Lecture 2: Acceleration

What's important:
• relationships between displacement, velocity, acceleration
• permutations of two basic equations for motion in one dimension
• vectors

Demonstrations: none

Acceleration

We can go to higher order rates of change by looking at the rate of change of the velocity (since $s = |v|$, then we will deal with velocities rather than speeds).

$[\text{average acceleration}] = \bar{a} = \frac{v_2 - v_1}{t_2 - t_1}$ (independent of path)

$[\text{instantaneous acceleration}] = a = \frac{\Delta v}{\Delta t}$ as $\Delta t \to 0$ (which becomes $a = \frac{dv}{dt}$)

In terms of graphs:

For example, suppose that the motor fails on a boat heading into the wind:

Constant acceleration in one dimension

To obtain x from v, or v from a (that is, to proceed in the opposite direction from the rates), one takes areas under the curves of time-evolution graphs. For example, a car travelling at a constant speed of 100 km/hr (s) covers a distance of 100 km (st) in a time of 1 hour (t). The distance is the product of s and t, and is the area under the s vs t graph. We apply this to constant acceleration in one dimension.
The area under the curve gives the change in \(v \) (that is, \(\Delta v = v - v_o \)), NOT \(v \) itself. From the graph of constant acceleration vs. \(t \),

\[
\Delta v = \text{area under } a \text{ vs } t \\
\implies v - v_o = at \\
\implies v = v_o + at \tag{1}
\]

Eq. (1) shows that the \(v \) vs. \(t \) curve should be a straight line with a y-intercept of \(v_o \).

\[
\Delta x = \text{area under } v \text{ vs } t = (v - v_o) t / 2 + v_o t \\
\implies x - x_o = (v + v_o) t / 2 \\
\implies x = (v + v_o) t / 2 \quad \text{(if } x_o = 0) \tag{2}
\]

Although (2) looks like a linear equation in time (whereas the \(x \) vs. \(t \) is anything but linear), in fact \(v \) contains time dependence. Substituting (1) into (2) to show the explicit time-dependence gives

\[
x = (v_o + at + v_o) t / 2 = (2v_o + at) t / 2 \\
\implies x = v_o t + (1/2)at^2 \tag{3}
\]

To confirm that the form of Eq. (3) is correct, take derivatives to obtain \(v \) and \(a \).

Equations (1) and (2) can be written in other ways as well. For example, since the plot of \(v \) vs. \(t \) is linear, then the average velocity \(v_{av} \) is just \((v + v_o)/2 \). Hence, Eq. (2) also can be written as

\[
x = v_{av} t \tag{4}
\]

Alternatively, one could invert (1) to find \(t \),

\[
t = (v - v_o) / a
\]

and substitute the result into (2) to obtain

\[
x = (v^2 - v_o^2) / 2a \tag{5}
\]
Variable acceleration in one dimension

Eqs. (2) - (5) only hold if the acceleration is constant. If it is not constant, the area under the a vs. t curve must be determined by some analytic or numerical means:

![Graph showing area under acceleration vs. time curve]

Vectors

In this course, we are concerned with motion in three dimensions, and this requires us to use vectors.

Scaler: a quantity with magnitude only, e.g. distance.

Vector: a quantity with magnitude and direction, e.g. position.

Denote position vector as \vec{R}. This is called the displacement of the object with respect to the origin.

Addition:
The addition of vectors is not the same procedure as the addition of scalers:

Add \vec{A} to \vec{B}

Addition rule: put tip of \vec{A} to tail of \vec{B}, resultant runs from tail of \vec{A} to tip of \vec{B}.

Note that the order in which the vectors are added doesn’t matter.
Subtraction:

\[\vec{A} - \vec{B} \]

Form negative of \(\vec{B} \), then add as usual.

\[\vec{A} + (\vec{-B}) \Rightarrow \vec{C} \]

Magnitude:

The length of vector \(\vec{A} \) is denoted by \(|\vec{A}| \).

Scaler times vector:

\[a \vec{A} = \vec{A} + \vec{A} + \vec{A} \ldots \text{ “a” times.} \]

Multiplication:

There are three products that one can form from vectors, two of which (the dot and cross product) are needed in this course. The dot product of two vectors is a scalar quantity, and hence the dot product also is called the scalar product. The notation for the dot product, and its operation, are:

\[\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta \]

This operation is equivalent to taking the projection of one vector times the length of the other:

Note that the dot product of a vector with itself is just the square of the vector’s length

\[\vec{A} \cdot \vec{A} = |\vec{A}| |\vec{A}| \cos(0) = \vec{A}^2 \]

It is often useful to represent vectors in terms of their Cartesian components:

\[\vec{A} = (a_x, a_y, a_z) \]

Then

\[\vec{A} + \vec{B} = (a_x+b_x, a_y+b_y, a_z+b_z) \]

and

\[\vec{A} \cdot \vec{B} = (a_xb_x, a_yb_y, a_zb_z) \].