.25 1.0 Avg(ρ̂) 0.07 0.23 0.36 0.46 0.49 0.50 0.51 0.50
Avg(γ̂) 2.85 2.16 1.38 0.81 0.64 0.58 0.45 0.49

0.5 1.0 -0.5 1.0 Avg(ρ̂)
Avg(γ̂)

0.5 3.0 -1.5 1.0 Avg(ρ̂)
Avg(γ̂)

0.1 0.5 -0.25 0.1 Avg(ρ̂)
Avg(γ̂)

0.5 0.5 -0.25 0.1 Avg(ρ̂)
Avg(γ̂)

0.5 0.0 -0.25 0.1 Avg(ρ̂)
Avg(γ̂)

0.1 3.0 -1.5 1.0 Avg(ρ̂)
(L) Avg(γ̂)

0.5 3.0 -1.5 1.0 Avg(ρ̂)
(L) Avg(γ̂)

0.1 3.0 -1.5 1.0 Avg(ρ̂)
(H) Avg(γ̂)

0.5 3.0 -1.5 1.0 Avg(ρ̂)
(H) Avg(γ̂)

Table 1: Monte Carlo results, based on 100 trials per experiment. Cases
marked with (L) were estimated using (λL, λM , λH) = (0.9, 0.05, 0.05),
others were estimated using (λL, λM , λH) = (1/3, 1/3, 1/3).
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Size of reference group
(ρ, γ, β0, β1) Estimator 100 200 500

σ̂γ̂ σ̂ρ̂ ρ̂γ̂ρ̂ σ̂γ̂ σ̂ρ̂ ρ̂γ̂ρ̂ σ̂γ̂ σ̂ρ̂ ρ̂γ̂ρ̂

(0.1, 0.0, 0.0, 1.0) Asymptotic n n n n n n n n n
MC Sample n n n n n n n n n

(0.1, 0.0, 0.0, 1.0) Asymptotic n n n n n n n n n
MC Sample n n n n n n n n n

(0.1, 0.0, 0.0, 1.0) Asymptotic n n n n n n n n n
MC Sample n n n n n n n n n

(0.1, 0.0, 0.0, 1.0) Asymptotic n n n n n n n n n
MC Sample n n n n n n n n n

Table 2: Monte Carlo results, based on 100 trials per experiment (cal-
culations in progress).

choices of interest to policymakers.
There are several avenues of future research along these lines.

First, the estimator derived in Section 3 is based on a random
sampling design. However, studies of social interaction effects of-
ten are based on what could be called a group-stratified sample.
In other words, there is a random sampling of groups, then within
each group all or a portion of individuals are surveyed. For ex-
ample, Gaviria and Raphael (2001) use a school-based sample in
which all students in a particular set of schools were surveyed.
Although the estimator derived in this paper can be used to make
consistent parameter estimates for this type of data (by simply
randomly dropping all but one observation from each group),
such an estimator is clearly inefficient. As a result, an exten-
sion of the methodology to efficiently use group-stratified samples
would be useful.
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Figure 1: Equilibrium group average choice (ȳ) as a function of group
characteristics (x̄ + ε̄).
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Figure 2: Equilibrium group average choice (ȳ) as a function of group
characteristics (x̄ + ε̄).
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